1	Impact of crop residue management on crop production and soil	
2	<u>chemistry</u> after seven years of crop rotation in temperate climate, loamy	Eliminado: fertility
3	soils.	
4		
5	Marie-Pierre Hiel ^a *, Sophie Barbieux ^a , Jérôme Pierreux ^b , Claire Olivier ^c , Guillaume Lobet ^{de} ,	
6	Christian Roisin ^c , Sarah Garré ^a , Gilles Colinet ^f , Bernard Bodson ^b , Benjamin Dumont ^b .	
7	(a) TERRA Research & Teaching Center – AgricultureIsLife, Gembloux Agro-Bio Tech,	
8	University of Liège, Gembloux, Belgium.	
9	(b) AGROBIOCHEM, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.	
10	(c) Unit Soil Fertility and Water Protection, Dpt Agriculture and Natural Environment,	
11	Walloon Agricultural Research Center, Gembloux, Belgium.	
12	(d) Agrosphere, IBG3, Forschungszentrum Jülich, Jülich, Germany.	
13	(e) Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.	
14	(f) BIOSE, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.	
15		
16	Corresponding author:	
17	Benjamin Dumont	Eliminado: Marie-Pierre Hiel
18	Email address: Benjamin.dumont@uliege.be	Eliminado: mariepierrehiel@gmail.com

22	Abstract		
23	Society is increasingly demanding a more sustainable management of agro-ecosystems in a		
24	context of climate change and an ever growing global population. The fate of crop residues is one		
25	of the important management aspects under debate, since it represents an unneglectable quantity		
26	of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue		Eliminado: system.
27	management is not new, but the need for global conclusion on the impact of crop residue		Eliminado: conclusions
28	$\underline{management\ on\ the\ agro-ecosystem}\ linked\ to\ local\ pedo-climatic\ conditions\ has\ become\ apparent}$		
29	with an increasing amount of studies showing a diversity of conclusions. This study specifically		
30	focusses on temperate climate and loamy soil using a 7-year data set.		
31	Between 2008 and 2016, we compared four contrasting residue management strategies differing		Eliminado: We
32	in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and		
33	in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm		
34	depth)) in a field experiment, We assessed the impact of the crop residue management on crop		Eliminado: between 2008 and 2016.
35	production (three crops - winter wheat, faba bean and maize - cultivated over six cropping		Eliminado: six
36	seasons), soil organic carbon content, nitrate (NO ₃), phosphorus (P) and potassium (K) soil		Eliminado: nitrogen,
37	content and uptake by the crops.		
38	The main differences came primarily from the tillage practice and less from the restitution or	<	Eliminado: We observed a limited effect of the residue management strategy on crop productivity.
39	removal of residues. All years and crops combined, conventional tillage resulted in a yield	******	Eliminado: type of
40	advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower		
41	germination rate observed under reduced tillage, especially during drier years. On average, only		
42	small differences were observed for total organic carbon (TOC) content of the soil, but reduced		
43	tillage resulted in a very clear stratification of TOC and also of P and K content as compared to		
44	conventional tillage. We observed no effect of residue management on the NO ₂ -content, since		Formatada: Inferior à linha

54 the effect of fertilization dominated the effect of residue management. <u>To confirm</u> the <u>results and</u>

55 enhance early tendencies, we believe that the experiment should be followed up in the future to

observe whether more consistent changes in the whole agro-ecosystem functioning are present on

57 the long term, when managing residues with contrasted strategies.

1. Introduction

58

60

61

63

64

65

66

67

68

73

59 Once a crop is harvested, farmers have to decide what to do with the remaining crop residue (the

above ground biomass that is cut but not harvested). Residues can be either exported and

valorised as co-products (e.g. animal fodder, biogas production,...), or restored to the soil as such

62 or after being burnt. Returning straw directly to the field has been promoted as a source of

organic matter and a way to increase soil water holding capacity and its overall quality. As such,

it is thought to help maintain, or even to some extent restore, soil fertility (Lal et al., 2004). If the

residues are returned to the soil, farmers have to choose how to manage them using either

conventional tillage or alternatives such as reduced tillage. We define conventional tillage as a

tillage based on mouldboard ploughing which is commonly used in temperate regions and

reduced tillage as a tillage with reduced intensity and/or depth (Hiel et al., 2016; the practical

69 implementation of these techniques are specified in Table S1).

70 The precise impact of the restitution (or not) of residues and of the choice of tillage system to

71 apply to the soil-plant system remains unclear and seems to be highly dependent on the pedo-

72 climatic conditions (soil structure, moisture, macro fauna, etc.) (Powlson et al., 2011). For

instance, soil organic carbon (SOC) generally seems to slightly increase if residues are returned

74 to the soil, particularly in the long term (Autret et al., 2016; Chenu et al., 2014; Merante et al.,

75 2017). However, the actual quantification of straw incorporation effect on soil organic carbon

Eliminado: The relatively low differences between

Eliminado: management strategies are probably due to the fact

Eliminado: is rather young (<10y). The experiment

Eliminado: soil quality

Eliminado: In order to assess the full impact of crop residue management on the agro-ecosystem functioning, there is a range of additional variables to quantify: soil fauna, greenhouse gas emissions economical aspects of the technical itinerary, ...

Comentado [Office1]: delete

Eliminado: impact

Eliminado: is often discussed

Formatada: Tipo de letra: Times New Roman SOC losses, SOC stabilization or even non-significant or negligible impact. The effect of tillage 87 Formatada: Tipo de letra: Times New Roman Eliminado: 88 on SOC content is less clear. While some studies show an increase of <u>SOC</u> with reduced or no-Eliminado: soil organic carbon 89 tillage (Arrouays et al., 2002; Garcia-Franco et al., 2015; Smith, 2007), others report no effect 90 (Dick, 1983; Dikgwatlhe et al., 2014; Dolan et al., 2006). Eliminado: (Dick, 1983; Dikgwatlhe et al., 2014; Dolan et al., 2006) Formatada: Inglês (Estados Unidos) 91 As Hiel et al., (2016) show in their review, the impact of crop residue management on crop Eliminado: As Hiel et al. (2016) show in their review, the impact of crop residue management on crop performance is also contradictory in the existing literature 92 performance is also contradictory in the existing literature. The presence of residues seems to be 93 detrimental to crop germination as they can form a physical obstacle for seedlings (Arvidsson et 94 al., 2014), can create a cold and humid micro-climate around the seed (Soane et al., 2012) and 95 provide a favourable habitat for slugs (Christian and Miller, 1986) and plant pathogens (Arvidsson 96 et al., 2014). In general, the literature show that weather conditions are the main factor Eliminado: shows 97 influencing crop yields (Dam et al., 2005; Linden et al., 2000; Soon and Lupwayi, 2012), and Eliminado: (Dam et al., 2005; Linden et al., 2000; Soon and sometimes an interacting explanatory factor is the residue management (Riley, 2014). Residue 98 99 retention tends to induce lower yields under wet weather conditions (effect on diseases and pests) 100 (Riley, 2014) and higher yields in dry conditions (effect on water retention capacity) (Linden et Eliminado: (Linden et al., 2000; Riley, 2014). 101 al., 2000; Riley, 2014). There are also several studies reporting no effect on crop yields (Brennan Eliminado: whatsoever 102 et al., 2014; Dam et al., 2005; Riley, 2014; Soon and Lupwayi, 2012). Some specific results show 103 that it is important to have the information on the entire management type (i.e. residue in or out, type of tillage, tillage depth and timing....) in order to be able to assess the impact of the 104 Eliminado: , ...) Eliminado: say something about 105 management on crop performance. Van den Putte et al. (2010) showed for example that residue Eliminado: this Eliminado: show 106 retention of winter cereals and maize, combined with reduced tillage reduces yields in Europe.

stocks shows conflicting results, as synthetized by Poeplau et al., (2015), with studies reporting

86

Eliminado: (

123	On the other hand, <u>Blanco-Canqui and Lal, (2007)</u> have shown that residue removal can impede		Eliminado: Blanco-Canqui and Lal (2007)
124	crop yield.		
125	The literature on the effect of residue management on nitrogen (N) or phosphorus (P) uptake by		
126	plant is equally dispersed with no (N: Brennan et al., 2014); positive (N: Malhi et al., 2011; P:		
127	Noack et al., 2014) or negative (N: Soon and Lupwayi, 2012; P: Damon et al., 2014) effects	<	Comentado [Office2]: Please confirm: what is N and P? negative, no or positive?
128	reported by different authors. These differences are generally attributed to differences in soil		Eliminado: Soon and Lupwayi, 2012; P: Damon et al., 2014) Eliminado:
129	texture and/or initial nutrient status or residue quality (Chen et al., 2014; Kumar and Goh, 2002).		Eliminado:
130	Interactions between crop residue management and the soil-water-plant system are complex and		
131	inherently depend on the pedo-climatic conditions. <u>Local</u> assessment and system approach are		Eliminado: A local
132	therefore necessary to come to relevant guidelines for residue management under specific pedo-		Eliminado: is
133	climatic conditions. The objective of our study is therefore to determine the effects of contrasting		Comentado [Office3]: was
134	crop residue management strategies on crop production and components of the soil fertility, over		Eliminado: over a period of several years
135	a period of several years. Regarding crop production, we studied how residues management		
136	strategy impacts on germination rate, biomass production and yield elaboration, along with N, P		
137	and K exportation. The soil fertility components that were dynamically followed are SOC, N, P		Comentado [Office4]: were
138	and K content and their repartition within the soil profile. The experiment was conducted in the		Comentado [Office5]: contents
139	loam belt under temperate climatic conditions, taking into account common crop rotations and		
140	local farming practices.		
141	2. Materials and methods		
142 143	2.1.Site description The field experiment (50°33'49.6"N, 4°42'45.0"E) was established on 1.7ha of the experimental		
144	farm of Gembloux Agro-Bio Tech, University of Liège, Belgium in 2008 and yield		
	5		

152	measurements started in 2010. The soil is a Cutanic Luvisol (IUSS Working Group WRB, 2014).	
153	According to the Walloon soil map (REF geoportail de wallonie), it is a silty soil with favourable	Comentado [Office6]:
154	natural drainage. The texture is as follows: silt content of 70-80 %, clay content of 18-22 % and	Comentado [Office7]: the soil was silty with favourable drainage, containg 70-80% of silt, 18-22% clay, and 5-10% sand
155	sand content 5-10 %. A characterization of the spatial variability of certain chemical parameters	
156	was carried out in 2011 (maps available in Fig. S1). Descriptive statistics are presented in Table	Comentado [Office8]: is
157	<u>1.</u>	
158	The climate is temperate (Cfb in Köppen–Geiger classification (Peel et al., 2007)) with 819 mm	
159	average annual rain and 9.8 °C annual average temperature. Weather data were measured in a	
160	federal weather station located in Ernage (Belgium's Royal Meteorological Institute), at 2.4 km	Eliminado:
161	from field site. An overview of monthly temperature and rainfall during the experimental period	
162	is shown in Figs S2 and S3.	Eliminado: Appendices A
163	2.2. Experimental design and treatments	Eliminado: B
164	The field is designed as a Latin square disposal with four replications. Each plot is 15 m wide and	Comentado [Office9]: was Comentado [Office10]: was
165	40 m long. Crop residue management is defined as the combination of two practices: (i) the fate	Comentado [Office11]: was
166	of the crop residue and (ii) the type of tillage. Firstly the residue fate can be restitution (IN) or	
167	exportation (OUT). It has to be noted that stubble and chaff are always left on the fields, even if	
168	the rest of the residue is exported. Secondly, we considered two tillage types (see <u>Table 2</u>):	Eliminado: table 1
169	conventional (CT, 25 cm depth) or reduced (RT, 7-10 cm depth). The different combinations of	
170	these two aspects of residue management resulted in four treatments: CT-IN, CT-OUT, RT-IN,	
171	RT-OUT.	
172	The crop rotation during the experiment was: rapeseed (Brassica) in 2008-09, three consecutive	Comentado [Office12]: insert the name of the species
173	years of winter wheat (Triticum aestivum) in 2009-10, 2010-11 and 2011-12, mustard (Sinapis	
174	alba) cover crop in 2012-13, faba bean (Vicia Faba) in 2013, winter wheat in 2014, oats (Avena	Eliminado: in 2013
I		

181	sativa) and peas (Pisum sativum) mix as cover crop in 2014-15, and finally maize (Zea mays) in		Comentado [Office13]: mixed
182	2015. Sowing densities are 300 kernels/m² for winter wheat, 50 kernels/m² for faba bean, and 13		Comentado [Office14]: were
183	kernels/m² for maize. Sowing process is detailed for each crop in Table S1.		
184	\underline{N} fertilisation (liquid \underline{N} , UAN at 39%) followed the regional standards depending on the type of		Eliminado: Nitrogen
185	crop. Rapeseed received two applications (at stem elongation stage; 31 and 32-50 on BBCH scale		Eliminado: nitrogen Eliminado:
186	(Meier et al., 2009)) with a total of 160 kg of N/ha. We provided three applications to winter	<	Comentado [Office15]: Three applications were provided to winter
187	wheat (at tillering, stem elongation and flag leaf stage (26, 30 and 37-39 on BBCH scale)) with a	****	Eliminado:
188	total of 180 kg of N/ha. Faba bean was not fertilised and maize crop was fertilised by 120 kg of		Eliminado:)
	total of 180 kg of N/lia. Faba bean was not lettinsed and maize crop was lettinsed by 120 kg of		Comentado [Office16]: with
189	N/ha before sowing. There was no external addition of P or K. Crop protection measures		Eliminado:
190	corresponded to the regional standards.		
191 192	The detailed crop protocols (crop management, <u>crop harvest, residue exportation, soil tillage,</u> fertilization and crop protection treatments) are available in <u>Table S1</u> .		Eliminado: Appendix C
193 194	2.3. Crop sampling and analyses We monitored the germination rate and growth dynamics during the season with an adapted*		Formatada: Justificado
195	protocol for each crop type (Table 3). The determination of the germination rate consists in		Comentado [Office17]: consisted
196	counting of the number of seedlings on a definite area (Table 3). To quantify above-ground		Eliminado: 2).
197	biomass, plants were collected (according to crop protocol in Table 3) and their different parts		
198	(shoot and ears, pods or cobs) were separated, counted and oven-dried at 60 $^{\circ}\text{C}$ for 72 h. Grain		
199	yield was assessed with an experimental combine adapted to the crop by one passage per plot (40		Comentado [Office18]: combination
200	m long on a width dependent on the combine; see specific crop protocol in Table 3). To quantify	e :	Comentado [Office19]: each Comentado [Office20]: combination
201	the amount of remaining crop residues on the field, residues (i.e. OUT plots: stubble and chaff,	The same of the sa	Eliminado:). Residues (Eliminado: ,
202	IN plots: all residue) were collected over a surface of 0.5 m wide and 2 m long immediately after	******	Eliminado:
203	harvest, dried, weighed, These samples were also used to quantify the NPK content of the	e:[Eliminado: and

217	remaining crop residues. We took composite grain samples (grain of maize and wheat, faba been		
218	seeds) of 1kg from the harvest hopper (1 sample per plot) for quantification of NPK grain		Eliminado: content. We also collected the residues present on 1m ² per plot to determine its NPK
219	content. Both grains and residues were crushed before analysis. N content was measured using		Comentado [Office21]: suggestion Composite grain samples (maize and wheat grains; faba been seeds)
220	the Kjeldahl method (Bradstreet, 1965). Phosphate and potassium (K) levels in plants were		of 1 Kg were prepared from the harvest hopper (1 sample per plot) for quantification of NPK grain content.
221	measured using a modified protocol of Zasoski and Burau (1977). Samples were first treated by a		Eliminado: Nitrogen Eliminado: Kjedahl
222	concentrated acid mix of JNO3 and HClO4 (1:1) (15 ml per g of sample). K content was		Eliminado: (equal parts)
223	measured by a flame atomic absorption spectrometric method (Spectrometer Varian 220). P was		
224	measured by colourimetry with molybdate and ammonium vanadate at 430 nm, (Nanocolor		Eliminado: .
225	UV/VIS (Macherey-Nagel)). NPK content [kg/ha] were calculated by multiplying the nutrient		
226	content [%] by the biomass of the residue or grain [kg/ha].		
227 228	2.4. Soil sampling and analyses Twice a year around April and October, we took ten soil subsamples (with a gouge auger of 2 cm *-		Formatada: Esquerda
229	diameter) to form a composite sample per plot at 0-10 cm, 10-20 cm and 20-30 cm depth. The		Eliminado:
230	fall sampling was usually either made after spring crop harvest and before winter wheat sowing		Eliminado: Total organic carbon
231	or after winter wheat harvest and cover crop sowing. The spring sampling was made when		
232	climatic conditions were again favourable for winter wheat growth or after spring crop sowing.		Eliminado: a
233	TOC was determined on a 1g of dry soil (ground at 200μm) by the Walkley-Black method	A	Eliminado: . Formatada: Inferior à linha
234	(Blakemore, 1972); oxidation with K ₂ Cr ₂ O ₇ and H ₂ SO ₄ ; titration of the excess of K ₂ Cr ₂ O ₇ with		Formatada: Inferior à linha Formatada: Inferior à linha
235	Mohr Salt ((NH ₄)2Fe(SO ₄) ₂ ·6H2O). Available soil nutrients were measured by stirring a 10 g		Formatada: Inferior à linha Formatada: Inferior à linha
236	sample of soil (air-dried and sieved at 2 mm) for 30 min in 50 ml of solution (ammonium acetate		Formatada: Inferior à linha Formatada: Inferior à linha
237	0.5 M and EDTA 0.02 M at pH 4.65 (Lakanen E. and Erviö R., 1971)). After filtration the cations		Formatada: Inferior à linha Formatada: Inferior à linha
238	were measured by atomic emission for K and P was determined by colourimetry (colour reaction		Formatada: Inferior à linha Formatada: Inferior à linha
239	of Murphy and Riley (1962), Nanocolor UV/VIS (Macherey-Nagel)).		Comentado [Office22]: Use the chemical formula to maintain the consistency
237	of marphy and micy (1902), manocolor O V/ VIO (Machierey-Mager)).	A. A. A.	Comentado [Office23]: Rephrase; not clear

Eliminado:).

In addition to the two overall soil sampling campaigns per growing season, soil nitrate content was measured more frequently to catch the dynamic of uptake during the growing phase of the main crops. Composite humid soil samples based on eight subsamples (sampled with gouge auger of 2 cm diameter) were used per plot at three depths: 0-30 cm, 30-60 cm and 60-90 cm. We used KCl extraction and a colourimetry method of reduction of nitrate to nitrite (using Cadmium or Hydrazine) with a determination of nitrite ions by the modified Griess-Ilosvay reaction (Bremner, 1965; Guiot et al., 1992).

Statistical analyses were performed with R package (R Core Team, 2015). The statistical analyses

2.5. Statistical analyses

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

measurements, as follows. First, a 2-way ANOVA was performed, including the soil tillage and residue fate as fixed factors (with interaction) and the plot position (line and columns of the Latin square) as random factors. In case no interaction was highlighted between the fixed factors, we compared on the one hand, IN and OUT treatments, and, on the other hand, RT and CT treatments. These comparisons were then immediately made on the basis of the results of the 2-way ANOVA test. Contrarily, when an interaction between the fixed factors was significant, the four treatments (CT-IN, CT-OUT, RT-IN and RT-OUT) were intercompared and ranked using a post-hoc test (Student-Newman-Keuls - SNK). Analyses of variance (2-way ANOVA) and SNK tests were performed with the agricolae package (Mendiburu and Simon, 2015). The conditions of application of the ANOVA, test (normality of the distribution and homoscedasticity) were systematically checked on the residuals of the ANOVA, using respectively a Shapiro-Wilk test and a Bartlett test.

Eliminado: we measured

Eliminado: at times corresponding

Eliminado: specific crop phenological stages using composite

Eliminado:

Eliminado: hydrazine

Eliminado: All statistical

Eliminado: For comparison of treatments, we always first tested the difference between treatments (so with interaction of tillage type and residue fate). In case these difference were not significant we compared IN and OUT and RT and CT treatments. When the interactions were not significant, we did not report the outcome of the statistical tests in the text. Analyses of variance (ANOVA) and Student-Newman-Keuls tests (SNK) to assess the effect of crop residue management on crop and soil measurements

Eliminado: a

Eliminado: a

Comentado [Office24]: IN versus OUT treatments as well as RTversus CT treatments

Eliminado:

Eliminado: Models

Eliminado: analyses

Eliminado: variance (

Eliminado:) included as a fixed factor the soil tillage and residue fate (with interaction) and as a random factor the plot position (line and columns

Eliminado: Latin square). These analyses were performed to assess the effect of crop residue management on crop and soil measurements. Normality

Eliminado: by

Eliminado: respectively.

To study the evolution of soil parameters over the years, a linear mixed effects model was fitted using the *lme4* package (Bates et al., 2014). To evaluate possible difference between treatments on the entire profile or per depth, the model was used with soil tillage and residue fate and their interaction as fixed factors, while dates and plots were random effects. To estimate whether stratification occurred in the soil parameters per crop residue management treatment, the mixed effects model was used with the depths as a fixed factor and plots and dates as random effects. A student's T-test was used to test for each treatment whether the soil factors of the last sampling year and the first sampling year were significantly different.

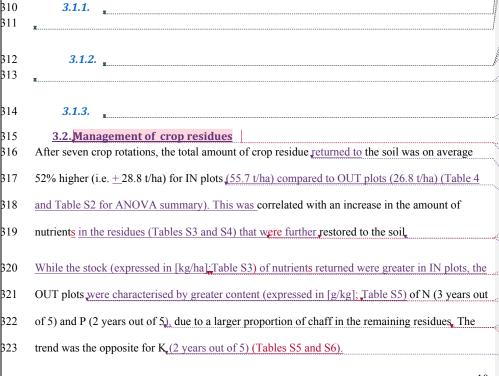
3. Results

301

302

303

304


305

306

307

308

309

Movido(s) para baixo [1]: Germination rate

The presence or absence of extra residues did not affect germination rate, except for winter wheat in 2013-14 where we observed a lower germination rate in the RT-IN treatment. Tillage type, however, did result in differences in germination rate.

Eliminado: <#>Crop production

Movido(s) para baixo [2]: , we see that residue fate and tillage type had an interacting effect on the global relative germination rate which is the average of all germination rates of all crops considered for a specific treatment, normalised to the sowing density. The germination rate in RT-IN was significantly lower than RT-OUT, itself lower than CT-IN and CT-OUT

Eliminado: Table 3 shows that three crops (out of six) had a higher germination rate in CT as compared to RT (wheat (2010-11), faba bean (2013), winter wheat (2013-14)).

<#>Crop development ...

Yearly grain yields were in general not influenced by residue fate or soil tillage, except for a negative effect for reduced tillage for winter wheat cultivated in 2010-11 (-9%) and maize in 2015 (-4%) and residue incorporation for winter wheat in 2010-11 (-10%, year characterised by a spring drought, Appendix A).

There was no significant effect on grain quality, except for P in winter wheat grains in 2010-11 and a slightly lower K content under conventional tillage in 2 years out of 5 (data not shown, available at https://doi.org/10.6084/m9.figshare.5442289).

Movido(s) para baixo [4]: Crop yield and quality

[1]

Eliminado: <#>Crop development -

Movido(s) para baixo [3]: These were more pronounced for the shoot than the ear biomasses. In 2010, with weather condit ... [2]

Eliminado: and no negative impact of residues on yields were observed. In 2011, characterised by a spring drought, the com ... [3]

Eliminado: Yearly grain yields were in general not influenced by soil tillage, except for a negative effect for reduced tillage for[4]

Movido(s) para baixo [5]:). No effect of residue fate was

Eliminado: There was no significant effect on grain quality, except winter wheat grains in 2010-11 and a slightly lower K content ... [5]

Movido(s) para baixo [6]: Link between germination,

Comentado [Office25]: Revise ALL section numbers: start with

Eliminado: No correlation could be seen between germination rate and shoot dry weight produced except for faba bean (2013) an ... [6]

Eliminado: in

Eliminado: and this was

Eliminado: ill

Eliminado: be

Eliminado: (Table 6). The

Eliminado: in

Eliminado:

Eliminado: had a greater proportion

Eliminado: in

Eliminado:)

Eliminado:

Eliminado: (Tables S5 and S6)

Eliminado:

425	The tillage treatment had no significant impact on the total amount of crop residues or on the		Eliminado: or the composition of the residues since also total final
426	stock of nutrients (Table 4 and Tables S2 to S6).		biomass was not strongly affected. No interactions between the tillage and the crop residue management were observed, which is why we mainly present results IN vs OUT and RT vs CT. Table 7 shows that
427	Table 5 puts the emphasis on the different amounts of each nutrient (NPK) returned by the		
428	different crops through their residues: e.g. while maize and faba bean brought higher N than	55000000	Eliminado: provided different amounts of nutrients
429	wheat, maize residues alone provided the highest quantity of K to the soil.		Eliminado: the crop
129	wheat, marze residues atome provided the ingliest quantity of K to the soft.	ter J	Eliminado: E
		1.	Eliminado: Maize
430	3.3. Soil <u>results</u>	V	Eliminado: M
431 432	3.3.1. Total organic carbon The initial TOC content, over the entire arable depth (0-30 cm) was 11.7 g/kg. After 8 years, the	55	Eliminado: total organic earbon (
			Eliminado:)
433	different treatments (tillage or residue management) did not have a significant effect on the	1/	Eliminado: ,
434	overall TOC content evolution (lmer; on tillage $F = 1.62$, $p = 0.22$; on residue treatments $F =$	/	Eliminado: 1.17
734	10c content evolution (milety on thinge 1 – 1.02, p – 0.22, on residue deathers 1 –		Eliminado: 100g
435	0.58, p = 0.46), although significant differences were observed during some specific years		Eliminado: overall
	7 - / / / / / / / / / / / / / / / / / /		
436	(Figure 1). The last measurement, in spring 2016, showed higher TOC under RT-IN compared to		Eliminado: 3A
127	CT OUT I DT OUT		
437	CT-OUT and RT-OUT.		
438	We observed a clear stratification of the TOC content between the different soil depths (0-10, 10-		
439	20 and 20-30 cm depths) in the reduced tillage treatments (lmer F = 236.55, p < $2.2e^{-16}$; Figure 1		Eliminado: 3B
440	$\underline{\mathrm{B}}\text{-D}$). More specifically, the TOC content increased over time in the 0-10 cm soil profile and,		
441	after 3.5 years, was systematically higher in RT than in CT (with the exception of autumn 2014).		
442	At that depth, higher TOC contents were observed in RT-IN than in RT-OUT. In the 10-20 cm		
443	soil layer, there were no differences between CT and RT. In the 20-30 cm soil layer, RT resulted		
444	in lower TOC content than CT from the third year of the trial onwards.		
445	3.3.2. Soil nutrients		
446	Nitrate. Averaged over the soil profile and over time, we did not observe differences in nitrate		
447	content between the different treatments, although some temporary differences were visible	and the second	Eliminado: are visible in figure 4. Due to its high mobility in the soil and the high amounts of N fertiliser (black dots) applied to the crops,

471	(Figure 2). The levels of nitrate within the 0 to 90 cm soil layer were highly variable over time	Eliminado: in
472	and dominated by external inputs, of fertilizer (black dots on Figure 2). Residue fate had no	Eliminado:
473	impact on the NO ₃ ⁻ stock in any of the soil layers under any crop.	
474	Phosphorus. Over the course of the experiment, P content in soil significantly decreased in the 0-	
475	30 cm soil layer for all crop residue treatments, due to the absence of fertilisation during the	
476	course of the experiment (Fig. S4). In addition, there was a stratification of P under RT (RT-OUT	Eliminado: Appendix D
l 477	from autumn 2012 onwards (Imer F = 84.58, $p < 2.2 e^{-16}$) and RT-IN from spring 2014 onwards	
478	(lmer F = 34.06 , p = $3.6e^{-12}$)). In the top layer (0-10 cm), these treatments showed a <u>higher</u>	Eliminado: slower
l 479	decrease in P content than deeper in the profile. Our data do not suggest any significant impact of	
480	crop residue on P stocks in the soil (lmer $F = 0.05$, $p = 0.83$).	
481	Potassium. As for ₽, K content in soil decreased from the beginning of the trial, as no K	Eliminado: phosphorus
482	fertilisation was applied (Fig. S4). No particular effects of the different treatments were observed	Eliminado:
483	on the total amount of K (lmer $F = 0.06$, $p = 0.81$), except for the last 2 years of the experiment	
484	(2015-2016), where IN plots showed a higher K content. Also for K a stratification was visible	
485	(lmer F = 97.91, p <2. $2e^{-16}$) with decreasing concentrations from top to bottom.	
486	3.4. Crop results	
487	3.4.1. <u>Germination rate</u>	Movido(s) (inserção) [1]
488	The presence or absence of extra residues did not affect germination rate, except for winter wheat	
489	in 2013-14 where we observed a lower germination rate in the RT-IN treatment. Tillage type,	
490	however, did result in differences in germination rate. Table 6 (and ANOVA summary in Table	
491	S7) shows that three crops (out of six) had a higher germination rate in CT as compared to RT	
492	(winter wheat (2010-11), faba bean (2013) and winter wheat (2013-14)).	

499	In Table 6, we see that residue fate and tillage type had an interacting effect on the global relative		Movido(s) (inserção) [2]
500	germination rate which is the average of all germination rates of all crops considered for a		
501	specific treatment, normalised to the sowing density. The germination rate in RT-IN was		
502	significantly lower than RT-OUT, itself lower than CT-IN and CT-OUT		
503 504	3.4.2. Dynamic crop growth When looking at the dynamics of crop growth, except for two sampling dates on ears' growth and		
505	two sampling dates on shoot's growth, no interactions were found between tillage and residue		Eliminado: out of 36 sampling,
506	management treatment. Observations and results of the ANOVA and SNK analysis are reported		
507	in the supplementary material separately for ears and shoot growth (Tables S8 to S11). The		Eliminado: ls
508	cumulated total produced biomass is presented in Fig. S5 (ANOVA summary in Table S12)		
509	under graphical representation. It was therefore decided to analyse, the impacts of tillage and		Eliminado: s
510	residue management individually.		
511	Differences between residues management treatments (IN vs. OUT) were observed for crop		
512	development. Incorporation of residues (IN plots) negatively impacted the dynamic of ears and		
513	shoots during the first two crop seasons (winter wheat seasons 2009-10 and 2010-11). These		
514	differences appeared in both cases after the ear emergence stage, These were more pronounced	'	Movido(s) (inserção) [3]
515	for the shoot than the ear biomasses. In 2010, with weather conditions close to historical means,		
516	lower biomass under IN treatments decreased over the crop growth period, but no negative		
517	impact on yields were observed when residues were returned to the soil. In 2011, characterised by		
518	a spring drought, the exportation of residue (OUT) was favourable to the shoot development and		
519	to the early growth of ears. However, for this season, the final yield was not impacted by the		
520	residue management treatment (IN vs. OUT), as detailed in the next section. Finally, one could		
521	also notice that at the end of the 2014 crop season, while no differences were observed all along		
1			

525	the season, a statistical difference was reported on the last sampling date in favour of IN plots.		
526	For all other sampling dates, no statistical differences were reported.		
527	Reduced tillage mostly negatively impacted shoot crop development of winter wheat (2010-11),		
528	faba bean (2013) and maize (2015) (Tables S8 and S9). This was probably due, in part, to the		
529	lower germination rate in RT plots for the winter wheat crop (2010-11) and faba bean (2013) (cfr		
530	section 3.3.3). When computing the differences between tillage treatments (Figure 3 and Table		
531	\$12 for ANOVA summary), it was observed that the gap between treatments tended to decrease		Eliminado:
532	for the different crops as they developed through the season. For faba bean no differences were		
533	$\underline{\text{finally observed between the final biomass (Figure 3), the pods (Table S10 and S11) and the seed}\\$		
534	yield (Table 7 - cfr section 3.3.3), while statistical differences between RT and CT remained for		
535	$\underline{\text{maize shoot, cobs and grain yield cultivated in 2015 (Figure 3, Table S10 and S11, and Table 7-1000)}\\$		
536	cfr section 3.3.4).		
537	3 4 3 Crop yield and quality		Movido(s) (inserção) [4]
537 538	3.4.3. <u>Crop yield and quality</u> Yearly grain yields were in general not influenced by residue fate or soil tillage (Table 7 and		Movido(s) (inserção) [4]
	\\\\\\\\\		Movido(s) (inserção) [4]
538	Yearly grain yields were in general not influenced by residue fate or soil tillage (Table 7 and		Movido(s) (inserção) [4]
538 539	Yearly grain yields were in general not influenced by residue fate or soil tillage (Table 7 and Table S13 for ANOVA summary), except for a negative effect for reduced tillage for winter		Movido(s) (inserção) [4]
538539540	Yearly grain yields were in general not influenced by residue fate or soil tillage (Table 7 and Table S13 for ANOVA summary), except for a negative effect for reduced tillage for winter wheat cultivated in 2010-11 (-9%) and maize in 2015 (-4%) and residue incorporation for winter	(Movido(s) (inserção) [4]
538539540541	Yearly grain yields were in general not influenced by residue fate or soil tillage (Table 7 and Table S13 for ANOVA summary), except for a negative effect for reduced tillage for winter wheat cultivated in 2010-11 (-9%) and maize in 2015 (-4%) and residue incorporation for winter wheat in 2010-11 (-10%, year characterised by a spring drought, Figs. S2 and S3).	(Movido(s) (inserção) [4] Movido(s) (inserção) [5]
538539540541542	Yearly grain yields were in general not influenced by residue fate or soil tillage (Table 7 and Table S13 for ANOVA summary), except for a negative effect for reduced tillage for winter wheat cultivated in 2010-11 (–9%) and maize in 2015 (–4%) and residue incorporation for winter wheat in 2010-11 (–10%, year characterised by a spring drought, Figs. S2 and S3). The cumulative grain yield since 2010 was significantly lower under reduced compared to	(
538539540541542543	Yearly grain yields were in general not influenced by residue fate or soil tillage (Table 7 and Table S13 for ANOVA summary), except for a negative effect for reduced tillage for winter wheat cultivated in 2010-11 (–9%) and maize in 2015 (–4%) and residue incorporation for winter wheat in 2010-11 (–10%, year characterised by a spring drought, Figs. S2 and S3). The cumulative grain yield since 2010 was significantly lower under reduced compared to conventional tillage (–3.4%, Table 7). No effect of residue fate was observed.		
538539540541542543544	Yearly grain yields were in general not influenced by residue fate or soil tillage (Table 7 and Table S13 for ANOVA summary), except for a negative effect for reduced tillage for winter wheat cultivated in 2010-11 (–9%) and maize in 2015 (–4%) and residue incorporation for winter wheat in 2010-11 (–10%, year characterised by a spring drought, Figs. S2 and S3). The cumulative grain yield since 2010 was significantly lower under reduced compared to conventional tillage (–3.4%, Table 7). No effect of residue fate was observed. There was no significant effect of the treatments on NPK content of the harvested grain or seeds		
538539540541542543544545	Yearly grain yields were in general not influenced by residue fate or soil tillage (Table 7 and Table S13 for ANOVA summary), except for a negative effect for reduced tillage for winter wheat cultivated in 2010-11 (–9%) and maize in 2015 (–4%) and residue incorporation for winter wheat in 2010-11 (–10%, year characterised by a spring drought, Figs. S2 and S3). The cumulative grain yield since 2010 was significantly lower under reduced compared to conventional tillage (–3.4%, Table 7). No effect of residue fate was observed. There was no significant effect of the treatments on NPK content of the harvested grain or seeds (Table S14), except for marginally higher P content in winter wheat (in 2010-11) grains in IN		Movido(s) (inserção) [5]

550	3.4.4. <u>Link between germination, development and yield</u>	Movido(s) (inserção) [6]
551	No correlation was seen between germination rate and shoot dry weight except for faba bean	
552	(2013) and a slight effect for winter wheat (2010-11) (Figure 4A). Grain yield was only	
553	positively correlated to germination rate for winter wheat (2010-11) (Figure 4B). Similarly, grain	
554	yield was slightly correlated to shoot dry weight for that year only (Figure 4C).	
555	3.5. Integrated approach between crop production and soil chemistry	
556	A principal component analysis was performed to study the relationship between soil and plant	
557	parameters (Figure 5). Plant and crop residue data are the accumulation (Residue biomass, shoot	
558	biomass, yield, NPK stock) or mean (germination rate, harvest index (HI)) of the all crop data.	Comentado [Office26]: Can you improve this sentence? It is not very clear to me
559	We used soil data from the last spring measurement in 2016.	
560	The two principal components allowed to explain respectively 35 % and 25% of the variance.	
561	Treatments were easily differentiated by the two principal components (Figure 5-A). It appeared	Eliminado: a
562	that crop productivity (yield, shoot and total biomass) and quality $(K_{\text{grain}}, P_{\text{grain}} \text{ and } N_{\text{grain}})$ were	Eliminado: Y
563	favoured by conventional tillage, as illustrated by the discrimination of treatments along the	
564	second component (Y-Axis) of the PCA. Similarly, it seemed that the soil parameters (TOC, $K_{\underline{soil}}$	
565	and to a lower extent P _{soil}) were more positively influenced by the crop residue retention (Figure	Eliminado: d
566	5-B), as illustrated by the discrimination of treatments along the first component (X-Axis) of the	
567	PCA.	
568	4. Discussion	
569 570	4.1. Effect of tillage and crop residue treatments on crop production Overall, tillage influenced crop production more strongly than import or export of residues. The	
571	strongest effect was seen in terms of germination rate and was even stronger for residue	
572	incorporation treatments. RT resulted consistently in lower germination rates as also shown by	
	15	

576	Brennan et al. (2014). Germination rate is strongly affected by seedbed soil moisture, soil		
577	structure and contact around the seed and soil temperature (Guérif et al., 2001). It is		
578	acknowledged that crop residues can be a physical obstacle to crop emergence and a source of		
579	phytotoxicity for crop seedlings (Morris et al., 2010). Moreover, the presence of crop residues		
580	around seeds can impede adequate seed-to-soil contact needed for good crop emergence by		
300	around seeds can impede adequate seed-to-son contact needed for good crop emergence by		
581	increasing the macroporosity which is known to decrease the degree of contact (Brown et al.,		
582	1996). Nevertheless, the differences due to germination rate have the tendency to disappear at		
583	later growth stages if no climatic extremes occur, since the plants generally compensate a lower		
584	density with a better growth under favourable growth conditions as also observed by Dam et al.		
585	(2005).		
586	Several studies report higher crop production levels under CT under temperate climate, when		
587	compared to RT (Brennan et al., 2014; Pittelkow et al., 2014). However, the difference between		
588	both systems remained small in the presented experiment, but confirmed, among else, by the		Eliminado: .
589	PCA analysis. Our results went in the direction of the conclusion of Van den Putte et al _* (2010)		Eliminado: go
			Eliminado: 's
590	study of conservation agriculture in Europe showing a yield decline of 4.5% in RT systems as		
591	compared to conventional systems. When confronting the crop results to the meteorological		Eliminado: What is interesting in
		attanna ann	Eliminado: experiment presented here, is
592	conditions (Figure 3, Table 7 and Figs. S2 and S3) we believe that the CT production systems		Eliminado:
593	might be Jess sensitive to inter-annual fluctuations of climatic conditions over different years		Eliminado: are more stable with respect
373	inght of tos sensitive to inter-aimair inectations of elimitate conditions over different years	~	Eliminado:
594	compared to the RT systems. Also, Brennan et al. (2014) highlighted that the residue fate was	200	Eliminado: changing meteorological
			Eliminado: than
595	less important than the tillage type for crop performance. Residue fate has a stronger effect on		
596	crop production under drier climates and water limited conditions (Linden et al., 2000; Pittelkow		Eliminado: (Linden et al., 2000; Pittelkow et al., 2014)
597	et al., 2014).		

609	The differences observed for germination rates or during crop growth seem to have little	
610	influence on crop yield. A similar lack of correlation between shoot biomass and grain yield, as	
611	observed most strongly for faba bean and wheat (2014) in our study, has previously been	
612	observed for legume crops (Araújo and Teixeira, 2008). For winter wheat, it is <u>likely that</u> the	 Eliminado: most probably
613	ability to produce more tillers at lower densities explains the recovery from lower germination	Eliminado: where the density is
614	rates, as reported in the literature (Gooding et al., 2002; Whaley et al., 2000). Moreover, it is	Eliminado: that
615	known that the flag leaf and ears are the main photosynthetic organs contributing to grain filling	
616	(Sanchez-Bragado et al., 2014) which is an additional explanation why the entire shoot biomass	
617	was not correlated to yield, especially during years with climate conditions close to the historical	
618	means (i.e. winter 2009-10, 2011-12 and 2013-14). Winter wheat (2010-11) and maize (2015)	
619	were the only crops with observable differences between treatments at the end of crop	
620	development. We hypothesize that the spring drought during winter wheat development in 2010-	
621	11 impeded its ability to recover its potential yield as in the other years.	
622	Except for the winter wheat 2010-11, our results did not show an increase in N grain stock. This	 Eliminado: nitrogen
623	observation is in agreement with Brennan et al. (2014), but opposed to the results reported by	
624	Malhi et al. (2011) or Soon and Lupwayi (2012). The absence of crop residue treatment effects on	
625	P grain content could be also due to the poor P content of crop residues. Regarding the small	
626	differences observed in grain K content, Zörb et al. (2014) mentioned that K content in grain is	 Eliminado: Zörb et al. (2014)
627	not correlated to K supply and grains have relatively low K contents.	
628 629	4.2. Effect of tillage and crop residue treatments on soil <u>chemistry</u>	 Eliminado: fertility
630	Over the seven years of this experiment, the effects of crop residue management on soil fertility	 Eliminado: During
631	parameters showed few statistical differences in the early time of the trial. However, the results	 Eliminado: are still marginal, but

640	were slowly magnifying, up to the point where differences became more systematically		Eliminado: (appendix E
641	significant, with clear stratification occurring over the different soil layer of the ploughing depth.		
642	Furthermore, our results (PCA analysis) confirmed a clear link between soil TOC, K content, and		
643	to a lower extent P content, with residues management treatment (IN vs. OUT)	-	Eliminado: d
			Formatada: Cor do tipo de letra: Automática
644	Even though the literature shows that residue incorporation could have a positive effect on the		
645	stock of <u>SOC</u> (Autret et al., 2016; Chenu C. et al., 2014; Merante et al., 2017), we only observed		Eliminado: soil organic carbon
646	small effects on the TOC content. It should be noted that we cultivated wheat for 4 out of 7 years		
647	and therefore our residues contained a large proportion of straw, which has already been shown		
648	to be inefficient to increase TOC (Lemke et al., 2010; Poeplau et al., 2015). Just like previous		
649	studies (Angers et al., 1997; Dimassi et al., 2013; Dikgwatlhe et al., 2014; Dolan et al., 2006;		Eliminado: (Angers et al., 1997; Dikgwatlhe et al., 2014; Dolan et al., 2006; Gadermaier et al., 2012; Riley, 2014)
650	Gadermaier et al., 2012; Riley, 2014), we have shown that reduced tillage provoked a		
651	stratification of TOC. The absence of differences between TOC(CT-IN) and TOC(CT-OUT) can		
652	be explained by a dilution effect (accumulation of organic matter in the top that is mixed through		Eliminado: on the one hand
653	ploughing) as well as by a potentially faster degradation rate, as reported by Lal et al. (2004).		Eliminado: and on the other hand
654	The absence of any overall effect of residue treatment on the nitrate content was likely due to a		
•			
655	combination of factors. Firstly, the proportionally high amount of mineral N applied as fertiliser -		Eliminado: nitrogen
656	which respects the common practice in Belgium - reduced the effect of N returned by the		
657	residues. Secondly, the straw incorporation effect might have had a short-term impact on soil		
658	nitrate (Van Den Bossche et al., 2009) rather than long term impact (Brennan et al., 2014). Such a		
659	lack of impact was also reported by Stenberg et al. (1999).		Eliminado: ,
660	The absence of residue treatment effects on P content in soil can be explained by the low P		
•			
661	content of crop residues. Damon et al (2014) have shown that P availability is only increased for		Eliminado: ,

672	large amounts of residues with high P content. A P content threshold of 2 to 3 mg/g of residue is		
673	generally considered as the limit below which no impact should be expected. Under this value,		
674	immobilisation by microbial biomass occurs and P mineralization is hampered (Damon et al.		Eliminado: .
675	2014). In our study, P content was 0.9 mg/g for wheat and maize residues and 1.6 mg/g for faba		Eliminado: this
676	bean crop, which means that we were consistently and considerably below this theoretical		Eliminado: residue
677	threshold for P mineralization.		
678	The decrease in K content was due to the lack of fertilisation during the trial (no dedicated K		Eliminado: potassium
078	The decrease high content was due to the lack of lethisation during the that (no dedicated K		Eliminado: i
679	fertilisation or manure application was intentionally made between 2008 and 2016) but the slope		Eliminado: in
680	is slight, Compared to P content, K content of residues was much higher. Furthermore, as the		Comentado [Office27]: Can you explain? Not clear to me
681	mineralisation process did not occur, K might have been released in soil solution as soon as the		Eliminado: These results are consistent since the K content of crop residue is much higher than the P content and K is released in soil solution as soon as the plant cells are dead, as the mineralisation
682	plant cells were dead (Schvartz et al., 2005). These combined effects probably explain the		process is not involved (Schvartz et al., 2005). • Eliminado: i
683	slighter slope observed on the dynamics of K. The stratification observed in P and K content with		Eliminado: i Eliminado: s not involved
684	reduced tillage was also reported by Riley (2014).	1	Eliminado: is Eliminado: a
684 685	reduced tillage was also reported by Riley (2014). 5. Conclusion		·\-
			Eliminado: a Eliminado: Crop production, which is an important driver of farmer's decisions, was not dramatically impacted by the different
685	5. Conclusion		Eliminado: a Eliminado: Crop production, which is an important driver of farmer's decisions, was not dramatically impacted by the different residue management strategies. When choosing a crop residue management under temperate climate, other factors than yield should determine the decision taken by a farmer, such as fuel consumption,
685	5. Conclusion When looking within the available choices among the soil and crop management techniques, crop		Eliminado: a Eliminado: Crop production, which is an important driver of farmer's decisions, was not dramatically impacted by the different residue management strategies. When choosing a crop residue management under temperate climate, other factors than yield should determine the decision taken by a farmer, such as fuel consumption, working hours, greenhouse gas (GHG) emissions (Lognoul et al., 2017), soil fauna (Degrune, 2017), long-term soil quality and health
685 686 687	5. Conclusion When looking within the available choices among the soil and crop management techniques, crop production remains one of the most important drivers of farmer's decisions. However, the impact		Eliminado: a Eliminado: Crop production, which is an important driver of farmer's decisions, was not dramatically impacted by the different residue management strategies. When choosing a crop residue management under temperate climate, other factors than yield should determine the decision taken by a farmer, such as fuel consumption, working hours, greenhouse gas (GHG) emissions (Lognoul et al., 2017), soil fauna (Degrune, 2017), long-term soil quality and health (Parvin et al., in prep.).
685 686 687 688	5. Conclusion When looking within the available choices among the soil and crop management techniques, crop production remains one of the most important drivers of farmer's decisions. However, the impact of residue management and tillage treatment on crop production, and also on soil fertility, are		Eliminado: a Eliminado: Crop production, which is an important driver of farmer's decisions, was not dramatically impacted by the different residue management strategies. When choosing a crop residue management under temperate climate, other factors than yield should determine the decision taken by a farmer, such as fuel consumption, working hours, greenhouse gas (GHG) emissions (Lognoul et al., 2017), soil fauna (Degrune, 2017), long-term soil quality and health (Parvin et al., in prep.).
685 686 687 688 689	5. Conclusion When looking within the available choices among the soil and crop management techniques, crop production remains one of the most important drivers of farmer's decisions. However, the impact of residue management and tillage treatment on crop production, and also on soil fertility are known to be highly dependent on the local pedo-climatic conditions, and the literature usually		Eliminado: a Eliminado: Crop production, which is an important driver of farmer's decisions, was not dramatically impacted by the different residue management strategies. When choosing a crop residue management under temperate climate, other factors than yield should determine the decision taken by a farmer, such as fuel consumption, working hours, greenhouse gas (GHG) emissions (Lognoul et al., 2017), soil fauna (Degrune, 2017), long-term soil quality and health (Parvin et al., in prep.).
685 686 687 688 689	5. Conclusion When looking within the available choices among the soil and crop management techniques, crop production remains one of the most important drivers of farmer's decisions. However, the impact of residue management and tillage treatment on crop production, and also on soil fertility, are known to be highly dependent on the local pedo-climatic conditions, and the literature usually focus on one of the aspects (soil or crop) and barely on multiple aspects at the same time.		Eliminado: a Eliminado: Crop production, which is an important driver of farmer's decisions, was not dramatically impacted by the different residue management strategies. When choosing a crop residue management under temperate climate, other factors than yield should determine the decision taken by a farmer, such as fuel consumption, working hours, greenhouse gas (GHG) emissions (Lognoul et al., 2017), soil fauna (Degrune, 2017), long-term soil quality and health (Parvin et al., in prep.). Eliminado: Eliminado:
685 686 687 688 689 690	When looking within the available choices among the soil and crop management techniques, crop production remains one of the most important drivers of farmer's decisions. However, the impact of residue management and tillage treatment on crop production, and also on soil fertility are known to be highly dependent on the local pedo-climatic conditions, and the literature usually focus on one of the aspects (soil or crop) and barely on multiple aspects at the same time. This study aimed at analysing the impacts of crop residue management techniques on different		Eliminado: a Eliminado: Crop production, which is an important driver of farmer's decisions, was not dramatically impacted by the different residue management strategies. When choosing a crop residue management under temperate climate, other factors than yield should determine the decision taken by a farmer, such as fuel consumption, working hours, greenhouse gas (GHG) emissions (Lognoul et al., 2017), soil fauna (Degrune, 2017), long-term soil quality and health (Parvin et al., in prep.). Eliminado: Eliminado:

721	production was generally not significantly impacted by the different residue management		
722	strategies. However, over the duration of the trial, while no effect of residue fate was reported (IN		
723	vs. OUT), the cumulative grain yield was found to be significantly lower (-3.4%) under reduced		
724	tillage (RT) compared to conventional tillage (CT).		
725			
725	In this seven-year experiment, small but gradually increasing differences between the different		
726	crop residue management strategies were observed. After a few years, the <u>TOC</u> content in the soil		Eliminado: total organic carbon
727	was higher only where the residues were incorporated and the tillage reduced. Overall, a		
728	stratification of organic matter and nutrients was observed under reduced tillage, i.e. for <u>TOC, P</u>		Eliminado: carbon, phosphorus
729	and K. Crops grown on reduced tillage plots had a lower germination rate in some years, but in		Eliminado: potassium
730	two years out of three crops overcame this germination gap through compensation mechanisms		
731	and finally yields were statistically equivalent.		
732	Soil processes in general, and carbon dynamics in particular, are slow processes. Our study		
733	reflects a system currently in transition, which will likely continue to evolve over the next		
734	decade. Therefore, it will be of uttermost importance to continue the monitoring of this	eg	Eliminado: I
735	experimental site in order to understand the long-term impact of residue management on crop		Eliminado: is Eliminado: test
733			Eminiauo: test
736	performance and soil quality and health.		
737	Finally, when choosing among soil and crop management techniques (among which the fate of		Eliminado: Let's finally conclude that
738	residues and the intensity of tillage that were analysed in this study are few examples), other	<u></u>	Eliminado: ,
739	factors than the sole crop productivity should be included in the farmer's decision process, such		
740	as fuel consumption, required working hours, greenhouse gas emissions (Lognoul et al., 2017 -		
741	analysis conducted on the same experiment), soil fauna (Degrune, 2017- analysis conducted on		
742	the same experiment), long-term soil quality and health.		
	20		

- 751 **6. Acknowledgements**
- 752 A special thanks to the entire technical team of the experimental farm for their helping hands in
- 753 the field. We also want to thank the CRA-w for their support. We also thank Yves Brostaux for
- 754 the statistical advices.

7. Bibliography

755

756 757

758

759

760 761

762 763

764 765

766

767

768

769

770

771

772

773 774 775

776

777

778

779

780

781

782 783

784

785

786

787

788

Angers, D.A., Bolinder, M.A., Carter, M.R., Gregorich, E.G., Drury, C.F., Liang, B.C., Voroney, R.P., Simard, R.R., Donald, R.G., Beyaert, R.P., Martel, J., 1997. Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil Tillage Res., Soil Biology and Tillage 41, 191–201. https://doi.org/10.1016/S0167-1987(96)01100-2

Araújo, A.P., Teixeira, M.G., 2008. Relationships between grain yield and accumulation of biomass, nitrogen and phosphorus in common bean cultivars. Rev. Bras. Ciênc. Solo 32, 1977–1986.

Arrouays, D., Balesdent, J., Germon, J.C., Jayet, P.A., Soussana, J.F., Stengel, P., 2002. Increasing carbon stocks in French agricultural soil? Sustain. Dev.

Arvidsson, J., Etana, A., Rydberg, T., 2014. Crop yield in Swedish experiments with shallow tillage and no-tillage 1983-2012. Eur. J. Agron. 52, 307–315. https://doi.org/10.1016/j.eja.2013.08.002

Autret, B., Mary, B., Chenu, C., Balabane, M., Girardin, C., Bertrand, M., Grandeau, G., Beaudoin, N., 2016. Alternative arable cropping systems: A key to increase soil organic carbon storage? Results from a 16 year field experiment. Agric. Ecosyst. Environ. 232, 150–164. https://doi.org/10.1016/j.agee.2016.07.008

Bassem Dimassi, J.-P.C., 2013. Changes in soil carbon and nitrogen following tillage conversion in a long-term experiment in Northern France. Agric. Ecosyst. Amp Environ. 169, 12–20. https://doi.org/10.1016/j.agee.2013.01.012

Bates, D., Mächler, M., Bolker, B., Walker, S., 2014. Fitting Linear Mixed-Effects Models using lme4. ArXiv14065823 Stat. https://doi.org/10.18637/jss.v067.i01

Blakemore, 1972. Methods for chemical analysis of soils / L.C. Blakemore, P.L. Searle [and] B.K. Daly. URL http://trove.nla.gov.au/version/42620262 (accessed 2.20.17).

Blanco-Canqui, H., Lal, R., 2007. Soil and crop response to harvesting corn residues for biofuel production. Geoderma 141, 355–362. https://doi.org/10.1016/j.geoderma.2007.06.012

BRADSTREET, R.B. (Ed.), 1965. Copyright, in: The Kjeldahl Method for Organic Nitrogen. Academic Press, p. iv. https://doi.org/10.1016/B978-1-4832-3298-0.50002-3

Bremner, J.M., 1965. Bremner, J.M. (1965) Inorganic Forms of Nitrogen. In: Black, C.A., et al., Eds., Methods of Soil Analysis, Part 2, Agronomy Monograph No. 9, ASA and SSSA, Madison, 1179-1237.

http://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1628091 (accessed 9.25.17).

Comentado [Office28]: Revise the citation format along the entire MS.

Eliminado:

Formatada: Português

Formatada: Inglês (Reino Unido)

Formatada: Inglês (Reino Unido)

Eliminado: :

Formatada: Inglês (Reino Unido)

Eliminado:

Eliminado:

Eliminado: - Version details [WWW Document].

Formatada: Português

Eliminado:

Eliminado: - References - Scientific Research Publish [WWW Document]. URL

797	Brennan, J., Hackett, R., McCabe, T., Grant, J., Fortune, R.A., Forristal, P.D., 2014. The effect of		
798	tillage system and residue management on grain yield and nitrogen use efficiency in		
799	winter wheat in a cool Atlantic climate. Eur. J. Agron. 54, 61–69.		
800	https://doi.org/10.1016/j.eja.2013.11.009		Eliminado: :
801	Brown, A.D., Dexter, A.R., Chamen, W.C.T., Spoor, G., 1996. Effect of soil macroporosity and		
802	aggregate size on seed-soil contact. Soil Tillage Res. 38, 203–216.		
803	https://doi.org/10.1016/S0167-1987(96)01030-6		Eliminado: :
804	Chen, B., Liu, E., Tian, Q., Yan, C., Zhang, Y., 2014. Soil nitrogen dynamics and crop residues.		
805	A review. Agron. Sustain. Dev. 34, 429–442. https://doi.org/10.1007/s13593-014-0207-8		Formatada: Inglês (Reino Unido)
806	Chenu C., Klumpp K., Bispo A., Angers D., Colnenne C., Metay A., 2014. Stocker du carbone	~	Eliminado:
807	dans les sols agricoles : évaluation de leviers d'action pour la France. Innov. Agron. 37,	1/4	Formatada: Inglês (Reino Unido)
808	23–37.	1	Formatada: Inglês (Reino Unido)
809	Christian, D.G., Miller, D.P., 1986. Straw incorporation by different tillage systems and the effect		Tormatadar rigids (reino orido)
810	on growth and yield of winter oats. Soil Tillage Res., Reduced Tillage - Rational Use in		
811	Sustained Production, III 8, 239–252. https://doi.org/10.1016/0167-1987(86)90337-5		Eliminado: :
812	Colinet, G., Bergen, JC., Lemtiri, K., 2013. Projet SOLRESIDUS: Caractérisation pédologique,		
813	variabilité spatiale et dynamique temporelle de la disponibilité en éléments nutritifs.		
814	Dam, R.F., Mehdi, B.B., Burgess, M.S.E., Madramootoo, C.A., Mehuys, G.R., Callum, I.R.,		Formatada: francês
815	2005. Soil bulk density and crop yield under eleven consecutive years of corn with		Tormatada: Irances
816	different tillage and residue practices in a sandy loam soil in central Canada. Soil Tillage		
817	Res. 84, 41–53. https://doi.org/10.1016/j.still.2004.08.006		Eliminado:
818	Damon, P.M., Bowden, B., Rose, T., Rengel, Z., 2014. Crop residue contributions to phosphorus		Ellilliduo: .
819	pools in agricultural soils: A review. Soil Biol. Biochem. 74, 127–137.		
820	https://doi.org/10.1016/j.soilbio.2014.03.003		Eliminado: :
821	Degrune, F., 2017. Assessing microbial diversity changes associated with different tillage and		Ellilliduo: .
822	crop residue managements: study case in a loamy soil. Université de Liège, Liège,		
823	Belgique.		
824	Dick, W.A., 1983. Organic Carbon, Nitrogen, and Phosphorus Concentrations and pH in Soil		
825	Profiles as Affected by Tillage Intensity 1. Soil Sci. Soc. Am. J. 47, 102.		
826	https://doi.org/10.2136/sssaj1983.03615995004700010021x		Eliminado:
827	Dikgwatlhe, S.B., Kong, F.L., Chen, Z.D., Lal, R., Zhang, H.L., Chen, F., 2014. Tillage and		Elililliado: .
828			
828 829	residue management effects on temporal changes in soil organic carbon and fractions of a silty loam soil in the North China Plain. Soil Use Manag. 30, 496–506.		
830	https://doi.org/10.1111/sum.12143		Eliminado:
	Dolan, M.S., Clapp, C.E., Allmaras, R.R., Baker, J.M., Molina, J.A.E., 2006. Soil organic carbon		Eliminado: :
831 832	and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management.		
833	Soil Tillage Res. 89, 221–231. https://doi.org/10.1016/j.still.2005.07.015		Filminada
834	Gadermaier, F., Berner, A., Fließbach, A., Friedel, J.K., Mäder, P., 2012. Impact of reduced		Eliminado: :
835	tillage on soil organic carbon and nutrient budgets under organic farming. Renew. Agric.		
836	Food Syst. 27, 68–80. https://doi.org/10.1017/S1742170510000554		Fluid and an
837	Garcia-Franco, N., Albaladejo, J., Almagro, M., Martínez-Mena, M., 2015. Beneficial effects of		Eliminado:
	reduced tillage and green manure on soil aggregation and stabilization of organic carbon		
838 839			
	in a Mediterranean agroecosystem. Soil Tillage Res. 153, 66–75.	and the same	Eliminado:
840	https://doi.org/10.1016/j.still.2015.05.010 Gooding, M.J., Pinyosinwat, A., Ellis, R.H., 2002. Responses of wheat grain yield and quality to	//	Formatada: francês
841 k42	seed rate. J. Agric. Sci. 138, 317–331. https://doi.org/10.1017/S0021859602002137	11	Formatada: francês
842	Securate. J. Agric. Sci. 138, 317–331. https://doi.org/10.1017/30021839002002137		Eliminado:
			Formatada: francês
	22		

855	Guiot, J., Goffart, JP., Destain, JP., 1992. Le dosage des nitrates dans le sol. Bull Rech Agron		Formatada: francês
856	Gembloux 27, 61–74.		
857	Hiel, MP., Chélin, M., Parvin, N., Barbieux, S., Degrune, F., Lemtiri, A., Colinet, G., Degré, A.,		
858	Bodson, B., Garré, S., 2016. Crop residue management in arable cropping systems under		
859	a temperate climate. Part 2: Soil physical properties and crop production. A review.		
860	Biotechnol. Agron. Société Environ. 20, 245–256.		
861	IUSS Working Group WRB, 2014. World reference base for soil resources 2014: international		
862	soil classification system for naming soils and creating legends for soil maps. FAO,		
863	Rome.	_	
864	Lakanen E., Erviö R., 1971. A comparison of eights extractants for the determination of plant		Eliminado: JKI, O., 2010. Growth stages of mono-and dicotyledonous plants. BBCH Scale.
865	available micronutrients in soils. Acta Agr. Fenn. 223–232.		
866	Lal, R., Griffin, M., Apt, J., Lave, L., Morgan, M.G., 2004. Managing Soil Carbon. Science 304,		Formatada: Inglês (Reino Unido)
867	393–393. https://doi.org/10.1126/science.1093079	-	Formatada: Inglês (Reino Unido)
868	Lemke, R.L., VandenBygaart, A.J., Campbell, C.A., Lafond, G.P., Grant, B., 2010. Crop residue		Eliminado:
869	removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation) [Formatada: Inglês (Reino Unido)
870	experiment on a Udic Boroll. Agric. Ecosyst. Environ. 135, 42–51.		
871	https://doi.org/10.1016/j.agee.2009.08.010		Eliminado:
872	Linden, D.R., Clapp, C.E., Dowdy, R.H., 2000. Long-term corn grain and stover yields as a		
873	function of tillage and residue removal in east central Minnesota. Soil Tillage Res. 56,		
874	167–174. https://doi_org/10.1016/S0167-1987(00)00139-2		Eliminado: :
875	Lognoul, M., Theodorakopoulos, N., Hiel, MP., Broux, F., Regaert, D., Heinesch, B., Bodson,		
876	B., Vandenbol, M., Aubinet, M., 2017. Impact of tillage on greenhouse gas emissions by		
877	an agricultural crop and dynamics of N2O fluxes: Insights from automated closed		
878	chamber measurements. Soil Tillage Res. 167. https://doi.org/10.1016/j.still.2016.11.008		Eliminado:
879	Malhi, S.S., Nyborg, M., Solberg, E.D., Dyck, M.F., Puurveen, D., 2011. Improving crop yield		
880	and N uptake with long-term straw retention in two contrasting soil types. Field Crops	(
881	Res. 124, 378–391. https://doi.org/10.1016/j.fcr.2011.07.009		Eliminado: :
882	Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Hess, M., Lancashire, P.D., Schnock, U.,		
883	Stau\s s, R., Van Den Boom, T., others, 2009. The BBCH system to coding the		
884	phenological growth stages of plants–history and publications. J. Für Kult. 61, 41–52.		
885	Mendiburu, F.D., Simon, R., 2015. Agricolae - Ten years of an open source statistical tool for		
886	experiments in breeding, agriculture and biology (No. e1748). PeerJ PrePrints.		
887	Merante, P., Dibari, C., Ferrise, R., Sánchez, B., Iglesias, A., Lesschen, J.P., Kuikman, P.,		
888	Yeluripati, J., Smith, P., Bindi, M., 2017. Adopting soil organic carbon management		
889	practices in soils of varying quality: Implications and perspectives in Europe. Soil Tillage		
890	Res. 165, 95–106. https://doi.org/10.1016/j.still.2016.08.001		Eliminado:
891	Morris, N.L., Miller, P.C.H., Orson, J.H., Froud-Williams, R.J., 2010. The adoption of non-		
892	inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops		
893	and the environment-A review. Soil Tillage Res. 108, 1–15.		
894	https://doi.org/10.1016/j.still.2010.03.004		Eliminado: :
895	Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of		
896	phosphate in natural waters. Anal. Chim. Acta 27, 31–36. https://doi.org/10.1016/S0003-		Eliminado:
897	2670(00)88444-5		
898	Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger		
899	climate classification. Hydrol Earth Syst Sci 11, 1633–1644. https://doi.org/10.5194/hess-		Eliminado:
900	11-1633-2007		

912	Pittelkow, C.M., Liang, X., Linquist, B.A., van Groenigen, K.J., Lee, J., Lundy, M.E., van Gestel,			
913	N., Six, J., Venterea, R.T., van Kessel, C., 2014. Productivity limits and potentials of the			
914	principles of conservation agriculture. Nature advance online publication.			
915	https://doi_org/10.1038/nature13809		Eliminado: :	
916	Poeplau, C., Kätterer, T., Bolinder, M.A., Börjesson, G., Berti, A., Lugato, E., 2015. Low			
917	stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term			
918	experiments. Geoderma 237, 246–255. https://doi.org/10.1016/j.geoderma.2014.09.010		Eliminado: :	
919	Powlson, D.S., Glendining, M.J., Coleman, K., Whitmore, A.P., 2011. Implications for Soil			
920	Properties of Removing Cereal Straw: Results from Long-Term Studies. Agron. J. 103,			
921	279. https://doi.org/10.2134/agronj2010.0146s		Eliminado: :	
922	R Core Team, 2015. R: a language and environment for statistical computing [WWW			
923	Document]. GBIF.ORG. URL http://www.gbif.org/resource/81287 (accessed 2.20.17).			
924	Riley, H., 2014. Grain yields and soil properties on loam soil after three decades with			
925	conservation tillage in southeast Norway. Acta Agric. Scand. Sect. B Soil Plant Sci. 64,			
926	185–202. https://doi_org/10.1080/09064710.2014.901406		Eliminado: :	
927	Sanchez-Bragado, R., Elazab, A., Zhou, B., Serret, M.D., Bort, J., Nieto-Taladriz, M.T., Araus,		Formatada: Português	
928	J.L., 2014. Contribution of the ear and the flag leaf to grain filling in durum wheat			
929	inferred from the carbon isotope signature: Genotypic and growing conditions effects. J.			
930	Integr. Plant Biol. 56, 444–454. https://doi.org/10.1111/jipb.12106		Eliminado: :	
931	Schvartz, C., Decroux, J., Muller, JC., 2005. Guide de la fertilisation raisonnée: grandes			
932	cultures et prairies. France Agricole Editions.			
933	Smith, P., 2007. Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosystems			
934	81, 169–178. https://doi.org/10.1007/s10705-007-9138-y		Eliminado: :	
935	Soane, B.D., Ball, B.C., Arvidsson, J., Basch, G., Moreno, F., Roger-Estrade, J., 2012. No-till in			
936	northern, western and south-western Europe: A review of problems and opportunities for			
937	crop production and the environment. Soil Tillage Res. 118, 66–87.			
938	https://doi.org/10.1016/j.still.2011.10.015		Eliminado: :	
939	Soon, Y.K., Lupwayi, N.Z., 2012. Straw management in a cold semi-arid region: Impact on soil			
940	quality and crop productivity. Field Crops Res. 139, 39–46.			
941	https://doi.org/10.1016/j.fcr.2012.10.010		Eliminado: :	
942	Stenberg, M., Aronsson, H., Lindén, B., Rydberg, T., Gustafson, A., 1999. Soil mineral nitrogen			
943	and nitrate leaching losses in soil tillage systems combined with a catch crop. Soil Tillage			
944	Res. 50, 115–125. https://doi.org/10.1016/S0167-1987(98)00197-4		Eliminado: :	
945	Van Den Bossche A., De Bolle S., De Neve S., Hofman G., n.d. Effect of tillage intensity on N			
946	mineralization of different crop residues in a temperate climate - ScienceDirect [WWW			
947	Document]. URL http://www.sciencedirect.com/science/article/pii/S0167198708002080			
948	(accessed 6.15.17).			
949	Van den Putte, A., Govers, G., Diels, J., Gillijns, K., Demuzere, M., 2010. Assessing the effect of			
950	soil tillage on crop growth: A meta-regression analysis on European crop yields under			
951	conservation agriculture. Eur. J. Agron. 33, 231–241.			
952	https://doi_org/10.1016/j.eja.2010.05.008		Eliminado: :	
953	Whaley, J.M., Sparkes, D.L., Foulkes, M.J., Spink, J.H., Semere, T., Scott, R.K., 2000. The			
954	physiological response of winter wheat to reductions in plant density. Ann. Appl. Biol.			
955	137, 165–177.			
956	Zasoski, R.J., Burau, R.G., 1977. A rapid nitric-perchloric acid digestion method for multi-		Formatada: Tipo de letra:Cam	nbria Math
957	element tissue analysis. Commun. Soil Sci. Plant Anal. 8, 425–436.	******	Formatada: Tipo de letra:Cam	nbria Math
958	https://doi.org/10.1080/00103627709366735		Eliminado: :	
•				

970	Zörb, C., Senbayram, M., Peiter, E., 2014. Potassium in agriculture – Status and perspectives. J.	
971	Plant Physiol., Potassium effect in plants 171, 656–669.	
972	https://doi.org/10.1016/j.jplph.2013.08.008	 Eliminado:
973		

Crop development

Differences between treatments were observed for crop development. Incorporation of residues (IN plots) negatively impacted the first two rotations (winter wheat seasons 2009-10 and 2010-11). These differences appeared in both cases after the ear emergence stage (BBCH59, (JKI, 2010)).

1.1.1

Página 10: [2] Movido para a página 11 (N.º de Movimentação 3) 11/04/18 11:38:00

Marie-Pierre Hiel

These were more pronounced for the shoot than the ear biomasses. In 2010, with weather conditions close to historical means, lower biomass under IN treatments decreased over the crop growth period

1.1.2.

Página 10: [3] Eliminado

Marie-Pierre Hiel

11/04/18 11:38:00

and no negative impact of residues on yields were observed. In 2011, characterised by a spring drought, the combination of residue exportation and conventional tillage (CT-OUT) was favourable to the crop development.

Reduced tillage negatively impacted crop development of winter wheat (2010-11), faba bean (2013) and maize (2015) (Figure 1). This was probably due, in part, to the lower germination rate in RT plots for the winter wheat crop (2010-11) and faba bean (2013). However, the gap between treatments decreased for the different crops as they developed through the season. For faba bean no differences were observed between the final biomass and the harvested yield (Table 5), while statistical differences between RT and CT remained for maize cultivated in 2015 (Figure 1 and Table 5).

Página 10: [4] Eliminado

Marie-Pierre Hiel

11/04/18 11:38:00

Yearly grain yields were in general not influenced by residue fate or soil tillage, except for a negative effect for reduced tillage for winter wheat cultivated in 2010-11 (–9%) and maize in 2015 (–4%) and residue incorporation for winter wheat in 2010-11 (–10%, year characterised by a spring drought, Appendix A).

The cumulative grain yield since 2010 was significantly lower under reduced compared to conventional tillage (-3.4%, Table 5

Página 10: [5] Eliminado

Marie-Pierre Hiel

11/04/18 11:38:00

There was no significant effect on grain quality, except for P in winter wheat grains in 2010-11 and a slightly lower K content under conventional tillage in 2 years out of 5 (data not shown, available at https://doi.org/10.6084/m9.figshare.5442289).

Página 10: [6] Eliminado

Marie-Pierre Hiel

11/04/18 11:38:00

No correlation could be seen between germination rate and shoot dry weight produced except for faba bean (2013) and a slight effect for winter wheat (2010-11) (Figure 2A). Grain yield was only positively correlated to germination rate for winter wheat (2010-11) (Figure 2B). Similarly, grain yield was slightly correlated to shoot dry weight for that year only (Figure 2C).

Crop residues

Página 19: [7] Eliminado

Marie-Pierre Hiel

11/04/18 11:38:00

Crop production, which is an important driver of farmer's decisions, was not dramatically impacted by the different residue management strategies. When choosing a crop residue management under temperate climate, other factors than yield should determine the decision taken by a farmer, such as fuel consumption, working hours, greenhouse gas (GHG) emissions (Lognoul et al., 2017), soil fauna (Degrune, 2017), long-term soil quality and health (Parvin et al., in prep.).

The impact of residue fate (IN and OUT) and tillage treatment (conventional and reduced) on crop production and soil fertility are known to be highly dependent on the pedo-climatic conditions.