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ABSTRACT
Nowadays DNA meta-barcoding is a powerful instrument capable of quickly discover-
ing the biodiversity of an environmental sample by integrating the DNA barcoding
approach with High Throughput Sequencing technologies. It mainly consists of
the parallel reading of informative genomic fragment/s able to discriminate living
entities. Although this approach has been widely studied, it still needs optimization
in some necessary steps requested in its advanced accomplishment. A fundamental
element concerns the standardization of bioinformatic analyses pipelines. The aim
of the present study was to underline a number of critical parameters of laboratory
material preparation and taxonomic assignment pipelines in DNA meta-barcoding
experiments using the cytochrome oxidase subunit-I (coxI ) barcode region, known
as a suitable molecular marker for animal species identification. We compared nine
taxonomic assignment pipelines, including a custom in-house method, based on
Hidden Markov Models. Moreover, we evaluated the potential influence of universal
primers amplification bias in qPCR, as well as the correlation between GC content
with taxonomic assignment results. The pipelines were tested on a community of
known terrestrial invertebrates collected by pitfall traps from a chestnut forest in Italy.
Although the present analysis was not exhaustive and needs additional investigation,
our results suggest somepotential improvements in laboratorymaterial preparation and
the introduction of additional parameters in taxonomic assignment pipelines. These
include the correct setup of OTU clustering threshold, the calibration of GC content
affecting sequencing quality and taxonomic classification, as well as the evaluation
of PCR primers amplification bias on the final biodiversity pattern. Thus, careful
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attention and further validation/optimization of the above-mentioned variables would
be required in a DNA meta-barcoding experimental routine.

Subjects Biodiversity, Bioinformatics, Environmental Sciences
Keywords GC content, DNA metabarcoding, Amplification bias, Taxonomic assignment, coxI ,
Biodiversity, Carabids, High Throughput Sequencing

INTRODUCTION
The introduction of DNA barcoding (Hebert, Ratnasingham & DeWaard, 2003) shed
new light on the identification process of many life forms on earth leading to a wider
comprehension of many ecosystems both aquatic and terrestrial (Aylagas, Borja &
Rodriguez-Ezpeleta, 2014; Comtet et al., 2015). DNA barcoding was originally designed
to identify single organisms, but scientific progresses have adapted it to a new but similar
technique called ‘‘DNA meta-barcoding’’. This mainly consists of the parallel reading
of informative genomic fragment/s able to discriminate living entities (Taberlet et al.,
2012). DNA barcoding and meta-barcoding share the common process in flagging a
specific DNA sequence to a taxonomic name, hopefully at species level (Hajibabaei,
2012). However, compared to DNA barcoding, the meta-barcoding approach requires a
reduced sampling effort to collectively characterize the inhabitant organisms of a given
environment (Coissac, Riaz & Puillandre, 2012; De Barba et al., 2014). Supported by the
High Throughput Sequencing (HTS) technologies (Bik et al., 2012; Shokralla et al., 2012),
DNA meta-barcoding is revolutionizing ecological studies by expanding the information
on ecosystem biodiversity (Kajtoch, 2014). This innovative tool is also widely used for
monitoring purposes such as invasive species control (Comtet et al., 2015). Moreover, its
ability to identify fungi (Bellemain et al., 2013), plants (Quemere et al., 2013), chromista
(Nanjappa et al., 2014), bacteria (Sogin et al., 2006) and metazoans (Leray & Knowlton,
2015) from the same sample or ecological area is of great importance to understand natural
connections among these life forms and consequently to plan ecosystemmonitoring and/or
biodiversity conservation programs (Ji et al., 2013).

Many molecular markers are currently used to characterize species or taxa from all
life domains, for instance, ITS (Internal Transcribed Spacer) targets fungi (Geml et al.,
2014; Op De Beeck et al., 2014), 16S ribosomal RNA is employed in bacterial identification
(Fantini et al., 2015) and trnL (UAA) intron (Srivathsan et al., 2015) or rbcL-matK (large
subunit of RUBISCO—Maturase K) (Xu et al., 2015) are accustomed to plants. Besides, the
use of the cytochrome oxidase subunit-I (coxI ) molecular marker in animals’ identification
is increasingly gaining greater importance in DNA barcoding and meta-barcoding studies
(i.e., Mollot et al., 2014). Thanks to HTS technologies, the above-mentioned molecular
markers can be used simultaneously in order to target a broad range of life forms from
the same experimental sample (e.g., Gibson et al., 2014; Zhan et al., 2014). However, this
massive and integrative approach is still method sensitive, which requires different levels of
standardization and optimization in its implementation steps (Cristescu, 2014), including
both laboratory materials and techniques and bioinformatics analyses. Once all those steps
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are standardized, it becomes possible to compare different experiments carried out by a
meta-barcoding approach. For instance, the use of efficient and low-biased universal PCR
primer pairs is crucial to get a successful DNA amplification of the majority of organisms
present in the environmental sample under investigation. Recent studies highlighted the
influence of universal primers amplification bias on the accuracy of species diversity
reconstruction and their relative abundances (Geisen et al., 2015; Pawluczyk et al., 2015;
Pinol et al., 2015). Sequencing chemistries prone to errors caused by GC content are also
of fundamental importance as they can alter the true picture of organismal composition
(Abnizova et al., 2012). Additional variables, which may influence the quality of meta-
barcoding sequences processing, include the availability of well-represented reference
databases (Cowart et al., 2015) and the compatibility of taxonomic assignment tools with
the DNA information of the molecular marker in use (Balint et al., 2014). Consequently,
to reach the relevant conclusions from a meta-barcoding assay, bioinformatic analyses
pipelines would require some standardization taking into account the aforementioned
variables. A typical pipeline inDNAmeta-barcoding data analysis consists of three parts: (1)
sequence denoising or quality filtering; (2) operational taxonomic units (OTU) picking and
(3) taxonomic assignment at species and/or higher levels. Once the denoising protocol has
been defined (Edgar et al., 2011; Ficetola et al., 2015; Quince et al., 2011; Schloss, Gevers &
Westcott, 2011), two critical and dependent parameters can potentially influence the quality
of taxonomic assignment, namely OTU clustering (Chen et al., 2013; Edgar, 2013) and
classification (Bacci et al., 2015) thresholds. The clustering threshold is directly correlated
to the intra-specific distance and at the same time to the sequencing error rate. This can
guide significantly the accuracy and precision of the subsequent taxonomic identification,
influenced by the correct classification threshold, and the relative abundance assigned to
each classified taxon.

Here we present a preliminary study aimed to highlight a set of critical parameters
of taxonomic assignment pipelines used in coxI DNA meta-barcoding analyses, namely
OTU clustering, GC content and PCR primers amplification bias. For that, we compared
nine taxonomic assignment pipelines, of which a custom in-house one based on Hidden
Markov Models (HMM). The taxonomic assignments obtained by the best pipeline were
then evaluated for their potential influence by universal primers amplification bias (using
qPCR) and by GC content. The pipelines were tested on a community of known terrestrial
invertebrates, taxonomically classified based on their morphology, collected by pitfall traps
from a chestnut forest in Italy.

MATERIALS AND METHODS
Samples description
The sampling unit consisted of two samples containing soil litter macrofauna, called
MPE4 and MPE5. MPE5 is the result of pooling the content of five pitfall traps, placed in
circle at 10 m of distance each, in a chestnut forest located in central Italy (province of
Rome). All collected organisms belonging to the Carabidae family (order: Coleoptera) were
morphologically classified at species level, while the others were labeled with their order
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Table 1 Taxonomically identified organisms inMPE5 sample and their corresponding biomass.MPE4
simply contains the same organisms at equal biomass.

Taxonomic group Total
biomass (g)

Species name Biomass of single
organism (g)

Coleoptera (family:
Carabidae)

22.89 Carabus (Tomocarabus)
convexus dilatatusb

12.94

Carabus (Chaetocarabus)
lefebvrei bayardi

4.85

Calathus fracasii 0.58
Abax parallelepipedus 0.29
Laemostenus latialisb 0.23
Pterostichus micans 0.18
Calathus montivagus 0.07

Diptera 4.12
Orthoptera 2.44
Blattodea 1.02
Myriapodaa 0.82
Isopoda 0.7
Arachnidaa 0.64
Scorpiones 0.63
Hymenoptera 0.21
Lepidoptera 0.1
Collembola 0.02

Notes.
aClass taxonomy rank.
bLaemostenus latialis = LL1 and Carabus (Tomocarabus) convexus dilatatus = CC1

(whenever possible) or class rank names. The biomass of each organism was measured
singularly for further statistical analysis. MPE4 is an ad-hoc sample composed from the
equal biomass content of all the organisms present in MPE5, using the same weight of the
lightest organism (see Table 1 for organisms’ names and their corresponding biomass).

DNA extraction and amplification of coxI barcode
Each sample, MPE4 and MPE5, was homogenized separately and total genomic DNA was
extracted using the DNeasy Blood and Tissue (Qiagen, Hilden, Germany) commercial
kit. In addition, total DNA was extracted from the Carabidae species individually. The
coxI DNA barcode was amplified from all DNA extracts using the universal primer pairs
(Folmer et al., 1994): forward-LCO1490 (5′-GGTCAACAAATCATAAAGATATTGG-3′),
and reverse-HCO2198 (5′-TAAACTTCAGGGTGACCAAAAAATCA-3′). PCR reactions
were carried out in 50 µl reaction volumes containing: 1.5 mM MgCl2, 250 nM of each
primer, 200 µM of each dNTP, 1x of Phusion HF Buffer, 1U of Phusion DNA polymerase
(M0530S, NEB) and 2 µl of DNA extracts, using a thermocycling profile of one cycle of
60 s at 94 ◦C, five cycles of 60 s at 94 ◦C, 90 s at 45 ◦C, and 90 s at 72 ◦C, followed by
35 cycles of 60 s at 94 ◦C, 90 s at 50 ◦C, and 60 s at 72 ◦C, with a final step of 5 min at
72 ◦C. PCR products along with 100 bp DNA Ladder (Fermentas Life Sciences, Waltham,
MA, USA) were visualized on a 1% agarose gel stained with 0.005% of ethidium bromide.
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Figure 1 Bioinformatics analysis pipelines overview. The same reference database is used by all meth-
ods to assign each sequence to a known taxon name. RDP and BLAST classifiers take as input the output
of OTU picking methods (Usearch, Uclust, Blast). HSTA, Usearch-Ref and Uclust-Ref use the denoised
sequences as direct input. The Bayes Factor (BF) equation is a logical representation of that implemented
in HSTA (see OTU picking and Taxonomic Assignment section, letter c.)

Full-size DOI: 10.7717/peerj.4845/fig-1

PCR products were subsequently gel purified using QIAquick Gel Extraction Kit (Qiagen,
Hilden, Germany).

Sequencing
The coxI barcode region was sequenced singularly for each Carabidae organism by Sanger
method. These sequences were then used as controls in the following experimental and
analysis steps. Furthermore, MPE4 and MPE5 samples were prepared for pyrosequencing
adapting the sequencing library preparation protocol described by Calabrese et al. (2013).
The libraries were then deposited on 2/8-lane PicoTiterPlate (PTP) wells (Roche/454;
Roche, Basel, Switzerland) and sequenced in both directions on GS FLX Titanium
pyrosequencing platform.

Bioinformatics analysis
The bioinformatics analysis was mainly divided into three steps: (i) sequence reads filtering
and denoising, (ii) OTUpicking and (iii) taxonomic assignment. In this study, we compared
nine pipelines (Fig. 1), of which a custom one based on Hidden Markov Models. For the
sake of simplicity, in the rest of the manuscript we will call the custom pipeline HSTA
(Hidden States Taxa Assign). However, we followed a standard procedure in the first
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step and used several OTU picking algorithms with progressive thresholds and different
taxonomic assigners in the second and third steps respectively. The tested pipelines are
based on (1) Usearch, Uclust and Blast as OTU picking methods (thresholds: 100, 97, 95,
90%) in combination with RDP and BLAST classifiers (all available in Qiime Caporaso
et al., 2010), (2) Usearch-Ref, Uclust-Ref (thresholds: 100, 97, 95, 90%) (Edgar, 2013) and
HSTA as direct taxonomic assigners without calling OTUs.

Sequence reads filtering and denoising
We performed a standard read rejecting and trimming procedure, using GS Run Processor
V2.4 (Roche 454 Life Sciences software package; Roche, Basel, Switzerland), with the
parameters suggested by the 454 platform manufacturer. Due to amplicons ligation and
subsequent nebulization steps carried out for sequencing library preparation (see Calabrese
et al., 2013), we executed a primer search analysis (Supplemental Information 1) generating
forward and reverse reads data sets, which were processed separately in the subsequent
analyses. Pyrosequencing and PCR noises were removed by invoking PyroNoise and
SeqNoise algorithms respectively, available from AmpliconNoise package (Quince et al.,
2011), with their default parameters. Denoised sequences were then submitted to chimera
detection and removal using UCHIME (de novomethod) (Edgar et al., 2011). At this point,
we obtained two denoised data sets per sample corresponding to the 5′ and 3′ ends of coxI
barcode region.

OTU picking and taxonomic assignment
We applied the de-novo OTU picking method of Usearch, Uclust and Blast algorithms,
available in Qiime (Caporaso et al., 2010), at four different similarity thresholds: 100, 97,
95 and 90%.

OTUs were taxonomically classified by RDP and BLAST classifiers with their default
parameters. In addition, without calling OTUs, a direct taxonomic assignment was carried
out by Usearch-Ref and Uclust-Ref (Edgar, 2013) at four different similarity thresholds
(100, 97, 95 and 90%) and by HSTA. Note that the same coxI reference database was
used for all tested pipelines (see below for additional information). Given that HSTA was
assembled as a custom pipeline, in the following we provide a description of its main
steps, namely (a) the choice of reference sequences, (b) reference Hidden Markov Models
(HMM) profiles building and (c) taxonomic classification method.

(a) Choice of reference sequences
Several sources of coxI reference sequences were taken into account in building a coxI

reference database. First of all, a local database (LocalDB) was generated from the coxI
DNA barcode sequences, produced in this study, of 114 Carabidae individuals belonging to
seven different species classified morphologically at species level (species names are listed in
Table 1). On the other hand, public coxI sequences were obtained by blastx (Altschul et al.,
1990) using the denoised sequences as queries against BOLD (http://boldsystems.org/) and
GenBank (NR-NCBI) databases. Blastx outputs were parsed by Biopython1.57 script and
the first 10 best matches’ IDs per query were retrieved and tagged in their order rank name
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(NCBI taxonomy). All 10 matched references per query were filtered to select only the
entries which had the same taxonomical order of the best-hit match.

(b) Reference HMMprofiles building
Amino acid reference sequences selected in the previous step (belonging to each order

and species ranks) were multiple aligned using Muscle 3.8.31 (Edgar, 2004). Multiple
protein alignments were used to generate the relevant nucleotide ones, denoted as back-
alignment, as described by Balech et al. (2015). Hidden Markov Model (HMM) profiles
were then built from the nucleotide alignments using hmmbuild (HMMer 3.0) with its
default parameters (Finn, Clements & Eddy, 2011).

(c) Taxonomic classification method
Denoised sequences were assigned to one of the nucleotide HMM profiles by executing

hmmscan (HMMer 3.0) with its default parameters. The outputs were then parsed using a
Python 2.7 script which classifies the assigned sequence in three categories:

– Unclassified assignment: sequence-profile match outputs an e-value higher than
hmmscan default one.

– Good assignment: the best match bit score passes the threshold of Bayes Factor (BF)
(Eq. (1)), set to 3.0. BF is computed by subtracting the best bit score (Si=1) from the
natural logarithm of the sum of all (Si=2−n) remaining exponential bit scores.

ln(BF)= Si=1− ln(
n∑

i=2

exp(Si)) (1)

– Ambiguous assignment: sequence-profile hit passes hmmscan threshold but does not
pass BF test.

Taxonomic assignment pipelines comparison
To validate how well the tested pipelines fit, we calculated the ratio of the detected taxa
by each tested pipeline against the expected ones. Thus, the taxonomically classified reads
were searched for the expected Carabidae species and order level taxa listed in Table 1. In
addition, Pearson’s correlations were calculated between read abundances relative to each
taxon and its corresponding biomass.

GC content assessment
GC content assessment was conducted to infer its potential relationship with sequencing
errors and consequently its influence on the denoising and taxonomic assignment processes
behavior. We therefore hypothesized that the denoising procedure should be calibrated
based on GC content effect, which potentially influences the sequencing reaction. To test
this hypothesis, we assessed the contribution of the expected biological variation and the
GC content (both present in the reference sequences) on denoised reads variation taking
into consideration the sequences assigned to Coleoptera order (the taxonomic group with
most abundant assigned reads and reference sequences). We used a linear model ‘‘Eq. (2)’’
to predict the change in diversity across sites.

Dreads∼Dref +GCref (2)
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In (Eq. (2)) Dreads and Dref are the exponential entropy per site in reads assigned
to Coleoptera and the reference sequences respectively, while GCref is the mean GC
percentage over a 100bp window in the reference sequences. We used the exponential
entropy per site following Jost (2006) as an example of the diversity index for categorical
variable. The model was estimated separately for the 5′ coxI barcode, taking the first 400 bp
of the Coleoptera nucleotide multiple alignments (reference and assigned reads), and the
3′ one starting from the 200th site until the end.

Species level assignment evaluation with qPCR
To explain the correlation observed between the abundance of assigned sequences and taxon
biomass at species level, we adopted a qPCR approach to track the number of coxI copies in
two different Carabidae species across all experimental steps. We therefore compared the
ratio of coxI copies, the biomass and the assigned sequence abundance obtained fromHSTA
(the pipeline that detected the highest number of known species). Accordingly, two specific
primer pairs were designed for CC1 (Carabus (Tomocarabus) convexus dilatatus; forward:
5′-ATTCTGGCTCCTACCTCCG-3′, reverse: 5′-CTGCCCCTAAAATTGATGAG-3) and
LL1 (Laemostenus latialis; forward: 5′-TACGATCTACAGGAATAACC-3′, reverse: 5′-
AGCAGGGTCAAAAAAGGAT-3′). qPCR reactions, using SYBR Green as a fluorescent
reporter, were conducted in 50 µl reaction volumes containing 2 µl of DNA template,
300 nM of each primer and 22.5 µl of RealMasterMix SYBR ROX 2.5× (5 Prime): 1U Taq
DNA Polymerase, 4 mMMagnesiumAcetate, 0.4 mMof each dNTP, using a thermocycling
profile of one cycle of 2 min at 94 ◦C, 45 cycles of 30 sec at 94 ◦C, 30 sec at 60 ◦C and
40 sec at 68 ◦C. The DNA templates consisted of MPE4 andMPE5 DNA extracts, their PCR
products obtained from the amplificationwith Folmer primer set and theDNAyielded from
libraries preparation for 454 sequencing. The reactions were performed on a 7900 HT Fast
Real-time PCR system (Applied Biosystems, Foster City, CA, USA). A total of 18 replicates
per primer set and per template were performed (six replicates per template over three
different qPCR plates) and the resulting data was analyzed byMAK2 (Boggy & Woolf, 2010).

RESULTS
Sequencing yield and taxonomic assignment
A total of 160,166 passed filter reads were obtained for both samples (MPE4: 67672,
MPE5: 92494). Following the primer search analysis (Supplemental Information 1) and
subsequent denoising, 2595 denoised reads were obtained for MPE5 (650 for the 5′ and
1945 for the 3′) and 5368 for MPE4 (1271 for the 5′ and 4097 for the 3′). In HSTA and
reference-based assignments (Usearch-Ref and Uclust-Ref), we used denoised reads as a
direct input for down streaming analysis, while we applied an OTU picking step for the
other methods (see materials and methods).

Comparing the taxonomic assignment results obtained in at order level, at 5′ end
(Fig. 2A) HSTA could detect seven out of 11 expected orders followed by five orders
identified by Usearch+BLAST (OTU picking method+Classifier) at 97, 95 and 90% and
Uclust+BLAST at 95 and 90% OTU picking thresholds. As for the 3′, five orders were
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Figure 2 Order level taxonomic assignments inMPE5 sample. (A) Forward strand or 5′ coxI, (B)
reverse strand or 3′ coxI. Each color corresponds to a taxonomic classifier (HSTA, RDP, BLAST)
or a reference-based assigner algorithm (Usearch-Ref, Uclust-Ref). The symbols indicate either the
combination of an OTU picking method with a classifier or the classifier/algorithm used for direct
taxonomic assignment. The x-axis corresponds to the similarity thresholds used in OTU picking or with
the direct assignments in HSTA and reference-based algorithms.

Full-size DOI: 10.7717/peerj.4845/fig-2

found by Usearch+BLAST and Uclust+BLAST at 100% OTU picking threshold followed
by HSTA detecting only three (Fig. 2B).

Regarding the assignment at species level (Fig. 3), out of seven expected species, HSTA
could classify all of the searched species in both the 5′ and 3′ datasets. Furthermore, at 5′,
Blast+RDP (OTU picking method+Classifier) showed stable behavior as it detected five
species at all OTU picking thresholds. The same result was obtained for Usearch+BLAST
at 97 and 90% and Uclust+BLAST at 95 and 90% OTU picking threshold (Fig. 3A).
At the 3′ end (Fig. 3B), the OTU picking methods Uclust and Blast with RDP classifier
appear to be consistent over all similarity thresholds classifying four out of seven expected
species. Moreover, it is important to note that reference-based algorithms (Usearch-Ref
and Uclust-Ref) were able to uncover a lower number of expected taxa than classifiers did.

Pearson’s correlation values (calculated only whenmore than one taxonwas classified) of
the assigned reads abundance against the corresponding taxa biomass demonstrated linear
behavior with the qualitative results described above, confirming the accuracy of almost
all tested taxonomic assignment pipelines. Overall, these correlations were higher at order
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Figure 3 MPE5 taxonomic assignments plots at species level. (A) Forward strand or 5′ coxI, (B) reverse
strand or 3′ coxI. Each color corresponds to a taxonomic classifier (HSTA, RDP, BLAST) or a reference-
based assigner algorithm (Usearch-Ref, Uclust-Ref). The symbols indicate either the combination of an
OTU picking method with a classifier or the classifier/algorithm used for direct taxonomic assignment.
The x-axis corresponds to the similarity thresholds used in OTU picking or with the direct assignment in
HSTA and reference-based algorithms.

Full-size DOI: 10.7717/peerj.4845/fig-3

level assignments (greater or equal to 0.98) compared to species ones (ranged from 0.86 to
0.92). The only two exceptions, at species level, showing respectively negative correlations
of −0.22 and −0.79 at 100% similarity threshold were Blast+RDP and Uclust-Ref.

GC content assessment
GC content assessment was conducted separately for the 5′ coxI barcode, taking the first
400bp of the Coleoptera nucleotide multiple alignment, and the 3′ one starting from the
200th site until the end. As expected, the linear model results (Table 2) showed that the
diversity index (exponential value of entropy) of the assigned sequences is explained by that
of reference sequences. In addition, the variability of diversity value in denoised sequences
weighed by GC content was statistically significant at both the 5′ and 3′ coxI barcode.
Nevertheless, the sum of squares values pointed out that this significant variability due to
GC content is larger at the 3′ (38 corresponding to 17% of explained variance) than that
at the 5′ (4.5 equivalent to 2.4%). This indicates some shortcomings in denoising protocol
given by its potential inability to remove the excess of errors due to GC content.
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Table 2 Sites diversity in sequence reads predicted by sites diversity in references and by GC content. The results are reported for sequences as-
signed to Coleoptera order over the 5′ and 3′ end of coxI barcode region.

5′coxI barcode analyzed sites: 1-400 3′coxI barcode analyzed sites: 200-end

GCref Dref Residuals GCref Dref Residuals

Degree of freedom 1 1 562 1 1 562
Sum of squares 4.518 58.766 123.808 37.999 50.025 135.407
Mean square 4.518 58.766 0.220 37.999 50.025 0.241
F-value 20.507 266.754 – 157.71 207.63 –
Explained variance (%) 2,41 31,41 66,17 17 22,3 66,17
Pr(> F) 7.257e−06*** <2.2e−16*** – <2.2e−16*** <2.2e−16*** –

Notes.
GCref and Dref are the GC content and sites diversity of reference sequences respectively.
Significance codes: ***, 0; **, 0.001; *, 0.01; ., 0.05.

Table 3 Universal primers amplification bias analysis results of MPE5 andMPE4 samples. All the re-
ported values refer to the ratio CC1/LL1 of qPCR intensity signal for DNA extract, PCR products and li-
brary preparation categories while 5′and 3′counts correspond to the number of assigned reads for CC1
and LL1 species obtained from HSTA pipeline. LL1= Laemostenus latialis, CC1= Carabus (Tomocarabus)
convexus dilatatus.

qPCR signal intensity HSTA assigned reads

Sample Biomass DNA
extract

PCR
products

Library
preparation

Count at 5′ Count at 3′

MPE5 56.26 1508.46 620.31 122.34 231.35 103.55
MPE4 1 53.92 163.76 19.59 1.83 1.29

Species level assignment validation with qPCR
To perform a quantitative validation of organisms biomass effect on taxonomic
assignments, we chose two organisms, CC1 and LL1 (Table 1), belonging to the Carabidae
family and classified morphologically at species level. We calculated the ratio CC1/LL1 of
biomass and that of read abundance obtained from HSTA (the pipeline that detected the
highest number of known species) (Table 3) in both MPE4 and MPE5 samples. At equal
biomass (MPE4) CC1 had almost an average of 1.6 (=(1.83 at 5′ + 1.29 at 3′)/2) greater
assigned reads than LL1, while at 53 biomass ratio (in MPE5) read abundance increased
significantly to approximately 167 times (=(231.35 at 5′ + 103.55 at 3′)/2) of CC1 over
LL1. Moreover, the ratio recorded in DNA extracts appears to be altered when compared to
that of PCR products, as it decreased in MPE5 (approximately 620) and increased in MPE4
(approximately 164). This emphasizes a potential amplification bias in both samples that
is however more manageable in MPE4, where the difference between the initial biomass
content and the final read abundance ratios is almost negligible.

DISCUSSION
Taxonomic profiling based on HTS technologies of species discriminant loci has been
and is still being widely used in numerous microbial and invertebrates biodiversity studies
where it has showed its feasibility and accuracy in monitoring species of ecological and/or
clinical relevance (Brulc et al., 2009;Cristescu, 2014; Fonseca et al., 2014; Fonseca et al., 2010;
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Singh et al., 2009). Considering two control samples of known metazoan organisms, we
addressed some of the parameters potentially influencing the outcomes of a coxI meta-
barcoding experiment. It can be argued that we did not perform a massive validation on
a wide range of samples and on other molecular barcode markers except coxI. However,
as a preliminary study the taxonomic assignment pipelines showed promising results
in classifying the known organisms already taxonomically classified based on their
morphology and their coxI barcode region (sequenced singularly by Sanger method).
We therefore reported, according to this specific experiment, some areas of improvement
in both laboratory materials preparation and taxonomic assignment methods.

Based on our taxonomic assignments results, the use of a classifier appear to be essential
in coxI meta-barcoding as the direct call of the known organisms by reference-aware
algorithms (i.e., Userach-Ref and Uclust-Ref) could not satisfy the same outcome as
classifiers did. Combining the results observed for the assignment at order level (Fig. 2), the
use of OTU picking methods, Usearch and Uclust, with BLAST classifier showed consistent
and similar behavior at both the 5′ and 3′ ends (0.45% of detected orders). However, the
best results of these pipelines were obtained using different OTU clustering thresholds
(97, 95, 90% at 5′ and 100% at 3′). This underlines the importance of this parameter in
taxonomic assignment routine and suggests its calibration according to an internal control
sample or a mock community with similar taxonomic composition of the true samples.

Considering the assignment at species level (Fig. 3), the HSTA assigner, based onHidden
Markov Models, showed promising results as it could detect the highest number of the
searched known organisms at both the 5′ and 3′ ends. Although this pipeline is only
at a prototype status and needs additional validations and improvements, its strength
resides in the absence of an OTU clustering step and in the possibility to extend it to a
phylogenetic assignment framework (e.g., pplacer (Matsen, Kodner & Armbrust, 2010),
RaxML (Stamatakis, 2014)), as HMMprofiles are built frommultiple sequence alignments.
Alternatively, it is important tomention that Blast+RDP (OTUpickingmethod+Classifier)
also showed stable classification behavior at both coxI ends as they detected five species
(0.71% of the expected species) independently from OTU picking thresholds. The
differences in accuracy among the tested pipelines while varying the taxonomic level
(order or species) would be due to the characteristics of coxI as molecular marker. It is
worth mentioning that the majority of the tested methods were specifically designed to
analyze 16S rRNA meta-barcoding data (Caporaso et al., 2010). Similar observations were
also reported by Balint et al. (2014) for the Internal Transcribed Spacer (ITS) analysis
pipelines, where the correct taxonomic assignment was influenced by the used tools.

Concerning GC content, we investigated its effect within the Coleoptera reference data
set, being the biggest data set used in this study and at the same time containing the
organisms present in our local reference database (see materials and methods OTU picking
and Taxonomic Assignment section). GC content is known to influence the quality of
sequence reads in both pyrosequencing (Hoff, 2009) and Illumina sequencing (Abnizova et
al., 2012). In the present work, we clarified this impact on taxonomic assignment pipelines
even after applying a standard denoising protocol. In fact, the low correlation between
biomass content and the corresponding assigned reads abundance per taxon at species level
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and the failure to detect several orders, mainly at the 3′, in all tested pipelines would be
related to GC content. Indeed, the linear regression model results (Table 2) showed that the
variability of assigned reads, higher at 3′, was explained by GC content effect. These results
highlights the importance of this parameter and proposes its introduction in denoising
or quality filtering algorithms of meta-barcoding data to improve taxonomic assignment
accuracy.

Another important aspect not to be ignored in similar environmental DNA sequencing
(i.e., eDNA) is the amplification bias of universal primer set used in PCR preparation step.
Many studies have illustrated the effect of amplification bias and primers conservation
on sequencing yield and therefore on the assigned taxa abundances (Deagle et al., 2014;
Op De Beeck et al., 2014; Pawluczyk et al., 2015), as well as the influence of biomass on the
correct biodiversity estimation through DNA meta-barcoding experiments (Thomas et al.,
2015). Our investigation in this context using a community of known invertebrates is in
line with what is stated above. qPCR results demonstrated a considerable fluctuation of
species quantity ratio across all experimental steps in MPE5 sample. The same analysis
performed on MPE4, a biomass equalized organismal content, provided a more conserved
quantity ratios of those two species (Table 3). This emphasizes a potential limit related
to the quantitative prospective of coxI DNA meta-barcoding in natural samples (Pinol
et al., 2015) and suggests, whenever possible, sample manipulation including biomass
equilibration prior to sequencing.

In conclusion, we observe a rapid and ongoing increase in the use of coxI meta-barcoding
assays to study molecular biodiversity. However, the taxonomic assignment pipelines
remains challenging. In this preliminary study, we highlighted some important parameters,
namely the OTU clustering threshold, GC content and PCR primers amplification bias,
to be considered in both laboratory protocols and down streaming analyses. We therefore
suggest their extensive evaluation and eventually their introduction into in-silico and
in-vitro data processing routines. This could be achieved by introducing an internal control
sample or a mock community in a sequencing run in order to tackle the above-mentioned
parameters and by testing novel assignment methods (i.e., HSTA) on a wide range of
samples and on different molecular markers.
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