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Abstract	22 

Society is increasingly demanding a more sustainable management of agro-ecosystems in a 23 

context of climate change and an ever growing global population. The fate of crop residues is one 24 

of the important management aspects under debate, since it represents an unneglectable quantity 25 

of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue 26 

management is not new, but the need for global conclusion on the impact of crop residue 27 

management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent 28 

with an increasing amount of studies showing a diversity of conclusions. This study specifically 29 

focusses on temperate climate and loamy soil using a 7-year data set.  30 

Between 2008 and 2016, we compared four contrasting residue management strategies differing 31 

in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and 32 

in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm 33 

depth)) in a field experiment. We assessed the impact of the crop residue management on crop 34 

production (three crops – winter wheat, faba bean and maize – cultivated over six cropping 35 

seasons), soil organic carbon content, nitrate (NO3
-), phosphorus (P) and potassium (K) soil 36 

content and uptake by the crops.  37 

The main differences came primarily from the tillage practice and less from the restitution or 38 

removal of residues. All years and crops combined, conventional tillage resulted in a yield 39 

advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower 40 

germination rate observed under reduced tillage, especially during drier years. On average, only 41 

small differences were observed for total organic carbon (TOC) content of the soil, but reduced 42 

tillage resulted in a very clear stratification of TOC and also of P and K content as compared to 43 

conventional tillage. We observed no effect of residue management on the NO3
- content, since 44 
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the effect of fertilization dominated the effect of residue management. To confirm the results and 54 

enhance early tendencies, we believe that the experiment should be followed up in the future to 55 

observe whether more consistent changes in the whole agro-ecosystem functioning are present on 56 

the long term when managing residues with contrasted strategies.  57 

1. Introduction	58 

Once a crop is harvested, farmers have to decide what to do with the remaining crop residue (the 59 

above ground biomass that is cut but not harvested). Residues can be either exported and 60 

valorised as co-products (e.g. animal fodder, biogas production,…), or restored to the soil as such 61 

or after being burnt. Returning straw directly to the field has been promoted as a source of 62 

organic matter and a way to increase soil water holding capacity and its overall quality. As such, 63 

it is thought to help maintain, or even to some extent restore, soil fertility (Lal	et	al.,	2004). If the 64 

residues are returned to the soil, farmers have to choose how to manage them using either 65 

conventional tillage or alternatives such as reduced tillage. We define conventional tillage as a 66 

tillage based on mouldboard ploughing which is commonly used in temperate regions and 67 

reduced tillage as a tillage with reduced intensity and/or depth (Hiel et al., 2016; the practical 68 

implementation of these techniques are specified in Table S1).  69 

The precise impact of the restitution (or not) of residues and of the choice of tillage system to 70 

apply to the soil-plant system remains unclear and seems to be highly dependent on the pedo-71 

climatic conditions (soil structure, moisture, macro fauna, etc.) (Powlson	 et	 al.,	 2011). For 72 

instance, soil organic carbon (SOC) generally seems to slightly increase if residues are returned 73 

to the soil, particularly in the long term (Autret	et	al.,	2016;	Chenu	et	al.,	2014;	Merante	et	al.,	74 

2017). However, the actual quantification of straw incorporation effect on soil organic carbon 75 
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stocks shows conflicting results, as synthetized by Poeplau et al., (2015), with studies reporting 86 

SOC losses, SOC stabilization or even non-significant or negligible impact. The effect of tillage 87 

on SOC content is less clear. While some studies show an increase of SOC with reduced or no-88 

tillage (Arrouays	 et	 al.,	 2002;	Garcia-Franco	 et	 al.,	 2015;	 Smith,	 2007), others report no effect 89 

(Dick,	1983;	Dikgwatlhe	et	al.,	2014;	Dolan	et	al.,	2006).  90 

As Hiel et al., (2016) show in their review, the impact of crop residue management on crop 91 

performance is also contradictory in the existing literature. The presence of residues seems to be 92 

detrimental to crop germination as they can form a physical obstacle for seedlings (Arvidsson	et	93 

al.,	2014), can create a cold and humid micro-climate around the seed (Soane	et	al.,	2012) and 94 

provide a favourable habitat for slugs (Christian	and	Miller,	1986) and plant pathogens (Arvidsson	95 

et	 al.,	 2014). In general, the literature show that weather conditions are the main factor 96 

influencing crop yields (Dam	 et	 al.,	 2005;	 Linden	 et	 al.,	 2000;	 Soon	 and	 Lupwayi,	 2012), and 97 

sometimes an interacting explanatory factor is the residue management (Riley,	 2014). Residue 98 

retention tends to induce lower yields under wet weather conditions (effect on diseases and pests) 99 

(Riley,	2014) and higher yields in dry conditions (effect on water retention capacity) (Linden	et	100 

al.,	2000;	Riley,	2014). There are also several studies reporting no effect on crop yields (Brennan	101 

et	al.,	2014;	Dam	et	al.,	2005;	Riley,	2014;	Soon	and	Lupwayi,	2012). Some specific results show 102 

that it is important to have the information on the entire management type (i.e. residue in or out, 103 

type of tillage, tillage depth and timing,…) in order to be able to assess the impact of the 104 

management on crop performance. Van	den	Putte	et	al.	(2010) showed for example that residue 105 

retention of winter cereals and maize, combined with reduced tillage reduces yields in Europe. 106 
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On the other hand, Blanco-Canqui and Lal, (2007) have shown that residue removal can impede 123 

crop yield.  124 

The literature on the effect of residue management on nitrogen (N) or phosphorus (P) uptake by 125 

plant is equally dispersed with no (N: Brennan	et	al.,	2014); positive (N: Malhi	et	al.,	2011;	P:	126 

Noack et al., 2014) or negative (N: Soon	 and	 Lupwayi,	 2012;	 P:	 Damon	 et	 al.,	 2014) effects 127 

reported by different authors. These differences are generally attributed to differences in soil 128 

texture and/or initial nutrient status or residue quality (Chen	et	al.,	2014; Kumar and Goh, 2002).  129 

Interactions between crop residue management and the soil-water-plant system are complex and 130 

inherently depend on the pedo-climatic conditions. Local assessment and system approach are 131 

therefore necessary to come to relevant guidelines for residue management under specific pedo-132 

climatic conditions. The objective of our study is therefore to determine the effects of contrasting 133 

crop residue management strategies on crop production and components of the soil fertility, over 134 

a period of several years. Regarding crop production, we studied how residues management 135 

strategy impacts on germination rate, biomass production and yield elaboration, along with N, P 136 

and K exportation. The soil fertility components that were dynamically followed are SOC, N, P 137 

and K content and their repartition within the soil profile. The experiment was conducted in the 138 

loam belt under temperate climatic conditions, taking into account common crop rotations and 139 

local farming practices.  140 

2. Materials	and	methods	141 

2.1. Site	description		142 
The field experiment (50°33'49.6"N, 4°42'45.0"E) was established on 1.7ha of the experimental 143 

farm of Gembloux Agro-Bio Tech, University of Liège, Belgium in 2008 and yield 144 
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measurements started in 2010. The soil is a Cutanic Luvisol (IUSS	Working	Group	WRB,	2014). . 152 

According to the Walloon soil map (REF geoportail de wallonie), it is a silty soil with favourable 153 

natural drainage. The texture is as follows : silt content of 70-80 %, clay content of 18-22 % and 154 

sand content 5-10 %. A characterization of the spatial variability of certain chemical parameters 155 

was carried out in 2011 (maps available in Fig. S1). Descriptive statistics are presented in Table 156 

1. 157 

The climate is temperate (Cfb in Köppen–Geiger classification (Peel	et	al.,	2007)) with 819 mm 158 

average annual rain and 9.8 °C annual average temperature. Weather data were measured in a 159 

federal weather station located in Ernage (Belgium's Royal Meteorological Institute), at 2.4 km 160 

from field site. An overview of monthly temperature and rainfall during the experimental period 161 

is shown in Figs S2 and S3. 162 

2.2. Experimental	design	and	treatments	163 
The field is designed as a Latin square disposal with four replications. Each plot is 15 m wide and 164 

40 m long. Crop residue management is defined as the combination of two practices: (i) the fate 165 

of the crop residue and (ii) the type of tillage. Firstly the residue fate can be restitution (IN) or 166 

exportation (OUT). It has to be noted that stubble and chaff are always left on the fields, even if 167 

the rest of the residue is exported. Secondly, we considered two tillage types (see Table 2): 168 

conventional (CT, 25 cm depth) or reduced (RT, 7-10 cm depth). The different combinations of 169 

these two aspects of residue management resulted in four treatments: CT-IN, CT-OUT, RT-IN, 170 

RT-OUT. 171 

The crop rotation during the experiment was: rapeseed (Brassica) in 2008-09, three consecutive 172 

years of winter wheat (Triticum aestivum) in 2009-10, 2010-11 and 2011-12, mustard (Sinapis 173 

alba) cover crop in 2012-13, faba bean (Vicia Faba) in 2013, winter wheat in 2014, oats (Avena 174 
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sativa) and peas (Pisum sativum) mix as cover crop in 2014-15, and finally maize (Zea mays) in 181 

2015. Sowing densities are 300 kernels/m² for winter wheat, 50 kernels/m² for faba bean, and 13 182 

kernels/m² for maize. Sowing process is detailed for each crop in Table S1. 183 

N fertilisation (liquid N, UAN at 39%) followed the regional standards depending on the type of 184 

crop. Rapeseed received two applications (at stem elongation stage: 31 and 32-50 on BBCH scale 185 

(Meier	 et	 al.,	 2009)) with a total of 160 kg of N/ha. We provided three applications to winter 186 

wheat (at tillering, stem elongation and flag leaf stage (26, 30 and 37-39 on BBCH scale)) with a 187 

total of 180 kg of N/ha. Faba bean was not fertilised and maize crop was fertilised by 120 kg of 188 

N/ha before sowing. There was no external addition of P or K. Crop protection measures 189 

corresponded to the regional standards. 190 

The detailed crop protocols (crop management, crop harvest, residue exportation, soil tillage, 191 

fertilization and crop protection treatments) are available in Table S1.  192 

2.3. Crop	sampling	and	analyses	193 
We monitored the germination rate and growth dynamics during the season with an adapted 194 

protocol for each crop type (Table 3). The determination of the germination rate consists in 195 

counting of the number of seedlings on a definite area (Table 3). To quantify above-ground 196 

biomass, plants were collected (according to crop protocol in Table 3) and their different parts 197 

(shoot and ears, pods or cobs) were separated, counted and oven-dried at 60 °C for 72 h. Grain 198 

yield was assessed with an experimental combine adapted to the crop by one passage per plot (40 199 

m long on a width dependent on the combine; see specific crop protocol in Table 3). To quantify 200 

the amount of remaining crop residues on the field, residues (i.e. OUT plots: stubble and chaff, 201 

IN plots: all residue) were collected over a surface of 0.5 m wide and 2 m long immediately after 202 

harvest, dried, weighed. These samples were also used to quantify the NPK content of the 203 
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remaining crop residues. We took composite grain samples (grain of maize and wheat, faba been 217 

seeds) of 1kg from the harvest hopper (1 sample per plot) for quantification of NPK grain 218 

content. Both grains and residues were crushed before analysis. N content was measured using 219 

the Kjeldahl method (Bradstreet,	 1965). Phosphate and potassium (K) levels in plants were 220 

measured using a modified protocol of Zasoski	and	Burau	(1977). Samples were first treated by a 221 

concentrated acid mix of HNO3 and HClO4 (1:1) (15 ml per g of sample). K content was 222 

measured by a flame atomic absorption spectrometric method (Spectrometer Varian 220). P was 223 

measured by colourimetry with molybdate and ammonium vanadate at 430 nm (Nanocolor 224 

UV/VIS (Macherey-Nagel)). NPK content [kg/ha] were calculated by multiplying the nutrient 225 

content [%] by the biomass of the residue or grain [kg/ha]. 226 

2.4. Soil	sampling	and	analyses	227 
Twice a year around April and October, we took ten soil subsamples (with a gouge auger of 2 cm 228 

diameter) to form a composite sample per plot at 0-10 cm, 10-20 cm and 20-30 cm depth. The 229 

fall sampling was usually either made after spring crop harvest and before winter wheat sowing 230 

or after winter wheat harvest and cover crop sowing. The spring sampling was made when 231 

climatic conditions were again favourable for winter wheat growth or after spring crop sowing. 232 

TOC was determined on a 1g of dry soil (ground at 200µm) by the Walkley-Black method 233 

(Blakemore,	1972): oxidation with K2Cr2O7 and H2SO4; titration of the excess of K2Cr2O7 with 234 

Mohr Salt ((NH4)2Fe(SO4)2·6H2O). Available soil nutrients were measured by stirring a 10 g 235 

sample of soil (air-dried and sieved at 2 mm) for 30 min in 50 ml of solution (ammonium acetate 236 

0.5 M and EDTA 0.02 M at pH 4.65 (Lakanen	E.	and	Erviö	R.,	1971)). After filtration the cations 237 

were measured by atomic emission for K and P was determined by colourimetry (colour reaction 238 

of Murphy	and	Riley	(1962), Nanocolor UV/VIS (Macherey-Nagel)). 239 
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In addition to the two overall soil sampling campaigns per growing season, soil nitrate content 251 

was measured more frequently to catch the dynamic of uptake during the growing phase of the 252 

main crops. Composite humid soil samples based on eight subsamples (sampled with gouge 253 

auger of 2 cm diameter) were used per plot at three depths: 0-30 cm, 30-60 cm and 60-90 cm. We 254 

used KCl extraction and a colourimetry method of reduction of nitrate to nitrite (using Cadmium 255 

or Hydrazine) with a determination of nitrite ions by the modified Griess-Ilosvay reaction 256 

(Bremner,	1965;	Guiot	et	al.,	1992).  257 

2.5. Statistical	analyses	258 
Statistical analyses were performed with R package (R	Core	Team,	2015). The statistical analyses 259 

were systematically applied to assess the effect of crop residue management on crop and soil 260 

measurements, as follows. First, a 2-way ANOVA was performed, including the soil tillage and 261 

residue fate as fixed factors (with interaction) and the plot position (line and columns of the Latin 262 

square) as random factors. In case no interaction was highlighted between the fixed factors, we 263 

compared on the one hand, IN and OUT treatments, and, on the other hand, RT and CT 264 

treatments. These comparisons were then immediately made on the basis of the results of the 2-265 

way ANOVA test. Contrarily, when an interaction between the fixed factors was significant, the 266 

four treatments (CT-IN, CT-OUT, RT-IN and RT-OUT) were intercompared and ranked using a 267 

post-hoc test (Student-Newman-Keuls - SNK). Analyses of variance (2-way ANOVA) and SNK 268 

tests were performed with the agricolae package (Mendiburu	and	Simon,	2015). The conditions 269 

of application of the ANOVA test (normality of the distribution and homoscedasticity) were 270 

systematically checked on the residuals of the ANOVA, using respectively a Shapiro-Wilk test 271 

and a Bartlett test. 272 
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To study the evolution of soil parameters over the years, a linear mixed effects model was fitted 301 

using the lme4 package (Bates	et	al.,	2014). To evaluate possible difference between treatments 302 

on the entire profile or per depth, the model was used with soil tillage and residue fate and their 303 

interaction as fixed factors, while dates and plots were random effects. To estimate whether 304 

stratification occurred in the soil parameters per crop residue management treatment, the mixed 305 

effects model was used with the depths as a fixed factor and plots and dates as random effects. A 306 

student’s T-test was used to test for each treatment whether the soil factors of the last sampling 307 

year and the first sampling year were significantly different. 308 

3. Results	309 

3.1.1. 	310 
 311 

3.1.2. 	312 
 313 

3.1.3. 	314 

3.2. Management	of		crop	residues	315 
After seven crop rotations, the total amount of crop residue returned to the soil was on average 316 

52% higher (i.e. + 28.8 t/ha) for IN plots (55.7 t/ha) compared to OUT plots (26.8 t/ha) (Table 4 317 

and Table S2 for ANOVA summary). This was correlated with an increase in the amount of 318 

nutrients in the residues (Tables S3 and S4) that were further restored to the soil.  319 

While the stock (expressed in [kg/ha];Table S3) of nutrients returned were greater in IN plots, the 320 

OUT plots were characterised by greater content (expressed in [g/kg]; Table S5) of N (3 years out 321 

of 5) and P (2 years out of 5), due to a larger proportion of chaff in the remaining residues. The 322 

trend was the opposite for K (2 years out of 5) (Tables S5 and S6).  323 
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Yearly grain yields were in general not influenced by residue fate or 334 
soil tillage, except for a negative effect for reduced tillage for winter 335 
wheat cultivated in 2010-11 (–9%) and maize in 2015 (–4%) and 336 
residue incorporation for winter wheat in 2010-11 (–10%, year 337 
characterised by a spring drought, Appendix A).338 
There was no significant effect on grain quality, except for P in 339 
winter wheat grains in 2010-11 and a slightly lower K content under 340 
conventional tillage in 2 years out of 5 (data not shown, available at 341 
https://doi.org/10.6084/m9.figshare.5442289). 342 

Movido(s) para baixo [2]: , we see that residue fate and tillage 343 
type had an interacting effect on the global relative germination rate 344 
which is the average of all germination rates of all crops considered 345 
for a specific treatment, normalised to the sowing density. The 346 
germination rate in RT-IN was significantly lower than RT-OUT, 347 
itself lower than CT-IN and CT-OUT348 
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The tillage treatment had no significant impact on the total amount of crop residues or on the 425 

stock of nutrients (Table 4 and Tables S2 to S6).  426 

Table 5 puts the emphasis on the different amounts of each nutrient (NPK) returned by the 427 

different crops through their residues: e.g. while maize and faba bean brought higher N than 428 

wheat, maize residues alone provided the highest quantity of K to the soil.  429 

3.3. Soil	results	430 

3.3.1. Total	organic	carbon	431 
The initial TOC content, over the entire arable depth (0-30 cm) was 11.7 g/kg. After 8 years, the 432 

different treatments (tillage or residue management) did not have a significant effect on the 433 

overall TOC content evolution (lmer: on tillage F = 1.62, p = 0.22 ; on residue treatments F = 434 

0.58, p = 0.46), although significant differences were observed during some specific years 435 

(Figure 1). The last measurement, in spring 2016, showed higher TOC under RT-IN compared to 436 

CT-OUT and RT-OUT. 437 

We observed a clear stratification of the TOC content between the different soil depths (0-10, 10-438 

20 and 20-30 cm depths) in the reduced tillage treatments (lmer F = 236.55, p < 2.2e-16; Figure 1 439 

B-D). More specifically, the TOC content increased over time in the 0-10 cm soil profile and, 440 

after 3.5 years, was systematically higher in RT than in CT (with the exception of autumn 2014). 441 

At that depth, higher TOC contents were observed in RT-IN than in RT-OUT. In the 10-20 cm 442 

soil layer, there were no differences between CT and RT. In the 20-30 cm soil layer, RT resulted 443 

in lower TOC content than CT from the third year of the trial onwards. 444 

3.3.2. Soil	nutrients	445 
Nitrate. Averaged over the soil profile and over time, we did not observe differences in nitrate 446 

content between the different treatments, although some temporary differences were visible 447 
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(Figure 2). The levels of nitrate within the 0 to 90 cm soil layer were highly variable over time 471 

and dominated by external inputs of fertilizer (black dots on Figure 2). Residue fate had no 472 

impact on the NO3
– stock in any of the soil layers under any crop.  473 

Phosphorus. Over the course of the experiment, P content in soil significantly decreased in the 0-474 

30 cm soil layer for all crop residue treatments, due to the absence of fertilisation during the 475 

course of the experiment (Fig. S4). In addition, there was a stratification of P under RT (RT-OUT 476 

from autumn 2012 onwards (lmer F = 84.58, p < 2.2e–16) and RT-IN from spring 2014 onwards 477 

(lmer F = 34.06, p = 3.6e–12)). In the top layer (0-10 cm), these treatments showed a higher 478 

decrease in P content than deeper in the profile. Our data do not suggest any significant impact of 479 

crop residue on P stocks in the soil (lmer F = 0.05, p = 0.83).  480 

Potassium. As for P, K content in soil decreased from the beginning of the trial, as no K 481 

fertilisation was applied (Fig. S4). No particular effects of the different treatments were observed 482 

on the total amount of K (lmer F = 0.06, p = 0.81), except for the last 2 years of the experiment 483 

(2015-2016), where IN plots showed a higher K content. Also for K a stratification was visible 484 

(lmer F = 97.91, p <2. 2e–16) with decreasing concentrations from top to bottom.  485 

3.4. Crop	results	486 

3.4.1. Germination	rate		487 
The presence or absence of extra residues did not affect germination rate, except for winter wheat 488 

in 2013-14 where we observed a lower germination rate in the RT-IN treatment. Tillage type, 489 

however, did result in differences in germination rate. Table 6 (and ANOVA summary in Table 490 

S7) shows that three crops (out of six) had a higher germination rate in CT as compared to RT 491 

(winter wheat (2010-11), faba bean (2013) and winter wheat (2013-14)).  492 
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In Table 6, we see that residue fate and tillage type had an interacting effect on the global relative 499 

germination rate which is the average of all germination rates of all crops considered for a 500 

specific treatment, normalised to the sowing density. The germination rate in RT-IN was 501 

significantly lower than RT-OUT, itself lower than CT-IN and CT-OUT 502 

3.4.2. Dynamic	crop	growth	503 
When looking at the dynamics of crop growth, except for two sampling dates on ears’ growth and 504 

two sampling dates on shoot’s growth, no interactions were found between tillage and residue 505 

management treatment. Observations and results of the ANOVA and SNK analysis are reported 506 

in the supplementary material separately for ears and shoot growth (Tables S8 to S11). The 507 

cumulated total produced biomass is presented in Fig. S5 (ANOVA summary in Table S12) 508 

under graphical representation. It was therefore decided to analyse the impacts of tillage and 509 

residue management individually. 510 

Differences between residues management treatments (IN vs. OUT) were observed for crop 511 

development. Incorporation of residues (IN plots) negatively impacted the dynamic of ears and 512 

shoots during the first two crop seasons (winter wheat seasons 2009-10 and 2010-11). These 513 

differences appeared in both cases after the ear emergence stage. These were more pronounced 514 

for the shoot than the ear biomasses. In 2010, with weather conditions close to historical means, 515 

lower biomass under IN treatments decreased over the crop growth period, but no negative 516 

impact on yields were observed when residues were returned to the soil. In 2011, characterised by 517 

a spring drought, the exportation of residue (OUT) was favourable to the shoot development and 518 

to the early growth of ears. However, for this season, the final yield was not impacted by the 519 

residue management treatment (IN vs. OUT), as detailed in the next section. Finally, one could 520 

also notice that at the end of the 2014 crop season, while no differences were observed all along 521 
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Eliminado: out of 36 sampling, 522 

Eliminado: ls523 

Eliminado: s524 

Movido(s) (inserção) [3]



 

14 
 

the season, a statistical difference was reported on the last sampling date in favour of IN plots. 525 

For all other sampling dates, no statistical differences were reported.  526 

Reduced tillage mostly negatively impacted shoot crop development of winter wheat (2010-11), 527 

faba bean (2013) and maize (2015) (Tables S8 and S9). This was probably due, in part, to the 528 

lower germination rate in RT plots for the winter wheat crop (2010-11) and faba bean (2013) (cfr 529 

section 3.3.3). When computing the differences between tillage treatments (Figure 3 and Table 530 

S12 for ANOVA summary), it was observed that the gap between treatments tended to decrease 531 

for the different crops as they developed through the season. For faba bean no differences were 532 

finally observed between the final biomass (Figure 3), the pods (Table S10 and S11) and the seed 533 

yield (Table 7 – cfr section 3.3.3), while statistical differences between RT and CT remained for 534 

maize shoot, cobs and grain yield cultivated in 2015 (Figure 3, Table S10 and S11, and Table 7 – 535 

cfr section 3.3.4). 536 

3.4.3. Crop	yield	and	quality	537 
Yearly grain yields were in general not influenced by residue fate or soil tillage (Table 7 and 538 

Table S13 for ANOVA summary), except for a negative effect for reduced tillage for winter 539 

wheat cultivated in 2010-11 (–9%) and maize in 2015 (–4%) and residue incorporation for winter 540 

wheat in 2010-11 (–10%, year characterised by a spring drought, Figs. S2 and S3). 541 

The cumulative grain yield since 2010 was significantly lower under reduced compared to 542 

conventional tillage (–3.4%, Table 7). No effect of residue fate was observed. 543 

There was no significant effect of the treatments on NPK content of the harvested grain or seeds 544 

(Table S14), except for marginally higher P content in winter wheat (in 2010-11) grains in IN 545 

plots (P-value: 0.03) and a slightly lower K content under conventional tillage in 2 years out of 5 546 

(Winter wheat in 2011-12, p-value: 0.01 ; Maize in 2015, p-value: 0.03).  547 
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3.4.4. Link	between	germination,	development	and	yield	550 
No correlation was seen between germination rate and shoot dry weight except for faba bean 551 

(2013) and a slight effect for winter wheat (2010-11) (Figure 4A). Grain yield was only 552 

positively correlated to germination rate for winter wheat (2010-11) (Figure 4B). Similarly, grain 553 

yield was slightly correlated to shoot dry weight for that year only (Figure 4C). 554 

3.5. Integrated	approach	between	crop	production	and	soil	chemistry	555 

A principal component analysis was performed to study the relationship between soil and plant 556 

parameters (Figure 5). Plant and crop residue data are the accumulation (Residue biomass, shoot 557 

biomass, yield, NPK stock) or mean (germination rate, harvest index (HI)) of the all crop data. 558 

We used soil data from the last spring measurement in 2016.  559 

The two principal components allowed to explain respectively 35 % and 25% of the variance. 560 

Treatments were easily differentiated by the two principal components (Figure 5-A). It appeared 561 

that crop productivity (yield, shoot and total biomass) and quality (Kgrain, Pgrain and Ngrain) were 562 

favoured by conventional tillage, as illustrated by the discrimination of treatments along the 563 

second component (Y-Axis) of the PCA. Similarly, it seemed that the soil parameters (TOC, Ksoil 564 

and to a lower extent Psoil) were more positively influenced by the crop residue retention (Figure 565 

5-B), as illustrated by the discrimination of treatments along the first component (X-Axis) of the 566 

PCA.   567 

4. Discussion		568 

4.1. Effect	of	tillage	and	crop	residue	treatments	on	crop	production	569 
Overall, tillage influenced crop production more strongly than import or export of residues. The 570 

strongest effect was seen in terms of germination rate and was even stronger for residue 571 

incorporation treatments. RT resulted consistently in lower germination rates as also shown by 572 

Movido(s) (inserção) [6]
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Brennan et al. (2014). Germination rate is strongly affected by seedbed soil moisture, soil 576 

structure and contact around the seed and soil temperature (Guérif et al., 2001). It is 577 

acknowledged that crop residues can be a physical obstacle to crop emergence and a source of 578 

phytotoxicity for crop seedlings (Morris	et	al.,	2010). Moreover, the presence of crop residues 579 

around seeds can impede adequate seed-to-soil contact needed for good crop emergence by 580 

increasing the macroporosity which is known to decrease the degree of contact (Brown	et	al.,	581 

1996). Nevertheless, the differences due to germination rate have the tendency to disappear at 582 

later growth stages if no climatic extremes occur, since the plants generally compensate a lower 583 

density with a better growth under favourable growth conditions as also observed by Dam	et	al.	584 

(2005). 585 

Several studies report higher crop production levels under CT under temperate climate, when 586 

compared to RT (Brennan	et	al.,	2014;	Pittelkow	et	al.,	2014). However, the difference between 587 

both systems remained small in the presented experiment, but confirmed, among else, by the 588 

PCA analysis. Our results went in the direction of the conclusion of Van den Putte et al. (2010) 589 

study of conservation agriculture in Europe showing a yield decline of 4.5% in RT systems as 590 

compared to conventional systems. When confronting the crop results to the meteorological 591 

conditions (Figure 3, Table 7 and Figs. S2 and S3) we believe that the CT production systems 592 

might be less sensitive to inter-annual fluctuations of climatic conditions over different years 593 

compared to the RT systems. Also, Brennan et al. (2014) highlighted that the residue fate was 594 

less important than the tillage type for crop performance. Residue fate has a stronger effect on 595 

crop production under drier climates and water limited conditions (Linden	et	al.,	2000;	Pittelkow	596 

et	al.,	2014). 597 
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The differences observed for germination rates or during crop growth seem to have little 609 

influence on crop yield. A similar lack of correlation between shoot biomass and grain yield, as 610 

observed most strongly for faba bean and wheat (2014) in our study, has previously been 611 

observed for legume crops (Araújo	and	Teixeira,	2008). For winter wheat, it is likely that the 612 

ability to produce more tillers at lower densities explains the recovery from lower germination 613 

rates, as reported in the literature (Gooding	et	al.,	2002;	Whaley	et	al.,	2000). Moreover, it is 614 

known that the flag leaf and ears are the main photosynthetic organs contributing to grain filling 615 

(Sanchez-Bragado	et	al.,	2014) which is an additional explanation why the entire shoot biomass 616 

was not correlated to yield, especially during years with climate conditions close to the historical 617 

means (i.e. winter 2009-10, 2011-12 and 2013-14). Winter wheat (2010-11) and maize (2015) 618 

were the only crops with observable differences between treatments at the end of crop 619 

development. We hypothesize that the spring drought during winter wheat development in 2010-620 

11 impeded its ability to recover its potential yield as in the other years.  621 

Except for the winter wheat 2010-11, our results did not show an increase in N grain stock. This 622 

observation is in agreement with Brennan et al. (2014), but opposed to the results reported by 623 

Malhi	et	al.	(2011) or Soon and Lupwayi (2012). The absence of crop residue treatment effects on 624 

P grain content could be also due to the poor P content of crop residues. Regarding the small 625 

differences observed in grain K content, Zörb	et	al.	(2014) mentioned that K content in grain is 626 

not correlated to K supply and grains have relatively low K contents.  627 

4.2. Effect	of	tillage	and	crop	residue	treatments	on	soil	chemistry	628 
 629 

Over the seven years of this experiment, the effects of crop residue management on soil fertility 630 

parameters showed few statistical differences in the early time of the trial. However, the results 631 
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were slowly magnifying, up to the point where differences became more systematically 640 

significant, with clear stratification occurring over the different soil layer of the ploughing depth. 641 

Furthermore, our results (PCA analysis) confirmed a clear link between soil TOC, K content, and 642 

to a lower extent P content, with residues management treatment (IN vs. OUT).  643 

Even though the literature shows that residue incorporation could have a positive effect on the 644 

stock of SOC (Autret	et	al.,	2016;	Chenu	C.	et	al.,	2014;	Merante	et	al.,	2017), we only observed 645 

small effects on the TOC content. It should be noted that we cultivated wheat for 4 out of 7 years 646 

and therefore our residues contained a large proportion of straw, which has already been shown 647 

to be inefficient to increase TOC (Lemke	et	al.,	2010;	Poeplau	et	al.,	2015). Just like previous 648 

studies (Angers	et	al.,	1997;	Dimassi	et	al.,	2013;	Dikgwatlhe	et	al.,	2014;	Dolan	et	al.,	2006;	649 

Gadermaier	et	al.,	2012;	Riley,	2014), we have shown that reduced tillage provoked a 650 

stratification of TOC. The absence of differences between TOC(CT-IN) and TOC(CT-OUT) can 651 

be explained by a dilution effect (accumulation of organic matter in the top that is mixed through 652 

ploughing) as well as by a potentially faster degradation rate, as reported by Lal	et	al.	(2004). 653 

The absence of any overall effect of residue treatment on the nitrate content was likely due to a 654 

combination of factors. Firstly, the proportionally high amount of mineral N applied as fertiliser -655 

which respects the common practice in Belgium - reduced the effect of N returned by the 656 

residues. Secondly, the straw incorporation effect might have had a short-term impact on soil 657 

nitrate (Van	Den	Bossche	et	al.,	2009) rather than long term impact (Brennan	et	al.,	2014). Such a 658 

lack of impact was also reported by Stenberg	et	al.	(1999). 659 

The absence of residue treatment effects on P content in soil can be explained by the low P 660 

content of crop residues. Damon et al. (2014) have shown that P availability is only increased for 661 
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large amounts of residues with high P content. A P content threshold of 2 to 3 mg/g of residue is 672 

generally considered as the limit below which no impact should be expected. Under this value, 673 

immobilisation by microbial biomass occurs and P mineralization is hampered (Damon et al. 674 

2014). In our study, P content was 0.9 mg/g for wheat and maize residues and 1.6 mg/g for faba 675 

bean crop, which means that we were consistently and considerably below this theoretical 676 

threshold for P mineralization.  677 

The decrease in K content was due to the lack of fertilisation during the trial (no dedicated K 678 

fertilisation or manure application was intentionally made between 2008 and 2016) but the slope 679 

is slight. Compared to P content, K content of residues was much higher. Furthermore, as the 680 

mineralisation process did not occur, K might have been released in soil solution as soon as the 681 

plant cells were dead (Schvartz et al., 2005). These combined effects probably explain the 682 

slighter slope observed on the dynamics of K. The stratification observed in P and K content with 683 

reduced tillage was also reported by Riley	(2014).  684 

5. Conclusion	685 

When looking within the available choices among the soil and crop management techniques, crop 686 

production remains one of the most important drivers of farmer’s decisions. However, the impact 687 

of residue management and tillage treatment on crop production, and also on soil fertility are 688 

known to be highly dependent on the local pedo-climatic conditions, and the literature usually 689 

focus on one of the aspects (soil or crop) and barely on multiple aspects at the same time.  690 

This study aimed at analysing the impacts of crop residue management techniques on different 691 

soil and crop parameters together, as interacting components of the agro-ecosystem, and as a 692 

response to the local pedo-climatic conditions. We found out that, at the annual scale, crop 693 
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production was generally not significantly impacted by the different residue management 721 

strategies. However, over the duration of the trial, while no effect of residue fate was reported (IN 722 

vs. OUT), the cumulative grain yield was found to be significantly lower (–3.4%) under reduced 723 

tillage (RT) compared to conventional tillage (CT). 724 

In this seven-year experiment, small but gradually increasing differences between the different 725 

crop residue management strategies were observed. After a few years, the TOC content in the soil 726 

was higher only where the residues were incorporated and the tillage reduced. Overall, a 727 

stratification of organic matter and nutrients was observed under reduced tillage, i.e. for TOC, P 728 

and K. Crops grown on reduced tillage plots had a lower germination rate in some years, but in 729 

two years out of three crops overcame this germination gap through compensation mechanisms 730 

and finally yields were statistically equivalent.  731 

Soil processes in general, and carbon dynamics in particular, are slow processes. Our study 732 

reflects a system currently in transition, which will likely continue to evolve over the next 733 

decade. Therefore, it will be of uttermost importance to continue the monitoring of this 734 

experimental site in order to understand the long-term impact of residue management on crop 735 

performance and soil quality and health. 736 

Finally, when choosing among soil and crop management techniques (among which the fate of 737 

residues and the intensity of tillage that were analysed in this study are few examples), other 738 

factors than the sole crop productivity should be included in the farmer’s decision process, such 739 

as fuel consumption, required working hours, greenhouse gas emissions (Lognoul	et	al.,	2017	-	740 

analysis	conducted	on	the	same	experiment), soil fauna (Degrune,	2017-	analysis	conducted	on	741 

the	same	experiment), long-term soil quality and health. 742 
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 Crop	development	
 Differences	between	treatments	were	observed	for	crop	development.	
Incorporation	of	residues	(IN	plots)	negatively	impacted	the	first	two	rotations	
(winter	wheat	seasons	2009-10	and	2010-11).	These	differences	appeared	in	
both	cases	after	the	ear	emergence	stage	(BBCH59,	(JKI,	2010)).	

1.1.1. 	
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 	These	were	more	pronounced	for	the	shoot	than	the	ear	biomasses.	In	
2010,	with	weather	conditions	close	to	historical	means,	lower	biomass	under	
IN	treatments	decreased	over	the	crop	growth	period		

1.1.2. 	
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and no negative impact of residues on yields were observed. In 2011, characterised by a 

spring drought, the combination of residue exportation and conventional tillage (CT-

OUT) was favourable to the crop development.  

Reduced tillage negatively impacted crop development of winter wheat (2010-11), faba 

bean (2013) and maize (2015) (Figure 1). This was probably due, in part, to the lower 

germination rate in RT plots for the winter wheat crop (2010-11) and faba bean (2013). 

However, the gap between treatments decreased for the different crops as they 

developed through the season. For faba bean no differences were observed between the 

final biomass and the harvested yield (Table 5), while statistical differences between RT 

and CT remained for maize cultivated in 2015 (Figure 1 and Table 5). 
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Yearly grain yields were in general not influenced by residue fate or soil tillage, except 

for a negative effect for reduced tillage for winter wheat cultivated in 2010-11 (–9%) 

and maize in 2015 (–4%) and residue incorporation for winter wheat in 2010-11 (–10%, 

year characterised by a spring drought, Appendix A). 



The cumulative grain yield since 2010 was significantly lower under reduced compared 

to conventional tillage (–3.4%, Table 5 
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There was no significant effect on grain quality, except for P in winter wheat grains in 

2010-11 and a slightly lower K content under conventional tillage in 2 years out of 5 

(data not shown, available at https://doi.org/10.6084/m9.figshare.5442289).  
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No correlation could be seen between germination rate and shoot dry weight produced 

except for faba bean (2013) and a slight effect for winter wheat (2010-11) (Figure 2A). 

Grain yield was only positively correlated to germination rate for winter wheat (2010-

11) (Figure 2B). Similarly, grain yield was slightly correlated to shoot dry weight for 

that year only (Figure 2C). 

 Crop	residues	
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Crop production, which is an important driver of farmer’s decisions, was not 

dramatically impacted by the different residue management strategies. When choosing a 

crop residue management under temperate climate, other factors than yield should 

determine the decision taken by a farmer, such as fuel consumption, working hours, 

greenhouse gas (GHG) emissions (Lognoul	et	al.,	2017), soil fauna (Degrune,	2017), 

long-term soil quality and health (Parvin et al., in prep.). 

The impact of residue fate (IN and OUT) and tillage treatment (conventional and 

reduced) on crop production and soil fertility are known to be highly dependent on the 

pedo-climatic conditions.  

 

 


