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Tumor samples obtained from a single cancer patient spatially or temporally often consist

of varying cell populations or subclones, each harboring distinct mutations that uniquely

characterize its genome. Thus, in any given samples of tumor, having more than two

haplotypes, defined as a scaffold of single nucleotide variants (SNVs) on the same

homologous genome, is an evidence of heterogeneity because humans are diploid and we

would therefore only observe up to two haplotypes if all cells in a tumor sample were

genetically homogeneous. In this paper, we present a feature allocation model which

characterizes tumor heterogeneity by latent haplotypes. Mathematically, this model is

interpreted as the blind deconvolution of the expected variant allele fractions (VAFs) to a

binary matrix of haplotypes and a matrix of proportions of haplotypes. To efficiently

estimate the model parameters, we present a state-space formulation with a sequential

construction of the latent binary matrix modeled by the Indian Buffet Process (IBP), and

then develop an efficient sequential Monte Carlo (SMC) algorithm that estimates the states

and the parameters of our proposed state-state model. The sequential algorithm provides

more accurate estimates of the model parameters when compared to the state-of-the-art

Markov chain Monte Carlo (MCMC) approach. Also, because our algorithm processes the

VAF of a locus as the observation at a single time-step, VAFs data from newly sequenced

candidate SNVs from next-generation sequencing (NGS) can be analyzed to improve

existing estimates without re-analyzing the previous datasets, a feature that existing

solutions do not possess.
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ABSTRACT9

Tumor samples obtained from a single cancer patient spatially or temporally often consist of varying cell

populations or subclones, each harboring distinct mutations that uniquely characterize its genome. Thus,

in any given samples of tumor, having more than two haplotypes, defined as a scaffold of single nucleotide

variants (SNVs) on the same homologous genome, is an evidence of heterogeneity because humans

are diploid and we would therefore only observe up to two haplotypes if all cells in a tumor sample were

genetically homogeneous. In this paper, we present a feature allocation model which characterizes tumor

heterogeneity by latent haplotypes. Mathematically, this model is interpreted as the blind deconvolution of

the expected variant allele fractions (VAFs) to a binary matrix of haplotypes and a matrix of proportions

of haplotypes. To efficiently estimate the model parameters, we present a state-space formulation with a

sequential construction of the latent binary matrix modeled by the Indian Buffet Process (IBP), and then

develop an efficient sequential Monte Carlo (SMC) algorithm that estimates the states and the parameters

of our proposed state-state model. The sequential algorithm provides more accurate estimates of the

model parameters when compared to the state-of-the-art Markov chain Monte Carlo (MCMC) approach.

Also, because our algorithm processes the VAF of a locus as the observation at a single time-step, VAFs

data from newly sequenced candidate SNVs from next-generation sequencing (NGS) can be analyzed to

improve existing estimates without re-analyzing the previous datasets, a feature that existing solutions do

not possess.
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INTRODUCTION27

Tumors contain multiple, genetically diverse subclonal populations of cells, each subclone harboring28

distinct mutations that uniquely characterize its genome (Marusyk and Polyak, 2010; Meacham and29

Morrison, 2013; Heppner, 1984). Tumor subclones often evolve from a single ancestral population30

(Hughes et al., 2014; Gerlinger et al., 2012; Visvader, 2011; Nowell, 1976), and genetic diversities that31

distinguish these subclones are a direct result of evolutionary processes that drive tumor progression,32

especially the series of somatic genetic variants which arise stochastically by a sequence of randomly33

acquired mutations (Hanahan and Weinberg, 2011, 2000).34

Identifying and characterizing tumor subclonality is crucial for understanding the evolution of tumor35

cells and more importantly, for designing more effective treatments for cancer, especially in avoiding36

cancer relapse after treatment and also chemotherapy resistance (Garraway and Lander, 2013). For37

instance, research has shown the links between the presence of driver mutations within subclones and the38

adverse clinical outcomes (Landau et al., 2013).39

In the past few decades, tumor heterogeneity has been studied using the NGS technology (Lee et al.,40

2016; Gerlinger et al., 2012; Wersto et al., 1991) with somatic mutations quantified using whole exome41

sequencing (WES) and whole genome sequencing (WGS) of samples (Marusyk et al., 2012), and can be42

explained by differences in genomes of subclones and the varying proportions of these subclones (Lee43

et al., 2016; Landau et al., 2013; Russnes et al., 2011; Navin et al., 2010; Marusyk and Polyak, 2010).44

One method to assess the heterogeneity of a given tumor is to probe individual cell using fluorescent45
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markers (Navin et al., 2010; Irish et al., 2004) and another is to perform single cell sequencing (Xu et al.,46

2012; Hou et al., 2012; Navin et al., 2011). These approaches have several limitations that prevent their47

wider usage in examining and quantifying the level of heterogeneity in a given sample. See (Zare et al.,48

2014) for details.49

In the literature, a few computational methods have been proposed to explain the inherent structure50

of tumor heterogeneity. For instance, (Larson and Fridley, 2013) and (Su et al., 2012) viewed a tumor51

sample as a mixture of tumor cells and normal cells. Although their method estimated tumor purity levels52

for paired tumor-normal tissue sample, using DNA sequencing data, however, unpaired and multiple53

tumor samples are not considered. A more prominent approach is the arrangement of SNVs in clusters54

using clustering models such as the Dirichlet Process (DP) (Roth et al., 2014; Jiao et al., 2014; Shah et al.,55

2009; Ding et al., 2010; Bashashati et al., 2013). Although the clustered SNVs provide some information56

about tumor heterogeneity, the inference does not directly identify subclones or haplotypes in the tumor57

samples.58

More recently, (Lee et al., 2016) proposed a feature allocation model for modeling the haplotypic59

genomes of subclones. This model provides insights on how haplotypes may be distributed within a60

tumor, using WGS data measuring VAFs at SNVs. Mathematically, the model can be interpreted as blind61

matrix factorization, where a matrix of expected VAFs at SNVs for different samples is decomposed into62

a binary matrix of haplotypes (with an unknown number of columns, the exact number to be determined63

by the data), and a matrix of proportions of haplotypes. This model offers certain modeling advantages64

over the clustering approach: (i) overlapping SNVs can be shared among different subclones, and (ii)65

non-overlapping SNV clusters (according to the cellular prevalence) are not used as the building block66

for subclones i.e., instead of first estimating the SNV clusters and then constructing subclones based on67

clusters, the model provides a way to infer the subclonal structure based on haplotypes. To make inference68

on the haplotypic structure and the proportions in samples, (Lee et al., 2016) proposed an MCMC-based69

inference algorithm, specifically, the reversible-jump MCMC (Green, 1995). However, with the MCMC70

algorithm, if more VAFs are available for newly called SNV(s), the algorithm has to be restarted in order71

to incorporate the newly called SNV(s). Moreover, MCMC approach in general as previously shown72

in (Nguyen et al., 2016; Jasra et al., 2007), is plagued with some inherent issues which often limit its73

performance: (i) sometimes, it is difficult to assess when the Markov chain has reached its stationary74

regime of interest (ii) requirement of burn-in period and thinning interval, and most importantly, (iii) if the75

target distribution is highly multi-modal, MCMC algorithms can easily become trapped in local modes.76

In this paper, we consider the feature allocation modeling approach in (Lee et al., 2016) in analyzing77

the WGS data measuring VAFs at SNVs, and present an efficient SMC algorithm (Doucet et al., 2001,78

2000) for estimating the binary matrix of haplotypes and the proportions in the samples. Specifically, we79

formulate the feature allocation problem using a state-space where: (i) the rows of the haplotype binary80

matrix are considered as the states of the system, exploiting the sequential construction of a binary matrix81

with an unknown number of columns using the IBP, (ii) the proportions matrix and other parameters82

are considered as the parameters of the model, (iii) the observed VAF at each SNV are processed, for83

all samples at a time. SMC is a very powerful algorithm that belongs to a broad class of recursive84

filtering techniques (Ogundijo et al., 2017; Ogundijo and Wang, 2017), where, instead of processing all85

the observations at once, for example, as in the MCMC approach, observations are processed sequentially,86

one after the other, i.e., computing, in the most flexible way, the posterior probability density function87

(PDF) of the state every time a measurement is observed, and the posterior distributions of the variables88

of interest are approximated with a set of properly weighted particles (Doucet et al., 2001). With the89

SMC methods, we can treat, in a principled way, any type of probability distribution, nonlinearity and90

non-stationarity (Kitagawa, 1998, 1996). We compare the proposed SMC algorithm with the existing91

method that employ the state-of-the-art MCMC algorithm. Overall, in terms of the accuracy of estimates92

of Z and W and the runtime for the algorithms, our proposed SMC method demonstrates a superior93

performance.94

The remainder of this paper is organized as follows. In Section 2, we describe the system model95

and problem formulation and the general principle of the SMC filtering algorithms, and then derive our96

proposed SMC algorithm for estimating the mutational profile of each haplotype and the proportion of97

each haplotype in the samples, in a sequential fashion. In Section 3, we investigate the performance of the98

proposed method using simulated datasets and the chronic lymphocytic leukemia (CLL) datasets, the real99

tumor samples obtained from three patients in (Schuh et al., 2012). Finally, Section 4 concludes the paper.100
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In this paper, we use the following notations:101

1. p(·) and p(·|·) denote a probability density function (PDF) and a conditional PDF, respectively.102

2. P(·) and P(·|·) denote a probability and a conditional probability mass function, respectively.103

3. N (µ,σ2) denotes a Gaussian distribution with mean µ and variance σ2.104

4. Binomial(n, p) denotes a binomial distribution with n number of trials and p probability of success.105

(Binomial(1, p) = Bern(p), i.e, Bernoulli distribution with success probability p).106

5. Pois(λ ) denotes a Poisson distribution with mean parameter λ .107

6. Gam(α0,β0) denotes a gamma distribution with shape parameter α0 and rate parameter β0.108

7. Beta(α1,β1) denotes a beta distribution with shape parameters α1 and β1.109

8. Dir(ααα) denotes a Dirichlet distribution with a vector of concentration parameters ααα , and x̂ denotes110

the estimate of variable x.111

SOME LATEX EXAMPLES112

SYSTEM MODEL AND PROBLEM FORMULATION113

In an NGS experiment designed to probe the heterogeneity of a tumor sample, two matrices Y and V,

each with dimensions T ×S, of count data are often observed, where yts and vts denote the elements in the

tth row and sth columns of Y and V, respectively. At the genomic position of SNV t for tissue sample s,

yts denotes the number of reads that bear a variant sequence and vts denotes the total number of reads,

t = 1, ...,T,s = 1, ...,S. In summary, the datasets are count data for T SNVs and S samples. To model the

datasets, we follow the binomial sampling model proposed in (Lee et al., 2016) as follows:

yts
ind.
∼ Binomial(vts, pts), t = 1, ...,T, s = 1, ...,S, (1)

where pts are the success probabilities and equivalently the expected VAFs, given by:

pts = w0s p+
C

∑
c=1

ztcwcs, t = 1, ...,T, s = 1, ...,S, (2)

where C denotes the unknown number of distinct haplotypes in the tumor samples, ztc ∈ {0,1} denotes an114

indicator of the event that SNV t bears a variant sequence for haplotype c and wcs denotes the proportion115

of haplotype c in sample s (Lee et al., 2016). The term ∑
C
c=1 ztcwcs explains pts as arising from sample s116

being composed of a mix of hypothetical haplotypes which include a mutation for SNV t (ztc = 1), or do117

not include a mutation for SNV t (ztc = 0). In addition, there is a background haplotype, c = 0, which118

includes all SNVs. The background haplotype accounts for experimental noise and haplotypes that appear119

with negligible abundance. The first term in (2) relates to this background haplotype, where p denotes the120

relative frequency of observing a mutation at an SNV due to noise and artifact, assuming equal frequency121

for all SNVs, and w0s denotes the proportion in sample s (Lee et al., 2016). In (2), if we (i) collect the122

indicators ztc in an T ×C binary matrix Z, (ii) collect all p’s in a T -dimensional column vector p and123

(iii) collect the proportions w0s and wcs in an C
′
× S matrix W of probabilities, where C

′
= C+ 1 and124

each column of W sums to unity, then we can write (2) as Pts = Z′ ·W, where Pts denotes the matrix125

of success probabilities and equivalently, the matrix of expected VAFs and Z′ = [p Z]. If the expected126

VAFs are approximated with the observed VAFs, we can directly solve the matrix factorization problem127

but instead the observed VAFs are modeled with a probability distribution in (1). However, it should be128

noted that the number of latent haplotypes C is unknown, and this leaves the number of columns in Z and129

equivalently, the number of rows in W unknown, left to be estimated from the data.130

Our goal is to perform a joint inference on C, Z, W and p, all of which explain the heterogeneity in131

the tumor samples, using the observed VAFs of SNVs described by the matrices Y and V, the input data.132

To do this, we describe the system using a state-space model and then derive an efficient SMC algorithm133

to estimate all the hidden states and the model parameters in our model, in a sequential fashion. Our134

analysis is restricted to mutations in copy-number neutral regions.135

3/15

PeerJ reviewing PDF | (2018:02:23823:0:2:REVIEW 12 Feb 2018)

Manuscript to be reviewed



State-Space Formulation136

Our state-space formulation of the problem exploits the sequential construction of Z (discussed below).

Specifically, we consider the tth row of the data matrix Y and V as the new observation at time t of our

state-space model, treat the tth row of the binary matrix Z as the hidden state at time t, and W and p as the

model parameters. Before explicitly stating the state transition and the observation models, we succinctly

describe the prior distribution on a “left-ordered” binary matrix (i.e., ordering the columns of the binary

matrix from left to right by the magnitude of the binary expressed by that column, taking the first row

as the most significant bit) with a finite number of rows and an unknown number of columns. The prior

distribution as detailed in (Griffiths and Ghahramani, 2011; ?) is given by:

P(Z) =
αC+

∏
2T−1
h=1 Ch!

exp{−αHT}
C+

∏
c=1

(T −mc)!(mc−1)!

T !
, (3)

where C+ denotes the number of columns of Z with non-zero entries, mc denotes the number of 1’s in137

column c, T denotes the number of rows in Z, HT = ∑
T
t=1 1/t denotes the T th harmonic number, and138

Ch denotes the number of columns in Z that when read top-to-bottom form a sequence of 1’s and 0’s139

corresponding to the binary representation of the number h.140

The distribution in (3) can be derived as the outcome of a sequential generative process called the141

Indian buffet process (Griffiths and Ghahramani, 2011; Doshi-Velez et al., 2009). Imagine that in an142

Indian buffet restaurant, we have T customers who arrive at the restaurant sequentially, one after the143

other. The first customer walks into the restaurant and loads her plate from the first c1 dishes, where144

c1 = Pois(α) (α is similar to the dispersion parameter in the Chinese Restaurant Process (Zhang, 2008)).145

The tth customer will choose a particular dish according to the popularity of the dish, i.e., choosing a dish146

with probability mc/t, where mc denotes the number of people who have previously chosen the cth dish,147

and in addition, chooses Pois(α/t) new dishes as well. Now, if we record the choices of each customer148

on each row of a matrix, where each column corresponds to a dish on the buffet (1 if the dish is chosen,149

and 0 if not), then such a binary matrix is a draw from the distribution in (3) (?). The entire process is150

sequential because the choices made by the tth customer are dependent only on the choices made by the151

t−1 preceeding customers and not on the remaining T − t customers.152

In our case, the dishes in the IBP are the haplotypes in the tumor samples, the SNVs are the customers

and more importantly, the tth customer is the observation at time t in our state-space model. Moreover, if

we consider zt = [zt1,zt2, ...,ztC] in (2), which is equivalently the tth row of Z as the state at time t, then

we can write our state transition model, following the sequential process described by the IBP as follows:

P(zt |Zt−1,α), (4)

where Zt−1 denotes the previous t − 1 rows in Z. The algorithm to sample from (4) is presented in153

Algorithm 1 in the Supplementary Material due to limited space. Note that in the algorithm, Zt is154

implicitly constructed from Zt−1 and if in the process, new non-zero column(s) is/are introduced in Zt155

(Pois(α/t) > 0), then new row(s) will be added to W as well. On the other hand, if the numbers of156

non-zero columns in Zt−1 and Zt are the same, then the number of rows in W does not change between157

t − 1 and t. To account for any possible change of dimension in W, we re-parameterize matrix W.158

Specifically, we rewrite wcs = θcs/∑
C
c′=0 θc′s, which implies that we estimate θcs and compute wcs from159

the estimates of θcs. This procedure ensures that each column of W sums to unity at any point in time160

during the process.161

Moreover, since we are interested in the final estimates of the model parameters W and p, we create

artificial dynamics for these parameters using the random walk model, i.e.,

φt ∼ p(φt |φt−1) = N (φt−1,σ
2),

φt ∈ {p,θcs,c = 0,1, ...,C,s = 1, ...,S},
(5)

where σ denotes the standard deviation. Hence, (4)-(5) fully describe the system state transition.162

Similarly, the observation at time t is given by:

yt ∼ P(yt |Z1:t ,W, p) = P(yt |zt ,W, p)

=
S

∏
s=1

Binomial(yts|vts, pts),
(6)
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where yt denotes the observation at time t (which is conditionally independent of the previous observations163

Yt−1 given the state zt), i.e., the tth row of Y. (6) fully describes the measurement model for the system.164

Finally, (4) - (6) completely describe our proposed state-space model for estimating the mutational profile165

and the proportion of each haplotype, and the total number of haplotypes in the tumor samples.166

The SMC Algorithm167

In this section, we briefly describe the SMC filtering framework that will be employed to estimate the168

states and the parameters of our state-space model (Doucet et al., 2000, 2001). Consider the general169

dynamic system with hidden state variable xt , in our case, consisting of discrete variables zt and continuous170

variables φt , φt ∈ {pt
0,θ

t
cs,c = 0,1, ...,C,s = 1, ...,S}, and measurement variable yt , where there is an171

initial state model p(x0), and ∀t ≥ 1, a state transition model given in (4) - (5) and an observation model172

given in (6). The sequence Xt = {x1,x2, ...,xt} is not observed and we want to estimate it for each time t,173

given that the we have the observations Yt = {y1,y2, ...,yt}.174

Our goal is to approximate the posterior distribution of states p(Xt |Yt) using particles drawn from it.

However, getting such particles from p(Xt |Yt) is usually not feasible. We can still implement an estimate

using N particles, {Xi
t}

N
i=1, taken from another distribution, q(Xt |Yt), whose support includes the support

of p(Xt |Yt) (importance sampling theorem). For the approximation, the weights associated with the

particles are calculated as follows:

w̃i
t =

p(Xt |Yt)

q(Xt |Yt)
and wi

t =
w̃i

t

∑
N
m=1 w̃m

t

, i = 1, ...,N. (7)

Thus, the pair {Xi
t ,w

i
1:t}

N
i=1 is said to be properly weighted with respect to the distribution p(Xt |Yt), and

the approximation p̂(Xt |Yt) is then given by:

p̂(Xt |Yt) =
N

∑
i=1

wi
tδ (Xt −Xi

t), where δ (u) =

{

1, if u = 0

0, otherwise.
(8)

Similar to the above importance sampling theory, a sequential algorithm can be obtained as follows.

First, we express the full posterior distribution of states Xt given the observations Yt as follows:

p(Xt |Yt) ∝ p(yt |Xt ,Yt−1)p(Xt |Yt−1)

= p(yt |Xt ,Yt−1)p(xt |Xt−1,Yt−1)p(Xt−1|Yt−1).
(9)

At time t, we desire to obtain N weighted particles from p(Xt |Yt), which is not feasible. Instead, we define

an importance distribution q(Xt |Yt) = q(xt |Xt−1,Yt)q(Xt−1|Yt−1), where particles can be obtained from,

and then calculate the associated unnormalized importance weights as follows:

w̃i
t =

p(yt |X
i
t ,Yt−1)p(xi

t |X
i
t−1,Yt−1)

q(xi
t |X

i
t ,Yt)

p(Xi
t−1|Yt−1)

q(Xi
t−1|Yt−1)

. (10)

Assuming that at time t−1, we have already drawn the particles {Xi
t−1}

N
i=1 from the importance distribu-

tion q(Xt−1|Yt−1) and the corresponding normalized weights written as follows:

wi
t−1 ∝

p(Xi
t−1|Yt−1)

q(Xi
t−1|Yt−1)

, i = 1, ...,N, (11)

we can now draw particles {Xi
t}

N
i=1 from the importance distribution q(Xt |Yt) by drawing the new state

particles for the time step t as xi
t ∼ q(xt |X

i
t−1,Yt), and write {Xi

t}
N
i=1 = {x

i
t ,X

i
t−1}

N
i=1. If we substitute

(11) into (10), the weights at time t satisfy the recursion:

w̃i
t ∝ wi

t−1

p(yt |X
i
t ,Yt−1)p(xi

t |X
i
t−1,Yt−1)

q(xi
t |X

i
t ,Yt)

, i = 1, ...,N, (12)

and then the weights are normalized to sum to unity.175

So far, we have presented a generic sequential sampling algorithm. We obtain the optimal im-

portance distribution by setting q(xi
t |X

i
t−1,Yt) = p(xi

t |X
i
t−1,Yt), and the weights in (12) become w̃i

t ∝
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Algorithm 1 SMC Algorithm for Characterizing Tumor Heterogeneity

Input: Y, V.

1: Initialize N particles {zi
0, pi

0,W
i
0}

N
i=1

2: for t = 1, ...,T do

3: for i = 1, ...,N do

4: Sample zi
t from Zi

t−1 using Algorithm 1 in the Supplementary Material.

5: n1← number of columns in Zi
t−1

6: n2← length of zi
t

7: d← (n2−n1)
8: if d = 0 then

9:

Zi
t ←

[

Zi
t−1

zi
t

]

10: Sample Wi
t using (5)

11: else

12:

Zi
t ←

[

Zi
t−1 0

zi
t

]

13: Sample Wi
t using (5)

14: Sample new rows of Wi
t from the priors in (14)

15: end if

16: Calculate w̃i
t using (13)

17: end for

18: Normalize the weights

19: Perform resampling

20: end for

21: Approximations of posterior estimates of all the unknown variables are obtained from the final

particles and weights, using the procedures highlighted in (Lee et al., 2016) and discussed in the

Supplementary Material.

wi
t−1 p(yt |X

i
t−1,Yt−1) (Ristic et al., 2004) i.e., if the distributions p(yt |X

i
t ,Yt−1) and p(xi

t |X
i
t−1,Yt−1) are

conjugates, then closed form solutions can be obtained for p(xi
t |X

i
t−1,Yt), and hence, p(yt |X

i
t−1,Yt−1).

However, if no such conjugacy exists, which is the case for our state-space model, the most popular choice

and equally efficient solution (Van Der Merwe, 2004) is to set q(xi
t |X

i
t−1,Yt) = p(xi

t |X
i
t−1) (in (4)-(5))

(Wood and Griffiths, 2007; Särkkä, 2013). Considering the assumed independence in our model, i.e.,

p(xi
t |X

i
t−1,Yt−1) = p(xi

t |X
i
t−1) and p(yt |X

i
t ,Yt−1) = p(yt |x

i
t), then (12) becomes:

w̃i
t ∝ wi

t−1 p(yt |x
i
t) = wi

t−1 p(yt |z
i
t ,W

i
t), (13)

and the weights are normalized. Such implementation is commonly referred to as a bootstrap filter in the176

literature (Särkkä, 2013).177

However, the variance of the weights increases over time, a condition referred to as degeneracy in the178

literature (Doucet et al., 2001). To avoid this, we perform resampling, at every time step, owing to the179

choice of the importance distribution (Wood and Griffiths, 2007; Särkkä, 2013), discarding the ineffective180

particles and multiplying the effective ones. The resampling procedure (Särkkä, 2013) is described in the181

Supplementary Material.182

Finally, our proposed SMC algorithm for estimating the mutational profiles and the proportions of the

haplotypes in the tumor samples i.e., the states and the parameters of our state-space model, is presented in

Algorithm 1. The algorithm is initialized by taking particles from the prior distributions of the parameters.
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r = 50, and haplotypes C = 4.

We assume the following:

θ0s
i.i.d
∼ Gamma(a0,1), s = 1, ...,S, p∼ Beta(a00,b00)

θcs
i.i.d
∼ Gamma(a1,1), s = 1, ...,S,c = 1, ...,C,

(14)

such that wcs = θcs/∑
C

c
′
=0

θ
c
′
s

and consequently, ∑
C

c
′
=0

w
c
′
s
= 1 and assume that a00 << b00 to impose a183

small p. We report the posterior estimates of all the unknown variables using the procedure highlighted in184

(Lee et al., 2016), with the details discussed in the Supplementary Material.185

RESULTS AND DISCUSSION186

In this section, we demonstrate the performance of the proposed SMC algorithm using both simulated187

datasets and the CLL datasets obtained from three different patients (Schuh et al., 2012). In addition,188

we compare the estimates obtained from the proposed SMC algorithm with that of the MCMC-based189

algorithm proposed in (Lee et al., 2016) for estimating C, Z, W and p, the parameters of the feature190

allocation model in (1)-(2), which jointly explain the heterogeneity in the tumor samples. For the MCMC-191

based algorithm, the algorithm parameters are set as in (Lee et al., 2016), running a simulation over192

40,000 iterations, discarding the first 15,000 iterations as burn-in.193

Reference to Figure ??.194

Simulated data195

We produced simulated datasets with average sequencing depth r ∈ {20,40,50,200,100,10000} per196

locus. For a fixed number of haplotypes C = 4, and for each r, we generated the variants count matrix197

Y and the total count matrix V for some combinations of number of SNVs, T and number of samples198

S, where T ∈ {20,60,100} and S ∈ {1,3,5,10,20}. Specifically, we generated each entry of V, i.e., vts199

from Pois(r) and to generate each entry of Y, i.e., yts, we did the following: (i) generate each column200

of W from Dir([a0,a1, ...,a4]), where a0 = 0.2, and ac, c ∈ {1, ...,4} is randomly chosen from the set201
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Table 1. epts , eZ and eW computed for the proposed SMC and the MCMC-based algorithms for T = 60,

C = 4, S ∈ {10,20} and r ∈ {20,40,50,200,1000,10000}.

T = 60 and C = 4

S = 10 S = 20

SMC MCMC SMC MCMC

r epts eZ eW epts eZ eW epts eZ eW epts eZ eW

20 0.0200 0.1033 0.0416 0.1240 0.1200 0.1001 0.0155 0.1000 0.0419 0.1125 0.1301 0.0914

40 0.0137 0.0033 0.0316 0.0638 0.0536 0.0422 0.0179 0.0020 0.0238 0.0574 0.0222 0.0298

50 0.0148 0.0017 0.0173 0.0745 0.0404 0.0601 0.0133 0.0017 0.0249 0.0600 0.0211 0.0642

200 0.0122 0.0000 0.0107 0.0219 0.0325 0.0200 0.0091 0.0000 0.0179 0.0490 0.0055 0.0219

1000 0.0100 0.0000 0.0199 0.0302 0.0100 0.0324 0.0101 0.0000 0.0198 0.0171 0.0045 0.0108

10000 0.0012 0.0000 0.0020 0.0100 0.0050 0.0100 0.0010 0.0000 0.0023 0.0100 0.0050 0.0102

Table 2. eZ , eW and epts computed for the proposed SMC algorithm for C = 4, S = 3 and

T ∈ {1000,2000}.

Number of loci (T ) Number of samples (S) eZ eW epts

1000 3 0.0000 0.0060 0.0073

2000 3 0.0080 0.0048 0.0057

{2,4,5,6,7,8}, (ii) generate entries of Z independently from Bern(0.6), (iii) set p = 0.02, (iv) compute202

pts using (2), and finally, (v) generate yts as an independent sample from Binomial(vts, pts).203

Next, we run the proposed SMC algorithm and the MCMC-based algorithm on the simulated Y and V

datasets and the settings of the parameters for the algorithms are discussed in the Supplementary Material.

To quantify the performance of the algorithms, we define the following metrics: haplotype error (eZ),

proportion error (eW ) and the error of the success probabilities (epts ) as follows:

eZ =
1

TC

T

∑
t=1

C

∑
c=1

|ẑtc− ztc|, eW =
1

CS

C

∑
c=0

S

∑
s=1

|ŵcs−wcs|,

and

epts =
1

T S

T

∑
t=1

S

∑
s=1

| p̂ts− pts|, where p̂ts = p̂ŵ0s +
C

∑
c=1

ẑtcŵcs.

However, since this is a blind decomposition, one does not know a priori which column of Ẑ corresponds204

to which column of Z. To resolve this, we calculate eZ with every permutation of the columns of Ẑ205

and then select the permutation that results in the smallest eZ . The selected permutation is then used in206

computing eW and epts .207

The results obtained from the analyses of the simulated datasets are presented in Table 1, Table 2,208

Figures 1 - 6 and Tables 1 - 3 in the Supplementary Material. Table 1 shows epts , eZ and eW obtained209

for the datasets from T = 60 SNVs, C = 4 haplotypes and S ∈ {10,20} for all the average sequencing210

depth r ∈ {20,40,50,200,1000,10000}, similar results are presented in the Supplementary Material, with211

S ∈ {1,3,5}. From the results obtained for all the sample sizes, the proposed SMC algorithm yields more212

accurate estimates of the model parameters when compared to the MCMC-based algorithm, i.e., producing213

lower error values epts , eZ and eW in all the datasets analyzed. Moreover, from the results obtained, it214

can be observed that, for the two methods, the results improve when either the average sequencing depth215

or the sample size increases. Also, similar trends were observed when the number of SNVs T is 20 as216

presented in the Supplementary Material.217

In Figures 1 - 3, we present, for the proposed SMC algorithm, how the errors vary across different218

samples. It can be observed that the results are less sensitive to sample size when S > 5. Also, there is a219

slight improvement in the results when the average sequencing depth r is increased. Moreover, Figures 4220

- 6 show the results obtained for the proposed SMC and the MCMC-based algorithms and in general, the221

proposed SMC outperforms the MCMC-based algorithm by producing small errors on all the estimates.222

However, we observed that if the number of loci is greater than 200, the MCMC algorithm often result in223
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Figure 7. CLL003: Plot of the estimates of the proportions of the haplotypes in each sample. Samples

a,b,c,d,e are designated as 1,2,3,4,5, respectively.

computational error. But by construction, our SMC algorithm can handle any number of loci since the224

VAF of each loci is processed as an observation at every time step. Apart from the ability to process any225

number of loci, this property allows the proposed algorithm to process VAFs data from newly sequenced226

candidate SNVs to improve existing estimates without re-analyzing the previous datasets. To validate227

this, we generated datasets for 1000 and 2000 loci respectively and these datasets are analyzed with the228

proposed SMC algorithm with the results presented in Table 2. In fact, the proposed SMC algorithm229

benefits from large number of loci because the large the number of loci, the better the estimate of the230

proportions. This result is evident from the what we observed in Table 2.231

Lastly, we record the runtime (tr) for the two algorithms on a 3.5 Ghz Intel 8 processors running232

MATLAB when analyzing some of the datasets described in Table 1 (i.e. T = 60, C = 4, S = 10 and233

r = 20). Observed tr was 311 seconds and 585 seconds for the proposed SMC and the MCMC-based234

algorithms, respectively. The difference observed in computational time can be attributed to the fact that235

the proposed SMC algorithm considers only a single row of of the input data at each iteration, thereby236

reducing the cost of computing the likelihood.237

Real Tumor Samples: CLL Datasets238

We evaluate the proposed SMC algorithm on the datasets for the B-cell chronic lymphocytic leukemia239

(CLL), obtained from three patients: CLL003, CLL006, and CLL077 (Schuh et al., 2012). These datasets240

represent the molecular changes in pre-treatment, post-treatment, and relapse samples in the three selected241

patients, i.e., the samples were taken temporally (see the Supplementary Material for the summary of data242

pre-processing). The datasets are analyzed with the proposed SMC and the MCMC-based algorithms.243

CLL003244

The CLL dataset obtained from patient CLL003 has 20 distinct loci, shown in the first column in Table245

3, and the dataset is analyzed with the proposed SMC algorithm. In Table 3, we present the posterior246
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Figure 8. CLL077: Plot of the estimates of the proportions of the haplotypes in each sample. Samples

a,b,c,d,e are designated as 1,2,3,4,5, respectively.

point estimate of the mutational profiles of the haplotypes in each of the 5 samples, where 1 and 0 denote247

the variant and the reference sequence, respectively. Moreover, in Figures 7, we present a graphical248

representation of how the haplotypes are distributed across the samples. For instance, haplotype C2 which249

was approximately 40 percent abundance in the first sample has reduced to approximately 3 percent after250

the last treatment. In the Supplementary Material, we present the table of proportions. The first row on the251

table and equivalently C0 in Figures 7 comprises of the proportion of the background haplotype, which252

accounts for experimental noise in each sample. From Table 3, we find that each sample consists of at253

least 2 dominant haplotypes. For instance, tumor sample a is dominated by haplotypes C2 and C6, each254

with a proportion of approximately 0.4. Also, we analyzed the same dataset with the MCMC algorithm255

and the results are in the Supplementary Material.256

CLL077257

The CLL dataset obtained from patient CLL077 has 16 distinct loci, shown in the first column in Table 4,258

and the dataset is analyzed with the proposed SMC algorithm. In Table 4, we present the posterior point259

estimate of mutational profiles of the haplotypes in each of the 5 samples. Moreover, in Figure 8, we260

present a graphical representation of how the haplotypes are distributed across the samples, with a table of261

proportions presented in the Supplementary Material. From our analysis results, we find that each sample262

consists of at least 2 dominant haplotypes. Also, we analyzed the same dataset with the MCMC algorithm263

and the results are in the Supplementary Material.264

CLL006265

Here, we analyze the CLL dataset obtained from patient CLL006. The dataset comprises of 11 loci266

as shown in Table 5 in the first column, and is analyzed with the proposed SMC algorithm. Table 5267

and Figure 9 show the estimates of mutational profiles and proportions of the haplotypes, respectively.268

Also, in the Supplementary Material, we present the results obtained from analyzing the dataset with the269

MCMC-based algorithm.270
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Figure 9. CLL006: Plot of the estimates of the proportions of the haplotypes in each sample. Samples

a,b,c,d,e are designated as 1,2,3,4,5, respectively.

Surprisingly, we find that some of the haplotypes, specifically, C1,C2,C3 in CLL003; C3,C4,C5 in271

CLL077 and C1,C2,C3 in CLL006, carry the same set of unique mutations present in distinct genomes272

of subclones when these datasets are analyzed with the method proposed in (Jiao et al., 2014) (Phylosub)273

and manually with the approach employed in (Schuh et al., 2012). The complete results of the clonal274

analyses of these methods are presented in the Supplementary Material.275

Finally, the results presented so far indicate that each heterogeneous tumor sample is made up of more276

than two haplotypes: usually a few dominant haplotypes and other minor types. The multiple number of277

haplotypes in a tumor is an indication of the presence of heterogeneity in the sample.278

DISCUSSION279

Tumor samples that are obtained from cancer patients often comprise of genetically diverse populations280

of cells and this defines the heterogeneous nature of the samples. Most time, to explain the inherent281

heterogeneity in the tumor tissues, biologists obtain VAFs datasets via the NGS technology and fit the282

data into an appropriate model. In this paper, to analyze the observed VAFs data, we employed the feature283

allocation model proposed in (Lee et al., 2016). The model, which describes the distribution of haplotypes284

within the tumor samples, posits that because humans are diploids, having more than two haplotypes in285

the tumor sample is an evidence of heterogeneity within the sample. According to this model, haplotypes286

in the tumor samples are the features and SNVs are the experimental units that select the features. So287

given the observed VAFs of the SNVs, estimating the unknown latent features and the proportions in the288

samples completely described the inherent heterogeneity in the data.289

To estimate the unknown variables in the model, we reformulated the latent feature model into state-290

space model and presented an efficient SMC algorithm, taking advantage of the sequential construction of291

the latent binary matrix, with an unknown number of columns, using the IBP, and treating other variables292

in the latent feature model as the parameters of our newly formed state-space model. This way, we are293
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Table 3. CLL003: Estimates of the mutational profiles of haplotypes, Z in the samples.

Gene C1 C2 C3 C4 C5 C6

ADAD1 1 1 1 0 0 0

AMTN 0 1 0 0 0 0

APBB2 0 1 0 0 0 0

ASXL1 1 0 0 1 0 0

ATM 0 1 0 0 1 0

BPIL2 0 1 0 0 0 0

CHRNB2 1 0 0 1 0 0

CHTF8 1 1 1 0 0 0

FAT3 1 0 0 1 0 0

HERC2 1 1 1 0 0 0

IL11RA 1 1 1 0 0 0

MTUS1 0 1 0 0 0 0

MUSK 1 0 0 1 0 0

NPY 1 0 0 1 0 0

NRG3 1 0 0 1 0 0

PLEKHG5 0 1 0 0 0 0

SEMA3E 1 0 0 1 0 0

SF3B1 1 1 1 0 0 0

SHROOM1 1 1 1 0 0 0

SPTAN1 0 1 0 0 0 0

The genes where the mutations are found are shown in the first column.

able to analyze the VAFs of a single SNV at each iteration. We evaluated our proposed SMC algorithm294

on simulated datasets, specifically, by varying the average sequencing depth (r), the number of tumor295

samples (S) and the number of SNVs (T ), as well as on real datasets, i.e., the CLL datasets obtained296

from (Schuh et al., 2012) for 3 patients. The proposed SMC algorithm produced satisfying results on all297

categories of datasets analyzed.298

Further, we compared the estimates obtained from the proposed SMC algorithm and the MCMC-based299

algorithm. In terms of the accuracy of estimates, the proposed SMC algorithm yields an improved300

performance over the MCMC-based algorithm. In addition to the aforementioned, the proposed SMC301

algorithm, unlike the MCMC-based algorithm, does not require throwing away samples as burn-in and302

also, due to the sequential nature by which the VAFs are being processed, it is possible to easily incorporate303

datasets from newly sequenced SNVs (when available) so as to refine the existing estimates. However, in304

the MCMC algorithm, to incorporate the new datasets, the entire datasets (old and new) need be analyzed.305

In our experiments, we set N = 500 particles for all the simulated datasets and for the tumor datasets,306

we set N = 1000. Also, we run the SMC algorithm 5 times for the simulated data and 10 times for the307

CLL datasets. Multiple runs allow the VAFs of each SNV to be visited more than once, and we noticed308

that this, in a way, improves the results of the SMC algorithm.309

Finally, we have demonstrated the efficacy of the SMC algorithm, an algorithm that can effectively310

handle any type of probability distribution, nonlinearity and non-stationarity, particularly in analyzing311

VAFs of SNVs from tumor samples.312
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