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ABSTRACT
Tumor samples obtained from a single cancer patient spatially or temporally often
consist of varying cell populations, each harboring distinct mutations that uniquely
characterize its genome. Thus, in any given samples of a tumor having more than
two haplotypes, defined as a scaffold of single nucleotide variants (SNVs) on the same
homologous genome, is evidence of heterogeneity because humans are diploid and we
would therefore only observe up to two haplotypes if all cells in a tumor sample were
genetically homogeneous. We characterize tumor heterogeneity by latent haplotypes
and present state-space formulation of the feature allocation model for estimating
the haplotypes and their proportions in the tumor samples. We develop an efficient
sequential Monte Carlo (SMC) algorithm that estimates the states and the parameters
of our proposed state-space model, which are equivalently the haplotypes and their
proportions in the tumor samples. The sequential algorithm produces more accurate
estimates of themodel parameters when comparedwith existingmethods. Also, because
our algorithm processes the variant allele frequency (VAF) of a locus as the observation
at a single time-step, VAF from newly sequenced candidate SNVs from next-generation
sequencing (NGS) can be analyzed to improve existing estimates without re-analyzing
the previous datasets, a feature that existing solutions do not possess.

Subjects Bioinformatics, Computational Biology
Keywords Heterogeneity, Tumor, Bayesian, Monte Carlo, Sequential Monte Carlo, Haplotype

INTRODUCTION
Tumors contain multiple, genetically diverse subclonal populations of cells, each subclone
harboring distinct mutations that uniquely characterize its genome (Marusyk & Polyak,
2010; Meacham &Morrison, 2013; Heppner, 1984). Tumor subclones often evolve from
a single ancestral population (Hughes et al., 2014; Gerlinger et al., 2012; Visvader, 2011;
Nowell, 1976). The genetic diversities that distinguish these subclones are a direct result of
evolutionary processes that drive tumor progression, especially the series of somatic genetic
variants which arise stochastically by a sequence of randomly acquiredmutations (Hanahan
&Weinberg, 2011; Hanahan &Weinberg, 2000).

Identifying and characterizing tumor subclonality is crucial for understanding the
evolution of tumor cells. The knowledge is important for designing more effective
treatments for cancer, especially in avoiding cancer relapse and chemotherapy
resistance (Garraway & Lander, 2013). For instance, research has shown the links
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between the presence of driver mutations within subclones and the adverse clinical
outcomes (Landau et al., 2013).

Tumor heterogeneity has been studied using the NGS technology (Lee et al., 2016;
Gerlinger et al., 2012). Somatic mutations are quantified using whole exome sequencing
(WES) and whole genome sequencing (WGS) of samples (Marusyk, Almendro & Polyak,
2012), and can be explained by differences in genomes of subclones and the varying
proportions of these subclones (Lee et al., 2016; Landau et al., 2013; Russnes et al., 2011;
Navin et al., 2010; Marusyk & Polyak, 2010). One method to assess the heterogeneity of
a given tumor is to probe individual cell using fluorescent markers (Navin et al., 2010;
Irish et al., 2004) and another is to perform single cell sequencing (Xu et al., 2012; Hou et
al., 2012; Navin et al., 2011). These approaches have several limitations that prevent their
wider usage in examining and quantifying the level of heterogeneity in a given sample. For
instance, evaluating large number of cells by probing them individually can be expensive.
Also, the spatial positioning of the cells relative to other cells in the tumor are lost in the
process.

In the literature, a few computational methods have been proposed to explain the
inherent structure of tumor heterogeneity. For instance, Larson & Fridley (2013) and Su et
al. (2012) viewed a tumor sample as a mixture of tumor cells and normal cells. Although
their method can estimate tumor purity levels for paired tumor-normal tissue sample
using DNA sequencing data, unpaired and multiple tumor samples are not considered.
A more prominent approach is the arrangement of single nucleotide variants (SNVs) in
clusters using clustering models such as the Dirichlet Process (DP) (Roth et al., 2014; Jiao et
al., 2014; Shah et al., 2009; Ding et al., 2010; Bashashati et al., 2013). Although the clustered
SNVs provide some information about tumor heterogeneity, the inference does not directly
identify subclones or haplotypes in the tumor samples.

More recently, Lee et al. (2016) and Xu et al. (2015) proposed a feature allocation model
for estimating tumor heterogeneity by estimating haplotypes and their proportions in the
tumor. This model provides insights on how haplotypes may be distributed within a tumor,
using WGS data measuring variant allele frequencies (VAFs) at SNVs. Mathematically,
the model can be interpreted as blind matrix factorization. A matrix of expected VAFs
at SNVs for different samples is decomposed into a binary matrix of haplotypes (with an
unknown number of columns, the exact number to be determined by the data), and a
matrix of proportions of haplotypes. This model offers certain modeling advantages over
the clustering approach: (i) overlapping SNVs can be shared among different subclones,
and (ii) non-overlapping SNV clusters (according to the cellular prevalence) are not used as
the building block for subclones, i.e., instead of first estimating the SNV clusters and then
constructing subclones based on clusters, the model provides a way to infer the subclonal
structure based on haplotypes. To make an inference on the haplotypic structure in tumor
samples, Lee et al. (2016) and Xu et al. (2015) proposed a Markov chain Monte Carlo
(MCMC-based) and a maximum a posteriori (MAP-based) asymptotic derivations (MAD)
algorithms respectively. However, if more VAFs are available for newly called SNV(s), both
algorithms have to be restarted in order to incorporate the newly called SNV(s). Moreover,
MCMC approach in general as previously shown (Nguyen et al., 2016; Jasra, Stephens &
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Holmes, 2007) is plagued with some inherent issues which often limit its performance: (i)
sometimes, it is difficult to assess when the Markov chain has reached its stationary regime
of interest (ii) requirement of burn-in period and thinning interval, and most importantly,
(iii) if the target distribution is highly multi-modal, MCMC algorithms can easily become
trapped in local modes.

In this paper, we consider the feature allocation modeling approach in analyzing the
WGS data measuring VAFs at SNVs, and present an efficient sequential Monte Carlo
(SMC) algorithm (Doucet, De Freitas & Gordon, 2001; Doucet, Godsill & Andrieu, 2000) for
estimating the binary matrix of haplotypes and the proportions in the samples. Specifically,
we formulate the feature allocation problem using a state-space. We consider the following
in our state-space framework: (i) the rows of the haplotype binary matrix are considered as
the states of the system, exploiting the sequential construction of a binary matrix with an
unknown number of columns using the Indian Buffet Process (IBP), (ii) the proportions
matrix and other parameters are considered as the parameters of the model, (iii) the
observed VAF at each SNV are processed, for all samples at a time. SMC is a very powerful
algorithm that belongs to a broad class of recursive filtering techniques (Ogundijo, Elmas
& Wang, 2017;Ogundijo & Wang, 2017). Instead of processing all the observations at once,
observations are processed sequentially, one after the other. The posterior probability
density function (PDF) of every state is computed every time a measurement is observed.
The posterior distributions of the variables of interest are approximated with a set of
properly weighted particles (Doucet, De Freitas & Gordon, 2001). With the SMC methods,
we can treat, in a principled way, any type of probability distribution, nonlinearity and non-
stationarity (Kitagawa, 1998; Kitagawa, 1996). We compare the proposed SMC algorithm
with the existing MCMC-based and MAP-based algorithms. In terms of the accuracy of
estimates of the matrix of haplotypes and the matrix of proportions, denoted as Z and W,
our proposed SMC method produces better results.

The remainder of this paper is organized as follows. In ‘System Model and Problem
Formulation’, we describe the system model and problem formulation. We describe the
general principle of the SMC filtering algorithms, and then derive our proposed SMC
algorithm for estimating the mutational profile of each haplotype and their proportions
in the samples, in a sequential fashion. In ‘Results and Discussion’, we investigate the
performance of the proposedmethod using simulated datasets and the chronic lymphocytic
leukemia (CLL) datasets, the real tumor samples obtained from three patients in (Schuh et
al., 2012). Finally, ‘Discussion’ concludes the paper.

In this paper, we use the following notations:
1. p(·) and p(·|·) denote a probability density function (PDF) and a conditional PDF,

respectively.
2. P(·) and P(·|·) denote a probability and a conditional probability mass function,

respectively.
3. N (µ,σ 2) denotes a Gaussian distribution with mean µ and variance σ 2.
4. Binomial(n,p) denotes a binomial distributionwith n number of trials and p probability

of success. (Binomial(1,p)=Bern(p), i.e, Bernoulli distributionwith success probability
p).
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5. Pois(λ) denotes a Poisson distribution with mean parameter λ.
6. Beta(α1,β1) denotes a beta distribution with shape parameters α1 and β1.
7. Gam(α0,β0) denotes a gamma distribution with shape parameter α0 and rate parameter
β0.

8. Dir(α) denotes a Dirichlet distribution with a vector of concentration parameters α,
and x̂ denotes the estimate of variable x .

SYSTEM MODEL AND PROBLEM FORMULATION
In an NGS experiment designed to probe the heterogeneity of a tumor sample, twomatrices
Y and V, each with dimension T ×S, of count data are often observed, where yts and vts
denote the elements in the t th row and sth columns of Y and V, respectively. At the genomic
position of SNV t for tissue sample s, yts denotes the number of reads that bear a variant
sequence and vts denotes the total number of reads, t = 1,...,T ,s= 1,...,S. In summary,
the datasets are count data for T SNVs and S samples. We follow the binomial sampling
framework in (Lee et al., 2016; Zare et al., 2014; Xu et al., 2015) to model the count data:

yts
ind.
∼ Binomial(vts,pts), t = 1,...,T , s= 1,...,S, (1)

where pts are the success probabilities and equivalently the expected VAFs, given by:

pts=w0sp+
C∑
c=1

ztcwcs, t = 1,...,T , s= 1,...,S, (2)

whereC denotes theunknown number of distinct haplotypes in the tumor samples, ztc ∈ {0,1}
denotes an indicator of the event that SNV t bears a variant sequence for haplotype c and
wcs denotes the proportion of haplotype c in sample s. The term

∑C
c=1ztcwcs explains pts as

arising from sample s being composed of a mix of hypothetical haplotypes which include a
mutation for SNV t (ztc = 1), or do not include a mutation for SNV t (ztc = 0). In addition,
there is a background haplotype c = 0, which includes all SNVs. The background haplotype
accounts for experimental noise and haplotypes that appear with negligible abundance. The
first term in (2) relates to this background haplotype, where p denotes the relative frequency
of observing a mutation at an SNV due to noise and artifact, assuming equal frequency
for all SNVs, and w0s denotes the proportion in sample s (Lee et al., 2016). In (2), if we (i)
collect the indicators ztc in an T×C binary matrix Z, (ii) collect all p’s in a T -dimensional
column vector p and (iii) collect the proportions w0s and wcs in an C

′

×S matrix W of
probabilities, where C

′

=C+1 and each column of W sums to unity, then we can write
(2) as Pts=Z′ ·W, where Pts denotes the matrix of success probabilities and equivalently,
the matrix of expected VAFs and Z′= [p Z]. If the expected VAFs are approximated with
the observed VAFs, we can directly solve the matrix factorization problem but instead the
observed VAFs are modeled with a probability distribution in (1). However, it should be
noted that the number of latent haplotypes C is unknown, and this leaves the number of
columns in Z and equivalently, the number of rows in W unknown, left to be estimated
from the data.

Our goal is to perform a joint inference on C , Z, W and p, all of which explain the
heterogeneity in the tumor samples, using the observed VAFs of SNVs described by the
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matrices Y and V, the input data. To do this, we describe the system using a state-space
model and then derive an efficient SMC algorithm to estimate all the hidden states and
the model parameters in our model, in a sequential fashion. Our analysis is restricted to
mutations in copy-number neutral regions.

State-space formulation
Our state-space formulation of the problem exploits the sequential construction of Z.
Specifically, we consider the t th row of the data matrix Y and V as the new observation
at time t of our state-space model, treat the t th row of the binary matrix Z as the hidden
state at time t, and W and p as the model parameters. Before explicitly stating the state
transition and the observation models, we succinctly describe the prior distribution on
a ‘‘left-ordered’’ binary matrix (i.e., ordering the columns of the binary matrix from left
to right by the magnitude of the binary expressed by that column, taking the first row
as the most significant bit) with a finite number of rows and an unknown number of
columns. The prior distribution as detailed in (Griffiths & Ghahramani, 2011; Ghahramani
& Griffiths, 2006) is given by:

P(Z)=
αC+∏2T−1
h=1 Ch!

exp{−αHT }

C+∏
c=1

(T−mc)!(mc−1)!
T !

, (3)

where C+ denotes the number of columns of Z with non-zero entries, mc denotes the
number of 1’s in column c , T denotes the number of rows in Z, HT =

∑T
t=11/t denotes

the T th harmonic number, and Ch denotes the number of columns in Z that when read
top-to-bottom form a sequence of 1’s and 0’s corresponding to the binary representation
of the number h.

The distribution in (3) can be derived as the outcome of a sequential generative process
called the Indian buffet process (Griffiths & Ghahramani, 2011; Doshi-Velez, 2009). Imagine
that in an Indian buffet restaurant, we have T customers who arrive at the restaurant
sequentially, one after the other. The first customer walks into the restaurant and loads her
plate from the first c1 dishes, where c1= Pois(α) (α is similar to the dispersion parameter
in the Chinese Restaurant Process (Zhang, 2008)). The t th customer will choose a particular
dish according to the popularity of the dish, i.e., choosing a dish with probability mc/t ,
where mc denotes the number of people who have previously chosen the c th dish, and
in addition, chooses Pois(α/t ) new dishes as well. Now, if we record the choices of each
customer on each row of amatrix, where each column corresponds to a dish on the buffet (1
if the dish is chosen, and 0 if not), then such a binary matrix is a draw from the distribution
in (3) (Ghahramani & Griffiths, 2006). The entire process is sequential because the choices
made by the t th customer are dependent only on the choices made by the t−1 preceeding
customers and not on the remaining T− t customers.

In our case, the dishes in the IBP are the haplotypes in the tumor samples, the SNVs
are the customers and more importantly, the t th customer is the observation at time t
in our state-space model. Moreover, if we consider zt = [zt1,zt2,...,ztC ] in (2), which is
equivalently the t th row of Z as the state at time t , then we can write our state transition
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model, following the sequential process described by the IBP as follows:

P(zt |Zt−1,α), (4)

where Zt−1 denotes the previous t −1 rows in Z. The algorithm to sample from (4) is
presented in Algorithm 1 in the Supplemental Information 1. Note that in the algorithm,
Zt is implicitly constructed from Zt−1 and if in the process, new non-zero column(s) is/are
introduced in Zt (Pois(α/t )> 0), then new row(s) will be added toW as well. On the other
hand, if the numbers of non-zero columns in Zt−1 and Zt are the same, then the number
of rows in W does not change between t−1 and t . To account for any possible change of
dimension inW, we re-parameterize matrixW. Specifically, we rewrite wcs= θcs/

∑C
c ′=0θc ′s,

which implies that we estimate θcs and computewcs from the estimates of θcs. This procedure
ensures that each column ofW sums to unity at any point in time during the process.

Moreover, since we are interested in the final estimates of the model parametersW and
p, we create artificial dynamics for these parameters using the random walk model, i.e.,

φt ∼ p(φt |φt−1)=N (φt−1,σ 2),
φt ∈ {p,θcs,c = 0,1,...,C,s= 1,...,S},

(5)

where σ denotes the standard deviation. Hence, (4)–(5) fully describe the system state
transition.

Similarly, the observation at time t is given by:

yt ∼ P(yt |Z1:t ,W,p) = P(yt |zt ,W,p)

=

S∏
s=1

Binomial(yts|vts,pts),
(6)

where yt denotes the observation at time t (which is conditionally independent of the
previous observations Yt−1 given the state zt ), i.e., the t th row of Y. (6) fully describes
the measurement model for the system. Finally, (4)–(6) completely describe our proposed
state-space model for estimating the mutational profile and the proportion of each
haplotype, and the total number of haplotypes in the tumor samples.

The SMC algorithm
In this section, we briefly describe the SMC filtering framework that will be employed
to estimate the states and the parameters of our state-space model (Doucet, Godsill &
Andrieu, 2000; Doucet, De Freitas & Gordon, 2001). Consider the general dynamic system
with hidden state variable xt , in our case, consisting of discrete variables zt and continuous
variables φt , φt ∈ {pt0,θ

t
cs,c = 0,1,...,C,s= 1,...,S}, and measurement variable yt , where

there is an initial state model p(x0), and ∀t ≥ 1, a state transition model given in (4)–(5)
and an observation model given in (6). The sequence Xt = {x1,x2,...,xt } is not observed
and we want to estimate it for each time t , given that the we have the observations
Yt ={y1,y2,...,yt }.

Our goal is to approximate the posterior distribution of states p(Xt |Yt ) using particles
drawn from it. However, getting such particles from p(Xt |Yt ) is usually not feasible. We
can still implement an estimate usingN particles, {Xi

t }
N
i=1, taken from another distribution,
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q(Xt |Yt ), whose support includes the support of p(Xt |Yt ) (importance sampling theorem).
For the approximation, the weights associated with the particles are calculated as follows:

w̃ i
t =

p(Xt |Yt )
q(Xt |Yt )

and w i
t =

w̃ i
t∑N

m=1 w̃
m
t

, i= 1,...,N . (7)

Thus, the pair {Xi
t ,w

i
1:t }

N
i=1 is said to be properly weighted with respect to the distribution

p(Xt |Yt ), and the approximation p̂(Xt |Yt ) is then given by:

p̂(Xt |Yt )=
N∑
i=1

w i
t δ(Xt −Xi

t ), where δ(u)=

{
1, if u= 0
0, otherwise.

(8)

Similar to the above importance sampling theory, a sequential algorithm can be obtained
as follows. First, we express the full posterior distribution of statesXt given the observations
Yt as follows:

p(Xt |Yt ) ∝ p(yt |Xt ,Yt−1)p(Xt |Yt−1)
= p(yt |Xt ,Yt−1)p(xt |Xt−1,Yt−1)p(Xt−1|Yt−1).

(9)

At time t , we desire to obtain N weighted particles from p(Xt |Yt ), which is not feasible.
Instead, we define an importance distribution q(Xt |Yt )= q(xt |Xt−1,Yt )q(Xt−1|Yt−1),
where particles can be obtained from, and then calculate the associated unnormalized
importance weights as follows:

w̃ i
t =

p(yt |Xi
t ,Yt−1)p(xit |X

i
t−1,Yt−1)

q(xit |X
i
t ,Yt )

p(Xi
t−1|Yt−1)

q(Xi
t−1|Yt−1)

. (10)

Assuming that at time t − 1, we have already drawn the particles {Xi
t−1}

N
i=1 from the

importance distribution q(Xt−1|Yt−1) and the corresponding normalized weights written
as follows:

w i
t−1∝

p(Xi
t−1|Yt−1)

q(Xi
t−1|Yt−1)

, i= 1,...,N , (11)

we can now draw particles {Xi
t }
N
i=1 from the importance distribution q(Xt |Yt ) by

drawing the new state particles for the time step t as xit ∼ q(xt |Xi
t−1,Yt ), and write

{Xi
t }
N
i=1 = {x

i
t ,X

i
t−1}

N
i=1. If we substitute (11) into (10), the weights at time t satisfy the

recursion:

w̃ i
t ∝w i

t−1
p(yt |Xi

t ,Yt−1)p(xit |X
i
t−1,Yt−1)

q(xit |X
i
t ,Yt )

, i= 1,...,N , (12)

and then the weights are normalized to sum to unity.
So far, we have presented a generic sequential sampling algorithm.We obtain the optimal

importance distribution by setting q(xit |X
i
t−1,Yt )= p(xit |X

i
t−1,Yt ), and the weights in

(12) become w̃ i
t ∝w i

t−1p(yt |X
i
t−1,Yt−1) (Ristic, Arulampalam & Gordon, 2004) i.e., if the

distributions p(yt |Xi
t ,Yt−1) and p(xit |X

i
t−1,Yt−1) are conjugates, then closed form solutions

can be obtained for p(xit |X
i
t−1,Yt ), and hence, p(yt |Xi

t−1,Yt−1). However, if no such
conjugacy exists, which is the case for our state-space model, the most popular choice and
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Algorithm 1 SMC Algorithm for Characterizing Tumor Heterogeneity
Input: Y, V.
1: Initialize N particles {zi0,p

i
0,W

i
0}

N
i=1

2: for t = 1,...,T do
3: for i= 1,...,N do
4: Sample zit from Zi

t−1 using Algorithm 1 in the Supplementary Material.
5: n1← number of columns in Zi

t−1
6: n2← length of zit
7: d← (n2−n1)
8: if d = 0 then
9:

Zi
t←

[
Zi
t−1
zit

]
10: SampleWi

t using (5)
11: else
12:

Zi
t←

[
Zi
t−1 0
zit

]
13: SampleWi

t using (5)
14: Sample new rows ofWi

t from the priors in (14)
15: end if
16: Calculate w̃ i

t using (13)
17: end for
18: Normalize the weights
19: Perform resampling
20: end for
21: Approximations of posterior estimates of all the unknown variables are obtained

from the final particles and weights, using the procedures highlighted in (Lee et al.,
2016) and discussed in the Supplementary Material.

equally efficient solution (Van Der Merwe, 2004) is to set q(xit |X
i
t−1,Yt )= p(xit |X

i
t−1) (in

(4)–(5)) (Wood & Griffiths, 2007; Särkkä, 2013). Considering the assumed independence
in our model, i.e., p(xit |X

i
t−1,Yt−1)= p(xit |X

i
t−1) and p(yt |Xi

t ,Yt−1)= p(yt |xit ), then (12)
becomes:

w̃ i
t ∝w i

t−1p(yt |x
i
t )=w i

t−1p(yt |z
i
t ,W

i
t ), (13)

and the weights are normalized. Such implementation is commonly referred to as a
bootstrap filter in the literature (Särkkä, 2013).

However, the variance of the weights increases over time, a condition referred to as
degeneracy in the literature (Doucet, De Freitas & Gordon, 2001). To avoid this, we perform
resampling, at every time step, owing to the choice of the importance distribution (Wood
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& Griffiths, 2007; Särkkä, 2013), discarding the ineffective particles and multiplying the
effective ones. The resampling procedure (Särkkä, 2013) is described in the Supplemental
Information 1.

Finally, our proposed SMC algorithm for estimating the mutational profiles and the
proportions of the haplotypes in the tumor samples i.e., the states and the parameters of
our state-space model, is presented in Algorithm 1. The algorithm is initialized by taking
particles from the prior distributions of the parameters. We assume the following:

θ0s
i.i.d
∼ Gamma(a0,1), s= 1,...,S, p∼Beta(a00,b00)

θcs
i.i.d
∼ Gamma(a1,1), s= 1,...,S,c = 1,...,C,

(14)

such that wcs= θcs/
∑C

c ′=0θc
′ s and consequently,

∑C
c ′=0wc ′ s= 1 and assume that a00<< b00

to impose a small p.We report the posterior estimates of all the unknown variables using the
procedure highlighted in Lee et al. (2016), with the details discussed in the Supplemental
Information 1.

RESULTS AND DISCUSSION
In this section, we demonstrate the performance of the proposed SMC algorithm using
both simulated datasets and the CLL datasets obtained from three different patients
(Schuh et al., 2012). In addition, we compare the estimates obtained from the proposed
SMC algorithm with the MCMC-based algorithm proposed in Lee et al. (2016) and the
MAP-based algorithm proposed in Xu et al. (2015). For the MCMC-based algorithm, the
algorithm parameters are set as in Lee et al. (2016), running a simulation over 40,000
iterations, discarding the first 15,000 iterations as burn-in. For the MAD-based algorithm,
we ran 1,000 random initializations for each dataset.

Simulated data
We produced simulated datasets with average sequencing depth r ∈ {20, 40, 50, 200, 100,
10,000} per locus. We fixed the number of haplotypes C = 4 and number of samples
S∈ {1,3,5,10,20}. For all combinations of r and S, we generated the variants count matrix
Y and the total count matrix V for different number of SNVs T ∈ {20,60}. Specifically, we
generated each entry of V, i.e., vts from Pois(r) and to generate each entry of Y, i.e., yts, we
did the following: (i) generate each column ofW from Dir([a0,a1,...,a4]), where a0= 0.2,
and ac , c ∈ {1,...,4} is randomly chosen from the set {2,4,5,6,7,8}, (ii) generate entries of
Z independently from Bern(0.6), (iii) set p= 0.02, (iv) compute pts using (2), and finally,
(v) generate yts as an independent sample from Binomial(vts,pts).

Next, we run the proposed SMC-based, MCMC-based and the MAP-based algorithms
on the simulated Y and V datasets. To quantify the performance of the algorithms, we
define the following metrics: haplotype error (eZ ), proportion error (eW ) and the error of
the success probabilities (epts) as follows:

eZ =
1
TC

T∑
t=1

C∑
c=1

|ẑtc−ztc |, eW =
1
CS

C∑
c=0

S∑
s=1

|ŵcs−wcs|,
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Table 1 epts , eZ and eW computed for the proposed SMC-based, MCMC-based and theMAP-based al-
gorithms for T = 60, C = 4, S= 10 and r ∈ { 20, 40, 50, 200, 1,000, 10,000}.

T = 60, C = 4 and S = 10

SMC-based MCMC-based MAP-based

r epts eZ eW epts eZ eW epts eZ eW
20 0.0200 0.1033 0.0416 0.1240 0.1200 0.1001 0.1021 0.1400 0.0900
40 0.0137 0.0033 0.0316 0.0638 0.0536 0.0422 0.0490 0.0505 0.0388
50 0.0148 0.0017 0.0173 0.0745 0.0404 0.0601 0.0820 0.0500 0.0428
200 0.0122 0.0000 0.0107 0.0219 0.0325 0.0200 0.0301 0.0305 0.0211
1000 0.0100 0.0000 0.0199 0.0302 0.0100 0.0324 0.0411 0.0250 0.0220
10,000 0.0012 0.0000 0.0020 0.0100 0.0050 0.0100 0.0110 0.0105 0.0111

and

epts =
1
TS

T∑
t=1

S∑
s=1

|p̂ts−pts|, where p̂ts= p̂ŵ0s+

C∑
c=1

ẑtc ŵcs.

However, since this is a blind decomposition, one does not know a priori which column of Ẑ
corresponds to which column of Z. To resolve this, we calculate eZ with every permutation
of the columns of Ẑ and then select the permutation that results in the smallest eZ . The
selected permutation is then used in computing eW and epts .

The results obtained from the analyses of the simulated datasets are presented in Table 1,
Figs. 1–3 and Table 1 in the Supplemental Information 1. Table 1 shows epts , eZ and eW
obtained for the datasets fromT = 60 SNVs,C = 4 haplotypes and S= 10 samples for all the
average sequencing depth r ∈ { 20, 40, 50, 200, 1,000, 10,000}. Similar results are presented
in the Supplemental Information 1 with T = 20 SNVs and S= 5 samples. From the results
obtained for the different number of average sequencing depth r and number of SNVs, the
proposed SMC algorithm yields more accurate estimates of the model parameters when
compared with the other two algorithms. Specifically, the SMC-based algorithm produced
lower error values epts , eZ and eW in all the datasets analyzed. Moreover, we investigated
the effect of sample size on the proposed SMC algorithm. As shown in Figs. 1–3, the results
show slight improvement as the the number of samples increased. It can be observed that
the results are less sensitive to sample size when S> 5. Also noticed is a slight improvement
in the results when the average sequencing depth r is increased.

By construction, the proposed SMC algorithm can handle datasets with any number of
loci since the VAF of each loci is processed as an observation at every time step. Apart from
the ability to process any number of loci, this property allows the proposed algorithm to
process VAFs data from newly sequenced candidate SNVs to improve existing estimates
without re-analyzing the previous datasets. To validate this, we generated datasets for
1,000 and 2,000 loci respectively and these datasets are analyzed with the proposed SMC
algorithm with the results presented in Table 2. In fact, the proposed SMC algorithm
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Table 2 eZ , eW and epts computed for the proposed SMC algorithm for C = 4, S = 3 and T ∈ { 1,000,
2,000}.

Number of loci ( T ) Number of samples ( S) eZ eW epts
1,000 3 0.0000 0.0060 0.0073
2,000 3 0.0080 0.0048 0.0057

benefits from larger number of loci because the larger the number of loci, the better the
estimate of the proportions. This result is evident from the proportion errors in Table 2.

Lastly, we record the runtime (tr ) for the two algorithms on a 3.5 Ghz Intel 8 processors
running MATLAB when analyzing some of the datasets described in Table 1 (i.e., T = 60,
C = 4, S= 10 and r = 20). Observed tr was 311 seconds and 585 seconds for the proposed
SMC and the MCMC-based algorithms, respectively. For the MAP-based algorithm, a
single run is 5 seconds but for a set of input data, the algorithm requires different random
initializations.

Real tumor samples: CLL datasets
We evaluate the proposed SMC algorithmon the datasets for the B-cell chronic lymphocytic
leukemia (CLL), obtained from three patients: CLL003, CLL006, and CLL077 (Schuh et al.,
2012). These datasets represent the molecular changes in pre-treatment, post-treatment,
and relapse samples in the three selected patients, i.e., the samples were taken temporally
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haplotypes C = 4.
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(see the Supplemental Information 1 for the summary of data pre-processing). The datasets
are analyzed with the proposed SMC algorithm and the two other algorithms.

CLL003
The CLL dataset obtained from patient CLL003 has 20 distinct loci, shown in the first
column in Table 3, and the dataset is analyzed with the proposed SMC algorithm.
In Table 3, we present the posterior point estimate of the mutational profiles of the
haplotypes in each of the 5 samples, where 1 and 0 denote the variant and the reference
sequence, respectively. Moreover, in Fig. 4, we present a graphical representation of
how the haplotypes are distributed across the samples. For instance, haplotype C2 with
approximately 40 percent abundance in the first sample has reduced to approximately
3 percent after the last treatment. In the Supplemental Information 1, we present the
table of proportions. The first row on the table and equivalently C0 in Fig. 4 comprises
of the proportion of the background haplotype, which accounts for experimental noise
in each sample. From Table 3, we found that each sample consists of at least 2 dominant
haplotypes. For instance, tumor sample a is dominated by haplotypes C2 and C6, each
with a proportion of approximately 0.4. Also, we analyzed the same dataset with the other
two algorithms and the results are in the Supplemental Information 1.
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CLL077
The CLL dataset obtained from patient CLL077 has 16 distinct loci, shown in the first
column in Table 4, and the dataset is analyzed with the proposed SMC algorithm. In
Table 4, we present the posterior point estimate of mutational profiles of the haplotypes
in each of the 5 samples. Moreover, in Fig. 5, we present a graphical representation of how
the haplotypes are distributed across the samples, with a table of proportions presented
in the Supplemental Information 1. From our analysis results, we found that each sample
consists of at least two dominant haplotypes. Also, we analyzed the same dataset with the
other two algorithms and the results are in the Supplemental Information 1.

CLL006
Here, we analyze the CLL dataset obtained from patient CLL006. The dataset comprises
of 11 loci as shown in Table 5 in the first column, and is analyzed with the proposed SMC
algorithm. Table 5 and Fig. 6 show the estimates of mutational profiles and proportions
of the haplotypes, respectively. Also, in the Supplemental Information 1, we present the
results obtained from analyzing the dataset with the two other algorithms.

As presented in the Supplemental Information 1, the results obtained from the other two
algorithms for all the patients are similar. When the estimated haplotypes are compared
with some methods that estimate the mutational profiles of tumor subclones, Phylosub
proposed in (Jiao et al., 2014) and the manual method proposed in (Schuh et al., 2012),
we found that some of the haplotypes, specifically, C1,C2,C3 in CLL003; C3,C4,C5
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in CLL077 and C1,C2,C3 in CLL006, carry the same set of unique mutations that are
present in distinct genomes of subclones. The complete results of the clonal analyses of
these methods are presented in the Supplemental Information 1.

Finally, the results presented so far indicate that each heterogeneous tumor sample is
made up of more than two haplotypes: usually a few dominant haplotypes and other minor
types. The multiple number of haplotypes in a tumor is an indication of the presence of
heterogeneity in the sample.

DISCUSSION
Tumor samples that are obtained from cancer patients often comprise of genetically
diverse populations of cells and this defines the heterogeneous nature of the samples. Most
of the time, to explain the inherent heterogeneity in the tumor tissues, biologists obtain
VAFs datasets via the NGS technology and fit the data into an appropriate model. In this
paper, to analyze the observed VAFs data, we employed the feature allocation model. The
model, which describes the distribution of haplotypes within the tumor samples, posits
that because humans are diploids, having more than two haplotypes in the tumor sample is
an evidence of heterogeneity within the sample. According to this model, haplotypes in the
tumor samples are the features and SNVs are the experimental units that select the features.
So given the observed VAFs of the SNVs, estimating the unknown latent features and the
proportions in the samples completely described the inherent heterogeneity in the data.
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To estimate the unknown variables in themodel, we reformulate the latent featuremodel
into state-space model and present an efficient SMC algorithm. The SMC algorithm takes
advantage of the sequential construction of the latent binary matrix, with an unknown
number of columns, using the IBP, and treating other variables in the latent feature model
as the parameters of our newly formed state-space model. This way, we are able to analyze
the VAFs of a single SNV at each iteration. We evaluated our proposed SMC algorithm on
simulated datasets, specifically, by varying the average sequencing depth (r), the number
of tumor samples (S) and the number of SNVs (T ). Also, we analyzed real datasets, i.e.,
the CLL datasets obtained from (Schuh et al., 2012) for three patients. The proposed SMC
algorithm produced satisfying results on all categories of datasets analyzed.

Further, we compared the estimates obtained from the proposed SMC-based, MCMC-
based and MAP-based algorithms. In terms of the accuracy of estimates, the proposed
SMC algorithm yields an improved performance over the two competing algorithms. In
the proposed SMC-based algorithm, it is possible to easily incorporate datasets from newly
sequenced SNVs (when available) so as to refine the existing estimates. However, in the
competing algorithms, to incorporate the new datasets, the entire datasets (old and new)
need be analyzed.

In our experiments, we set N = 500 particles for all the simulated datasets and for the
tumor datasets, we set N = 1,000. Also, we run the SMC algorithm five times for the
simulated data and 10 times for the CLL datasets. Multiple runs allow the VAFs of each
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Table 3 CLL003: estimates of the mutational profiles of haplotypes, Z in the samples.

Gene C1 C2 C3 C4 C5 C6

ADAD1 1 1 1 0 0 0
AMTN 0 1 0 0 0 0
APBB2 0 1 0 0 0 0
ASXL1 1 0 0 1 0 0
ATM 0 1 0 0 1 0
BPIL2 0 1 0 0 0 0
CHRNB2 1 0 0 1 0 0
CHTF8 1 1 1 0 0 0
FAT3 1 0 0 1 0 0
HERC2 1 1 1 0 0 0
IL11RA 1 1 1 0 0 0
MTUS1 0 1 0 0 0 0
MUSK 1 0 0 1 0 0
NPY 1 0 0 1 0 0
NRG3 1 0 0 1 0 0
PLEKHG5 0 1 0 0 0 0
SEMA3E 1 0 0 1 0 0
SF3B1 1 1 1 0 0 0
SHROOM1 1 1 1 0 0 0
SPTAN1 0 1 0 0 0 0

Notes.
The genes where the mutations are found are shown in the first column.

Table 4 CLL077 : estimates of the mutational profiles of haplotypes, Z in the samples.

Gene C1 C2 C3 C4 C5 C6 C7 C8 C9

BCL2L13 1 0 1 1 1 0 1 0 0
COL24A1 0 0 1 0 0 0 0 0 0
DAZAP1 0 0 0 1 1 0 0 1 0
EXOC6B 0 0 0 1 1 0 0 0 1
GHDC 0 0 0 1 1 0 0 0 1
GPR158 1 0 1 1 1 0 0 0 1
HMCN1 0 0 1 0 0 0 0 0 0
KLHDC2 0 0 1 0 0 0 0 0 0
LRRC16A 0 0 0 0 1 0 0 0 0
MAP2K1 0 0 1 0 0 0 0 0 0
NAMPT 1 0 1 1 1 0 1 0 0
NOD1 0 0 1 0 0 0 0 0 0
OCA2 0 0 0 1 1 0 0 0 1
PLA2G16 0 0 0 1 1 0 1 0 0
SAMHD1 0 1 1 1 1 0 1 0 0
SLC12A1 0 1 1 1 1 0 0 0 0
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Table 5 CLL006 : estimates of the mutational profiles of haplotypes, Z in the samples.

Gene C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

ARHGAP29 1 1 1 1 0 1 0 0 0 0
EGFR 1 1 1 1 1 0 0 0 0 0
IRF4 1 0 1 0 0 0 0 0 0 0
KIAA0182 1 1 1 0 1 0 1 0 0 0
KIAA0319L 1 0 1 1 0 0 0 1 0 0
KLHL4 1 1 1 0 1 1 1 1 0 1
MED12 1 1 1 1 1 1 1 0 1 0
PILRB 1 1 1 0 1 0 1 0 0 0
RBPJ 1 0 0 0 0 0 0 0 0 0
SIK1 1 1 1 1 1 0 0 0 0 0
U2AF1 1 1 1 0 1 0 0 0 0 0

Notes.
The genes where the mutations are found are shown in the first column.

SNV to be visited more than once, and we noticed that this, in a way, improves the results
of the SMC algorithm.

Finally, we have demonstrated the efficacy of the SMC algorithm, an algorithm that can
effectively handle any type of probability distribution, nonlinearity and non-stationarity,
particularly in analyzing VAFs of SNVs from tumor samples.
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