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ABSTRACT
Timely and accurate crop type distribution maps are an important inputs for crop
yield estimation and production forecasting as multi-temporal images can observe
phenological differences among crops. Therefore, time series remote sensing data are
essential for crop type mapping, and image composition has commonly been used to
improve the quality of the image time series. However, the optimal composition period
is unclear as long composition periods (such as compositions lasting half a year) are
less informative and short composition periods lead to information redundancy and
missing pixels. In this study, we initially acquired daily 30 m Normalized Difference
Vegetation Index (NDVI) time series by fusingMODIS, Landsat, Gaofen and Huanjing
(HJ) NDVI, and then composited the NDVI time series using four strategies (daily,
8-day, 16-day, and 32-day). We used Random Forest to identify crop types and
evaluated the classification performances of the NDVI time series generated from four
composition strategies in two studies regions from Xinjiang, China. Results indicated
that crop classification performance improved as crop separabilities and classification
accuracies increased, and classification uncertainties dropped in the green-up stage of
the crops. When using daily NDVI time series, overall accuracies saturated at 113-day
and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13%
and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier
than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition
NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs)
were higher than 85%. Among the four compositions, the daily NDVI time series
generated the highest classification accuracies. Although the 8-day, 16-day and 32-day
compositions had similar saturated overall accuracies (around 85% in Bole and 83% in
Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day
in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-
day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be
acquired, the 16-day composition is recommended in this study.
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INTRODUCTION
Multi-temporal remote sensing data, particularly vegetation indices (VI) time series, can
describe crop conditions during the crop growing season and have been widely used
to classify crop types (Boryan et al., 2011; Waldhoff, Lussem & Bareth, 2017; Wardlow &
Egbert, 2008). Most previous studies have employed remote sensing images of the entire
growing season to generate crop type distribution maps (Howard & Wylie, 2014; Zhang,
Feng & Yao, 2014), and the crop maps are generally acquired after the crop harvest.
However, timeline is the first factor when considering a crop type map because an early
classification result might benefit decision-makers and the private sector by helping growth
monitor, forecasting crop yield and qualifying crop drought (Gallego et al., 2008; Skakun
et al., 2017).

Considerable researches have been conducted on early-season crop type mapping (Azar
et al., 2016;Vaudour, Noirot-Cosson & Membrive, 2015;Villa et al., 2015), and there are two
vital factors that contribute to early crop identification: the crop calendar and the remote
sensing imagery characteristics. Previous early crop identification studies have shown that
if crops are separable, high temporal frequency data such as Moderate Resolution Imaging
Spectroradiometer (MODIS) can identify crops with a short image time series (Hao et
al., 2015; Zhou, Zhang & Townley-Smith, 2013). The spatial resolution of high temporal
density data, however, are relatively coarse (Verbeiren et al., 2008). Thus, mixed pixels
may lead to serious misclassification in a heterogeneous landscape (Hao, Wang & Niu,
2015b). At finer spatial resolution, the possibility of obtaining imagery with dense temporal
resolution is low. For example, Landsat ETM+ cannot provide cloud-free image in each
season globally, especially during autumn and winter (Ju & Roy, 2008). Although Landsat
and Huanjing (HJ) images have been used to improve the temporal resolution of image
time series (Hao et al., 2014); in addition, Sentinel-2 satellite may provide optical images
with higher spatial and temporal resolutions (10m and five-day) (European Space Agency,
2016), but the image time series still contain ‘‘missing values’’ due to cloud cover (Hao,
Wang & Niu, 2015a).

Most classifiers cannot handle ‘‘missing values’’ within the image time series, but image
time series at a good spatial resolution. such as 30 m, are generally irregular because of low
satellite revisit frequencies and cloud cover. One commonly used method used to reduce
the ‘‘missing value’’ pixels is image composition (Xiong et al., 2017). However, the optimal
composition period for cropland identification is not clear as short composition periods
might describe dynamic land cover changes accurately, but missing pixels caused by cloud
cover are also more likely to be included in the short composited image time series (Van
Leeuwen, Huete & Laing, 1999), and density time series generated from short compositions
also lead to information redundancy (Low et al., 2013;Wardlow & Egbert, 2010). Therefore,
the composition period should be a balance between the number of missing pixels and the
density of image time series.

To estimate the optimal composition period for crop type mapping at 30 m resolution,
an image time series with a high temporal density is firstly generated by fusing coarse
and medium spatial resolution data (Wu et al., 2015a). Gao et al. (2006) introduced the
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Spatial and Temporal Adaptive Reflectance FusionModel (STARFM) to blendMODIS and
Landsat data. Some other data fusion methods are based on the assumption that MODIS
pixels are a linear combination of each contributing land cover class (Maselli, Gilabert &
Conese, 1998; Zhukov et al., 1999), but this is not the real-case scenario (Wu et al., 2015a).
Wu et al. (2012) assumed that pixels of the same land cover have similar temporal variation
characteristics and proposed a spatial and temporal data fusion approach (STDFA). This
method has the potential to synthesize daily imagery and products such as land surface
temperature (LST) and leaf area index (LAI) at a medium resolution (Wu et al., 2015b;Wu
et al., 2015c).

The objectives of the study were to: (1) generate NDVI time series of four different
composition periods (daily, 8-day, 16-day and 32-day) from daily NDVI time series, and
evaluate classification performances of the four image compositions, and (2) test and
analyze the potential of early-season crop identification using the NDVI time series of the
four compositions.

STUDY REGIONS AND DATA SETS
Study regions
Xinjiang is the most important cotton-growing region in China, contributing half of
the national cotton yield (Wang et al., 2014; Xu, Xinxiang & Xiuju, 2007). Early crop
identification could help manage crop cultivation, particularly in terms of the cotton
monitor. In this study, two representative study regions containing major crops in Xinjiang
were selected.

The two study regions are located in Xinjiang Province, China (Fig. 1). The first study
region is Bole County (44◦20′–45◦23′N, 80◦40′–82◦42′E), located in the northwest part of
Xinjiang. The region has a temperate, continental climate characterized by dryness and
drought. The annual average temperature and rainfall are 7.0 ◦C and 202 mm. Bole County
is a representative region in north Xinjiang because this county contains the major crops
such as cotton and grapes. The crop calendar of the crops in this study region is shown
in Fig. 2. Cotton and maize are sown in the middle of April and develop between May
and August. Cotton is harvested in the middle of August and spring maize is harvested in
September. Grapes blossom in April and develop between April and June. Multiple grapes
varieties lead to long harvest period of grapes harvest (Fig. 2). Watermelon is sown in early
May, develops between May and August and is then harvested in late August.

The second study region is Luntai County (41◦39′–41◦56′N, 84◦00′–84◦21′E), located
at the Bayinguoleng Mongolian Autonomous Prefecture between Southern Tianshan and
the north of the Tarim Basin. It has a warm, temperate, continental, arid climate, and the
annual average temperature and rainfall are 10.9 ◦C and 52 mm. The main crops of Luntai
are cotton,maize,melons andwinter wheat, and the crop calendar of these crops is shown in
Fig. 2. Winter wheat is sown in early October, develops between October and the following
May and matures in early June. After the winter wheat is harvested, summer maize is sown,
which develop over July and August, and is harvest in September. Therefore, these fields
have a winter wheat-summer maize rotation, and we defined them as ‘‘wheat-maize’’ in
this study. Cotton, spring maize and melons are sown in April, melon develops between
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Figure 1 The location of Study regions in Xinjiang. (A) Locations of study regions; (B) false color image
of Bole; (C) false color image of Luntai.

Full-size DOI: 10.7717/peerj.4834/fig-1

Figure 2 Crop calendar of the major crops in this study. (A) Crop calendar in Bole; (B) Crop calendar
in Luntai.

Full-size DOI: 10.7717/peerj.4834/fig-2
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April and July and is harvest in early August, cotton develops between May and August
and is harvested in September and October, spring maize develops between May and the
middle of August and is harvested in late August and early September. We define spring
maize as ‘‘maize’’ in this study. As well as the crops, there are also some orchards with
apple and pear trees in Luntai. These trees blossom in April and the fruits become ripe in
late August/September.

Density NDVI time series
The daily NDVI time series at the 30 m resolution were obtained by fusing cloud-free
MODIS, Landat, HuanJing (HJ) and GaoFen (GF) NDVI during Day 97∼320 for Bole in
2011 and Day 93∼315 Luntai in 2013 (Wu et al., 2015d). Landsat, HJ and GF data have
medium spatial resolution (Landsat, HJ 30 m and GF-WFV 16 m). All these data were
surface reflectance and the data from Bole were georeferenced with the UTMWGS 84, zone
44N. The data from Luntai were georeferenced with the UTMWGS 84, zone 45N. The HJ
and GF data were registered to the TM images, achieving an RMSE of less than 0.3 pixels
using a second order polynomial transformation and bi-linear resampling, and the spatial
resolution of the data were resampled to 30 m. As these three medium resolution sensor
systems (Landsat, GF and HJ) have differences in parameters, bandwidth, acquisition
time and spectral response (Gao et al., 2006), the Landsat and GF NDVI were calibrated to
HJ NDVI because HJ acquired the most cloud-free observations among the three sensor
systems. The MOD09GA land surface reflectance product was employed in this study,
and the NDVI was then calculated. Next, we used the STDFA to fuse the MODIS NDVI
and HJ, GF NDVI and generated the daily NDVI time series. The fusion method and the
validation of the fusion NDVI time series were introduced by Wu et al. (2015d) in detail.
For each date, if we were able to acquire data in one of the four sensor systems, the NDVI
at 30 m was recorded and vice versa. In this study, we tried to estimate the potential of
early season crop type classification and estimate the performance of the four image time
series compositions based on the daily NDVI time series at the 30 m resolution generated
from the MODIS, Landsat, GF and HJ NDVI fusion.

One limitation is that NDVI profiles of some crops included some confusion, which
had negative effects on classification performance. Previous studies have shown that
multi-spectral bands can achieve higher classification accuracy compared with NDVI
(Waldner et al., 2015). However, we only used NDVI in this study because the daily time
series were obtained by fusing MODIS NDVI with medium-resolution NDVI data from
multi-sensors. We did not fuse MODIS data and 30 m images for the multi-spectral
bands because multi-spectral bands from multi-sensors have large difference due to
different specific band designations and spectral response functions; while, NDVI from
nultiple sensors have less difference comparing with multi-spectral bands (Hao, Wang &
Niu, 2015a; Hao et al., 2014; Wu et al., 2015a). We have evaluated the similarity between
Landsat images and HJ images, the correlation between Landsat NDVI and HJ NDVI was
more similar to a 1:1 line than multi-spectral bands (Hao et al., 2014). In addition, the
optimal features selection results showed that NDVI contributes the most to identifying
crop types. Therefore, we used NDVI time series in this study, although they were not
perfect (Hao et al., 2015).
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Table 1 Four image composition strategies.

Data Daily composition 8-day composition 16-day composition 32-day composition

97 NDVI97 max(NDVI97) max(NDVI97) max(NDVI97)
98 NDVI97, NDVI98 max(NDVI97∼NDVI98) max(NDVI97∼NDVI98) max(NDVI97∼NDVI98)
99 NDVI97, NDVI98, NDVI99 max(NDVI97∼NDVI99) max(NDVI97∼NDVI99) max(NDVI97∼NDVI99)
100 NDVI97, NDVI98, ...NDVI100 max(NDVI97∼NDVI100) max(NDVI97∼NDVI100) max(NDVI97∼NDVI100)
101 NDVI97, NDVI98 ...NDVI101 max(NDVI97∼NDVI101) max(NDVI97∼NDVI101) max(NDVI97∼NDVI101)
102 NDVI97, NDVI98 ...NDVI102 max(NDVI97∼NDVI102) max(NDVI97∼NDVI102) max(NDVI97∼NDVI102)
103 NDVI97, NDVI98 ...NDVI103 max(NDVI97∼NDVI103) max(NDVI97∼NDVI103) max(NDVI97∼NDVI103)
104 NDVI97, NDVI98 ...NDVI104 max(NDVI97∼NDVI104) max(NDVI97∼NDVI104) max(NDVI97∼NDVI104)
105 NDVI97, NDVI98 ...NDVI105 max(NDVI97∼NDVI104),

max(NDVI105)
max(NDVI97∼NDVI105) max(NDVI97∼NDVI105)

106 NDVI97, NDVI98 ...NDVI106 max(NDVI97∼NDVI104),
max(NDVI105,NDVI106)

max(NDVI97∼NDVI106) max(NDVI97∼NDVI106)

107 NDVI97, NDVI98 ...NDVI107 max(NDVI97∼NDVI104),
max(NDVI105,NDVI107)

max(NDVI97∼NDVI107) max(NDVI97∼NDVI107)

108 NDVI97, NDVI98 ...NDVI108 max(NDVI97∼NDVI104),
max(NDVI105,NDVI108)

max(NDVI97∼NDVI108) max(NDVI97∼NDVI108)

109 NDVI97, NDVI98 ...NDVI109 max(NDVI97∼NDVI104),
max(NDVI105,NDVI109)

max(NDVI97∼NDVI109) max(NDVI97∼NDVI109)

110 NDVI97, NDVI98 ...NDVI110 max(NDVI97∼NDVI104),
max(NDVI105,NDVI110)

max(NDVI97∼NDVI110) max(NDVI97∼NDVI110)

111 NDVI97, NDVI98, ... NDVI111 max(NDVI97∼NDVI104),
max(NDVI105,NDVI111)

max(NDVI97∼NDVI111) max(NDVI97∼NDVI111)

112 NDVI97, NDVI98,. ...NDVI112 max(NDVI97∼NDVI104),
max(NDVI105,NDVI112)

max(NDVI97∼NDVI112) max(NDVI97∼NDVI112)

113 NDVI97, NDVI98, ... NDVI113 max(NDVI97∼NDVI104),
max(NDVI105,NDVI112),
max(NDVI113)

max(NDVI97∼NDVI112),
max(NDVI113)

max(NDVI97∼NDVI113)

Image composition strategies
There are four image composition periods in this study: daily, 8-day, 16-day and 32-day
compositions (Table 1). For each composition period, the composited NDVI was the
maximum NDVI of the time range. For example, the max NDVI between Day 97 and 104
were defined as the 8-day composition NDVI during that time range; then, if the end of a
compositing period is not reached, for instance at Day 100, the 8-day composited NDVI
was the maximum NDVI among Day 97∼100.

Ground reference data
Ground-reference data were obtained from fieldwork in August 2011 in Bole, and
September 2013 in Luntai. Several 300m*300m sampling plots were surveyed across
the study areas, and the crop type information was collected. The field boundaries within
the plots were recorded using GPS and digitized as polygons. Authorizations to access
agricultural fields were given verbally by the National Bureau of Statistics of China (NBS)
Survey Office in Xinjiang and the native farmers. Next, plot polygons were extended to
field polygons based on very high resolution images (Google Earth). We overlaid the field
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Figure 3 Converting the field survey plots to polygons. (A) Three field surveyed plots; (B) the polygons
extended from field plots and (C) the sample points (green points) on the Landsat image.

Full-size DOI: 10.7717/peerj.4834/fig-3

boundaries on Landsat images and shrank the field boundaries to ensure that all Landsat
pixels enclosed in the polygons were pure crop pixels. Finally, the polygons were converted
to pixel format using the TM grid (Fig. 3). Several surveyed fields (polygons) were randomly
selected for training and the others were used as validation. For both training and validation
polygons, a portion of samples were selected randomly from the polygons and were used
as training and validation samples. The number of surveyed fields and samples is shown in
Table 2.

METHODS
Overview of the method
A flowchart of this study is presented in Fig. 4. First, we composited the NDVI time series
using four composition strategies (daily, 8-day, 16-day, and 32-day compositions). Then,
both Jeffries–Matusita (JM) distance and the extension of JM distance (JBh) were used
to calculate the crop separability. Random Forest (RF) algorithm was used to classify
the crop types and classification accuracy and uncertainty were both used to evaluate
classification performance. The input NDVI time series was increased from one day to
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Figure 4 Flowchart of this study.
Full-size DOI: 10.7717/peerj.4834/fig-4

Table 2 Number of surveyed fields, training and validation samples in the study area.

Training Validation

Polygon number Sample number Polygon number Sample number

Bole
Cotton 54 1510 29 486
Grape 26 852 11 130
Maize 28 657 23 210
Watermelon 7 726 5 232
Luntai
Cotton 50 309 44 236
Maize 20 138 18 89
Melon 19 106 12 56
Orchard 23 118 25 91
Wheat-Maize 22 111 29 74

the entire crop growing season for each composition strategy. Finally, the potential of
early season crop type mapping were evaluated using the crop separability, classification
accuracy and uncertainty.

Separability measure
We used JM distance to measure the separability of each pair-wise crop because previous
research proved that JM distance have high potential to measure crop separability
(Medjahed et al., 2016; Murakami et al., 2001). The JM distance between a pair of crops
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could be calculated by Eq. (1):

JM
(
ci,cj

)
=

∫
x

(√
p(x|ci)−

√
p
(
x|cj

))2

dx (1)

where x is a span of VI time series values, and ci and cj are the two crop types under
consideration. Then, (1) could be simplified as JM= 2

(
1−e−B

)
, where

B=
1
8
(
µi−µj

)T(Ci+Cj

2

)−1(
µi−µj

)
+

1
2
ln

∣∣∣∣∣∣
∣∣Ci+Cj

∣∣
2
√
|Ci|×

∣∣Cj
∣∣
∣∣∣∣∣∣
 (2)

Ci andCj are the covariancematrices of classes i and j, and |Ci| and |Cj | are the determinants
of Ci and Cj . The JM distance ranges from 0 to 2, and larger JM distance indicats higher
level of separability between the two classes (Adam &Mutanga, 2009).

Whenmeasuring the separability ofmultiple classes, different classes were given different
weights to account for the sample sizes. An extension of the JM distance (JBh) was used
for this purpose (Bruzzone, Roli & Serpico, 1995). JBh was calculated using Eq. (6) based on
Bhattacharyya bounds:

JBh=
N∑
i=1

N∑
j>i

√
p(wi)×p(wj)× JM2(i,j) (3)

where N was the number of classes and p(wi) and p(wj) were the α priori probabilities
of classes i and j, respectively, which were calculated using the combination of training
samples in Table 1.

Classifier
The Random Forest (RF) classifier was employed in this study. The RF model combines
multiple classification trees, and the model output is determined by the majority vote
of the single classification trees (Breiman, 2001). When training the RF model, each tree
is constructed using two-thirds of the training records, and the remaining one-third of
the records are used for a test classification, with an error referred to the ‘‘out-of-bag
error’’ (OOB error). The RF could handle high dimensional data effectively and have
been widely employed for land cover classification (Immitzer, Vuolo & Atzberger, 2016;
Rodriguez-Galiano et al., 2012). Two free parameters of RF; the number of trees (ntree)
and the number of features to split the nodes (mtry), were defined as 1000 and the square
root of the total number of input features (Loosvelt et al., 2012), and both the crop-label
and probabilistic output were obtained using the Random Forest library for R (Breiman et
al., 2013).

Accuracy assessment
Classification accuracy and uncertainty were both used to evaluate classification
performance. The confusion-matrix-derived accuracy metrics, overall accuracy (OA),
producer’s accuracy (PA), user’s accuracy (UA) and Kappa coefficient, were used in
this study (Congalton, 1991). RF also provides the probabilistic output for each pixel,(
p1(x),...,pk (x),...,pK (x), k= 1,2,...,K

)
, which could be used to generate classification
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Figure 5 Crop separability of four image composition strategies in Bole and Luntai. (A) Crop separa-
bility in Bole; (B) Crop separability in Luntai.

Full-size DOI: 10.7717/peerj.4834/fig-5

uncertainties, and we calculated the α quadratic entropy as classification uncertainty (Pal
& Bezdek, 1994), (Eq. (4)):

H
(
p(x)

)
=

1
n×2−2α

K∑
k=1

pαk (x)
(
1−pk (x)

)α (4)

where H
(
p(x)

)
is the α quadratic entropy of the vector p(x),p1(x),...,pK (x) are the

probabilistic outputs, α is a user-defined value which ranges from 0 and 1, and α= 0.5 is
used in this study. And smaller H

(
p(x)

)
means more reliable classification. One advantage

of the α quadratic entropy is that it applies all information to the probability vector. Next,
we calculated the ratio of the correctly classified pixels and wrongly classified pixels as the
uncertainty ratio (Eq. (5)):

Uncertainty Ratio=
Average(UncerC)
Average(UncerU )

(5)

where Average(UncerC) is the average uncertainty of all correctly identified pixels
(validation samples), and Average(UncerU ) is the average uncertainty of all misclassified
pixels. Therefore, a lower uncertainty ratio corresponds with a better classification
performance.

RESULTS AND DISCUSSIONS
Crop separability
Figure 5 showed the effect of time series length on crop separability for each composition
strategy. For all four compositions in both study regions, JBh distance increased with time
series length and reached saturation points; after the saturation points, longer time series
did not improve crop separability significantly. In Bole, the daily composition NDVI time
series reached the saturated point the earliest (the time series length was 107-day) and
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Figure 6 Pair-wise JM distance for different composition strategies (Bole). (A) JM distance between
cotton and grape; (B) JM distance between cotton and maize; (C) JM distance between cotton and water-
melon; (D) JM distance between grape and maize; (E) JM distance between grape and watermelon; (F) JM
distance between maize and watermelon.

Full-size DOI: 10.7717/peerj.4834/fig-6

the saturated JBh was 5.53; the JBh distance of the 8-day and 16-day composition NDVI
time series saturated at 155-day and 158-day, and the saturated JBh distances were 5.63
and 5.22, respectively. JBh distance of the 32-day composition time series saturated the
latest (193-day time series) and the saturated JBh was 4.47. In Luntai, the JBh distances of
the daily, 8-day and 16-day composition time series reached saturated points at 170-day,
and the saturated JBh distances were 7.42, 7.21 and 7.02, respectively. The JBh distance of
the 32-day composition time series saturated the latest (196-day), and the saturated JBh
distance was 6.67.

Figures 6 and 7 showed the effect of the time series length and image composition
strategies on pair-wise crop JM distances. Generally, crop separability increased with the
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Figure 7 Pair-wise JM distance for different composition strategies (Luntai). (A) JM distance between
cotton and maize; (B) JM distance between cotton and melon; (C) JM distance between cotton and or-
chard; (D) JM distance between cotton and maize; (E) JM distance between maize and melon; (F) JM dis-
tance between maize and orchard; (G) JM distance between maize and wheat-maize; (H) JM distance be-
tween melon and orchard; (I) JM distance between melon and wheat-maize; (J) JM distance between or-
chard wheat-maize.

Full-size DOI: 10.7717/peerj.4834/fig-7
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time series length and reached saturated points, and the daily time series reached saturated
points the earliest and had the highest JM distance. In Bole, cotton was confused withmaize
and grapes. For cotton and grapes, the JM distance of the daily composition time series
saturated at 88-day and the saturated JM distance was 1.95. The 8-day composition and
16-day composition had similar trends; the JM distance saturated at 134-day and 145-day,
and the saturated JM distances were 1.88 and 1.80, respectively. For the 32-day composition
time series, although the JM distance saturated early (at 78-day), the saturated JM distance
was 1.44, which indicated that the 32-day composition time series cannot distinguish
between these two crops. For cotton and maize, the JM distances of the daily, 8-day and
16-day composition time series saturated at 140-day, 153-day and 161-day. The saturated
JM distances were 1.94, 1.92 and 1.80. However, the saturated JM distance of the 32-day
composition time series was 1.36 at 161-day. In Luntai, wheat-maize was highly separable
from the other crops in the early season (30-day). Melon crops were separable from cotton
and maize at 90-day, but cotton and maize were still confusion. The JM distances of
the daily, 8-day and 16-day composition time series saturated at 143-day, 170-day and
172-day. The saturated JM distances were 1.91, 1.78 and 1.77. 32-day composition had a
low separability between these two crops as the saturated JM distance was 1.57 at 186-day.

Classification accuracy
Figure 8 showed the effect of time series length on overall classification accuracy (OA)
and Kappa coefficient for each composition strategy. Generally, the daily composition
time series had the best OA, the 8-day and 16-day composition time series had similar
performances and the 32-day composition had the lowest accuracy. In Bole, both OA and
Kappa coefficient increased gradually with time series length and then saturated. The OA
of the daily composition time series saturated at 113-day, and the saturated OA and Kappa
coefficient were 86.13% and 0.7505. The OA of the 8-day and 16-day composition time
series saturated at 153-day and 156-day, and their saturated OAs were 85.31% and 85.10%.
However, the OA of the 32-day composition time series saturated at 172-day, and the
saturated OA was 85.22%. In Luntai, the OA and Kappa coefficient increased at 90-day,
which was consistent with the separability result that the JBh distance increased at 90-day in
Luntai. The OA of the daily, 8-day, 16-day and 32-day composition time series saturated at
116-day, 133-day, 132-day and 170-day. The saturated OAs were 91.89%, 83.81%, 83.95%
and 82.41%.

Figures 9 and 10 showed the effect of time series length on the PAs and UAs of each
composition. In Bole, the cotton PAs and UAs of the four image composition strategies had
similar trends and saturated at 90-day. The saturated PAs and UAs were about 95% and
87%. The grape PAs and UAs of the daily, 8-day and 16-day image compositions showed
similar trends. The PAs saturated at 90-day and the UAs saturated at 120-day. The saturated
PAs and UAs were around 95% and 85%, and the PA and UA of the 32-day composition
saturated late. The PA saturated at 130-day and the UA saturated at 150-day. For maize
and watermelon, the daily composition time series had the highest PA and UA, and the
32-day composition data had the lowest accuracies. The 16-day and 32-day compositions
performed similarly. The PA of maize was low as the saturated PA of maize was around
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Figure 8 Overall accuracy and Kappa coefficient in Bole and Luntai. (A) OA in Bole; (B) Kappa coeffi-
cient in Bole; (C) OA in Luntai; (D) Kappa coeffcient in Luntai.

Full-size DOI: 10.7717/peerj.4834/fig-8

87%. In Luntai, the PAs and UAs of melon, orchards and wheat-maize increased at 90-day,
and all four composition strategies had high accuracies (higher than 90%). Meanwhile,
cotton and maize were confused, and the saturated PAs of maize were 65.3%, 65.7% and
64.6% at 123-day, 155-day and 156-day for the daily, 8-day and 16-day compositions. The
maize PA of the 32-day time series was 47.2% when the entire NDVI time series were used.

Maize and grape in Bole and maize in Luntai had relatively low accuracies for all four
composition strategies because of the confusion among the NDVI time series of these crops.
The confusion between cotton and grape in Bole was mainly caused by the large standard
deviation of grape NDVI profiles (Fig. 11), which was consistent with the large variability
of grape reference NDVI time series (Hao et al., 2016). In addition, the confusion between
cotton and maize in both study regions was caused by the high similarity between the
cotton and maize NDVI time series (Fig. 11).

We then evaluated how early early we can identify crops (when both the PA and UA are
higher than 85%, Table 3) using time series with different composition strategies. In Bole,
as the cotton was harvested in late August (Fig. 2), it could be identified 60 days before the
harvest using the daily NDVI time series and 40 days before the harvest using the 8-day
and 16-day composition time series. In Luntai, cotton was harvested in early September as
the PAs and UAs of the daily, 8-day and 16-day NDVI time series were higher than 85% at
104-day, 113-day and 115-day, and the cotton could bemapped 35∼45 days before harvest.
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Figure 9 Producer’s accuracies and user’s accuracies in Bole. (A) PA of cotton; (B) UA of cotton; (C)
PA of grape; (D) UA of grape; (E) PA pf maize; (F) UA of maize; (G) PA of watermelon; (H) UA of water-
melon.

Full-size DOI: 10.7717/peerj.4834/fig-9
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Figure 10 Producer’s accuracies and user’s accuracies in Luntai. (A) PA of cotton; (B) UA of cotton;
(C) PA of maize; (D) UA of maize; (E) PA of melon; (F) UA of melon; (G) PA of orchard; (H) UA of or-
chard; (I) PA of wheat-maize; (J) UA of wheat-maize.

Full-size DOI: 10.7717/peerj.4834/fig-10
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Figure 11 Temporal NDVI time series of some confusion crops. Black lines are the mean NDVI time
series of each crop, blue lines are the Standard Deviation as Y error. (A) cotton NDVI time series in Bole;
(B) grape NDVI time series in Bole; (C) maize NDVI time series in Maize; (D) cotton NDVI time series in
Luntai; (E) maize NDVI time series in Luntai.

Full-size DOI: 10.7717/peerj.4834/fig-11

Table 3 Shortest time series length when both the PA and UAwere higher than 85%. ‘-’’ in the table ei-
ther PA or UA of the crop was lower than 85% using the corresponding composition strategy.

Bole

Cotton Grape Maize Watermelon

Daily 85 90 156 89
8-day 102 112 190 123
16-day 107 121 202 131
32-day 162 153 – 131

Luntai

Cotton Maize Melon Orchard Wheat-maize

Daily 104 – 97 97 97
8-day 113 – 113 98 113
16-day 115 – 113 98 113
32-day 170 – 109 115 113

Meanwhile, as the cotton PA and UA of the 32-day composition reached 85% at 162-day
and 170-day in Bole and Luntai, the 32-day composition cannot support early-season
cotton identification. Accuracies of watermelon reached 85% at 89-day, 123-day, 131-day
and 131-day when using the daily, 8-day, 16-day and 32-day time series. As watermelon
was harvested in late August in Bole, the daily composition data was able to identify
watermelon 40 days before the harvest. However, as grape was harvested between late June
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Figure 12 Classification uncertainty ratio in Bole and Luntai. (A) Classification uncertainty in Bole; (B)
classification in Luntai.

Full-size DOI: 10.7717/peerj.4834/fig-12

and September in Bole and melon was harvested in early August in Luntai (Fig. 2), the
early harvesting of grape in Bole and melon in Luntai cannot be correctly identified by the
four compositions in the early season.

Fundamentally, dense NDVI time series can describe crop growth conditions more
precisely (Zhan et al., 2017). For example, Zhang, Friedl & Schaaf (2009) found that
vegetation phenology parameters could be estimated higher accuracies using denser
time series. As most summer crops have different green-up speeds, dense time series have
a higher probability of identifying such tiny differences. While long composition periods
(such as the 32-day composition) lead to late classification saturation and low classification
accuracy.

Although the daily NDVI time series achieved the best classification accuracy and the
best temporal efficiency, the 30 m image time series cannot be obtained at daily frequency
in the most cases. Thus, data composition should be considered in order to make full use
of partly high-quality data such as the Landsat-7 SCL-off data and partly cloud-free data
(Google, 2015;NASA, 2015). Among the 8-day, 16-day and 32-day compositions, the 8-day
and 16-day composition data have earlier saturation data and a higher accuracy than the
32-day composition; thus, the 16-day composition strategy is recommended in this study
for the identification of crop types if the daily NDVI time series cannot be acquired.

Classification uncertainty
Figure 12 showed the classification uncertainty of the two study regions. In both study
regions, the uncertainty ratio decreased with time series length. In Bole, the daily
composition time series had the lowest uncertainty ratio when the time series length was
shorter than 140 days. After day 140, the daily, 8-day and 16-day composition strategies
had similar classification uncertainties and the saturated uncertainty was around 0.4 at
140-day. The 32-day composition had high classification uncertainty and the uncertainty
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Figure 13 Subset Crop—type mapping in Bole. This Figure was obtained using images of the entire time
series of each image composition strategies. (A) True color image and surveyed plots; (B) daily time series
derived classification result; (C) 8-day time series derived classification result; (D) 16-day time series de-
rived classification result; (E) 32-day time series derived classification result.

Full-size DOI: 10.7717/peerj.4834/fig-13

ratio decreased to 0.4 at 170-day. In Luntai, the daily, 8-day and 16-day time series had
similar uncertainties and the uncertainty ratio dropped at 90-day and finally decreased to
0.3. The classification uncertainty of the 32-day composition time series was higher than
the other compositions over the entire growing season.

Crop distributions
Figures 13 and 14 showed that the crop distribution maps generated from the four NDVI
time series composition strategies were similar. Cotton was the dominant crop in both
study regions. In Bole, the crop fields were characterized by homogenous crop fields with
large field sizes. Compared with crop the distribution maps generated from the daily, 8-day
and 16-day composition time series, the crop map derived from the 32-day composition
time series result wasmore speckled, in particular some cotton pixels at the field boundaries
were mislabeled as grape crops. The cropland in Luntai was fragmented, so there were
a large number of mixed pixels in the 30 m image time series. These mixed pixels had
low NDVI because they comprised crops and the farm lanes. As melon had lower NDVI
than cotton, maize and orchards, the mixed pixels were mostly misclassified as melon. As
our validation samples were all pure pixels, the accuracy assessments did not describe the
misclassifications of the mixed pixels in Luntai.

CONCLUSION
This study compared the performances of daily, 8-day, 16-day and 32-day composition
NDVI time series for crop types classification and reached the following conclusions:

Hao et al. (2018), PeerJ, DOI 10.7717/peerj.4834 19/25

https://peerj.com
https://doi.org/10.7717/peerj.4834/fig-13
http://dx.doi.org/10.7717/peerj.4834


Figure 14 Subset Crop type mapping in Luntai. This Figure was obtained using images of the entire
time series from each image composition strategy. (A) True color image and surveyed plots; (B) daily time
series derived classification result; (C) 8-day time series derived classification result; (D) 16-day time series
derived classification result; (E) 32-day time series derived classification result.

Full-size DOI: 10.7717/peerj.4834/fig-14

(1) the crops could be classified early as crop separability, classification accuracies and
uncertainties saturated early. When using the daily composition NDVI time series, the OAs
saturated at 113-day and 116-day, and the saturated OAs were 86.13% and 91.89% in Bole
and Luntai. Longer time series could not improve the classification accuracy. (2) Cotton
could be identified 40∼60 days and 35∼45 days before harvesting in Bole and Luntai when
using the daily, 8-day and 16-day composition NDVI time series as both the PAs and UAs
were higher than 85%. (3) The daily NDVI time series outperformed the other composition
strategies because of the higher classification accuracies. However, if the daily NDVI time
series cannot be acquired, the 16-day composition strategy was recommended in this
study as the 8-day and 16-day compositions generated similar classification accuracies
and outperformed the 32-day composition results. In the future, as more sensors or even
geosynchronous orbit satellites (Xu et al., 2017) at a medium resolution become available,
we would further improve the crop classification in early season.
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