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ABSTRACT
Background. Unlike full reading, ‘skim-reading’ involves the process of looking
quickly over information in an attempt to cover more material whilst still being
able to retain a superficial view of the underlying content. Within this work, we
specifically emulate this natural human activity by providing a dynamic graph-based
view of entities automatically extracted from text. For the extraction, we use shallow
parsing, co-occurrence analysis and semantic similarity computation techniques.
Our main motivation is to assist biomedical researchers and clinicians in coping with
increasingly large amounts of potentially relevant articles that are being published
ongoingly in life sciences.
Methods. To construct the high-level network overview of articles, we extract
weighted binary statements from the text. We consider two types of these statements,
co-occurrence and similarity, both organised in the same distributional representa-
tion (i.e., in a vector-space model). For the co-occurrence weights, we use point-wise
mutual information that indicates the degree of non-random association between
two co-occurring entities. For computing the similarity statement weights, we use
cosine distance based on the relevant co-occurrence vectors. These statements are
used to build fuzzy indices of terms, statements and provenance article identifiers,
which support fuzzy querying and subsequent result ranking. These indexing and
querying processes are then used to construct a graph-based interface for searching
and browsing entity networks extracted from articles, as well as articles relevant
to the networks being browsed. Last but not least, we describe a methodology for
automated experimental evaluation of the presented approach. The method uses
formal comparison of the graphs generated by our tool to relevant gold standards
based on manually curated PubMed, TREC challenge and MeSH data.
Results. We provide a web-based prototype (called ‘SKIMMR’) that generates a
network of inter-related entities from a set of documents which a user may explore
through our interface. When a particular area of the entity network looks interesting
to a user, the tool displays the documents that are the most relevant to those entities
of interest currently shown in the network. We present this as a methodology for
browsing a collection of research articles. To illustrate the practical applicability of
SKIMMR, we present examples of its use in the domains of Spinal Muscular Atrophy
and Parkinson’s Disease. Finally, we report on the results of experimental evaluation
using the two domains and one additional dataset based on the TREC challenge.
The results show how the presented method for machine-aided skim reading
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outperforms tools like PubMed regarding focused browsing and informativeness
of the browsing context.

Subjects Bioinformatics, Neuroscience, Human–Computer Interaction, Computational Science
Keywords Machine reading, Skim reading, Publication search, Text mining,
Information visualisation

INTRODUCTION
In recent years, knowledge workers in life sciences are increasingly overwhelmed by an

ever-growing quantity of information. PubMed1 contained more than 23 million abstracts

1 The central US repository of published
papers in the life sciences since the
1950s, see http://www.ncbi.nlm.nih.
gov/pubmed.

as of November 2013, with a new entry being added every minute. The current textual

content available online as PubMed abstracts amount to over 2 billion words (based on

estimates derived from a random sample of about 7,000 records). Information retrieval

technology helps researchers pinpoint individual papers of interest within the overall mass

of documents, but how can scientists use that to acquire a sense of the overall organization

of the field? How can users discover new knowledge within the literature when they might

not know what they are looking for ahead of time?

Strategic reading aided by computerised solutions may soon become essential for

scientists (Renear & Palmer, 2009). Our goal is to provide a system that can assist readers to

explore large numbers of documents efficiently. We present ‘machine-aided skim-reading’

as a way to extend the traditional paradigm of searching and browsing a text collection

(in this case, PubMed abstracts) through the use of a search tool. Instead of issuing a

series of queries to reveal lists of ranked documents that may contain elements of interest,

we let the user search and browse a network of entities and relations that are explicitly or

implicitly present in the texts. This provides a simplified and high-level overview of the

domain covered by the text, and allows users to identify and focus on items of interest

without having to read any text directly. Upon discovering an entity of interest, the user

may transition from our ‘skimming’ approach to read the relevant texts as needed.

This article is organised as follows. ‘Methods’ describes methods used in SKIMMR for:

(1) extraction of biomedical entities from data; (2) computation of the co-occurrence and

similarity relationships between the entities; (3) indexing and querying of the resulting

knowledge base; (4) evaluating the knowledge base using automated simulations. Each

of the methods is explained using examples. ‘Results’ presents the SKIMMR prototype

and explains typical usage of the tool in examples based on user interactions. We also

describe evaluation experiments performed with three different instances of the tool. In

‘Discussion’ we discuss the results, give an overview of related work and outline our future

directions. There is also ‘Formulae Definitions’ that provides details on some of the more

complex formulae introduced in the main text.

The main contributions of the presented work are: (1) machine-aided skim-reading

as a new approach to semi-automated knowledge discovery; (2) fuzzy indexing and

querying method for efficient on-demand construction and presentation of the high-level
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graph-based article summaries; (3) detailed examples that explain the applied methods

in a step-by-step fashion even to people with little or no computer science background;

(4) an open-source prototype implementing the described method, readily available for

processing custom data, and also in the form of two pre-computed instances deployed on

Spinal Muscular Atrophy and Parkinson’s Disease data; (5) an evaluation methodology

based on simulations and formally defined measures of semantic coherence, information

content and complexity that can be used not only for evaluating SKIMMR (as we did in the

article), but also for assessment of other tools and data sets utilising graph structures.

METHODS
This section describes how the knowledge base supporting the process of machine-aided

skim reading is generated from the input data (i.e., biomedical articles and data). Firstly

we describe extraction of entities and basic co-occurrence relationships between them

(‘Extracting basic co-occurrence statements from texts’). ‘Computing a knowledge base

from the extracted statements’ is about how we compute more general, corpus-wide

relationships from the basic extracted co-occurrence statements. ‘Indexing and querying

the knowledge base’ explains how the processed content can be indexed and queried in

order to generate the graph-based summaries with links to the original documents. Finally,

‘Evaluation methodology’ introduces a method for a simulation-based evaluation of the

generated content in the context of machine-aided skim reading. For the research reported

in this article, we received an exemption from IRB review by the USC UPIRB, under

approval number UP-12-00414.

Extracting basic co-occurrence statements from texts
We process the abstracts by a biomedical text-mining tool2 in order to extract named

2 A part of the LingPipe suite, see http://
alias-i.com/lingpipe/ for details.

entities (e.g., drugs, genes, diseases or cells) from the text. For each abstract with a PubMed

ID PMID, we produce a set of (ex,ey,cooc((ex,ey),PubMedPMID),PubMedPMID) tuples,

where ex,ey range over all pairs of named entities in the abstract with the PMID identifier,

and cooc((ex,ey),PubMedPMID) is a co-occurrence score of the two entities computed using

the formula (1) detailed in ‘Co-occurrences’. The computation of the score is illustrated in

the following example.

Example 1 Imagine we want to investigate the co-occurrence of the parkinsonism and

DRD (dopamine-responsive dystopia) concepts in a data set of PubMed abstracts concerned

with clinical aspects of Parkinson’s disease.3 There are two articles in the data set where the

3 Which we have processed in one of the
pre-computed instances of SKIMMR,
see ‘Parkinson’s disease’ for details.

corresponding terms co-occur:

• Jeon BS, et al. Dopamine transporter density measured by 123Ibeta-CIT single-photon

emission computed tomography is normal in dopa-responsive dystonia (PubMed ID:

9629849).

• Snow BJ, et al. Positron emission tomographic studies of dopa-responsive dystonia and

early-onset idiopathic parkinsonism (PubMed ID: 8239569).
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The relevant portions of the first abstract (PubMed ID: 9629849) are summarised in the

following table (split into sentences numbered from the beginning of the text):

... ...

12 Therefore, we performed 123Ibeta-CIT single-photon emission computed tomography
(123Ibeta-CIT SPECT) in clinically diagnosed DRD, PD, and JPD, and examined whether
DAT imaging can differentiate DRD from PD and JPD.

... ...

14 Five females (4 from two families, and 1 sporadic) were diagnosed as DRD based on
early-onset foot dystonia and progressive parkinsonism beginning at ages 7–12.

... ...

17 123Ibeta-CIT striatal binding was normal in DRD, whereas it was markedly decreased
in PD and JPD.

... ...

22 A normal striatal DAT in a parkinsonian patient is evidence for a nondegenerative cause
of parkinsonism and differentiates DRD from JPD.

23 Finding a new mutation in one family and failure to demonstrate mutations in the
putative gene in other cases supports the usefulness of DAT imaging in diagnosing DRD.

Based on the sentence numbers in the excerpt, we can compute the co-occurrence score of the

(parkinsonism,DRD) tuple as:

cooc((parkinsonism, DRD),PubMed9629849) =


1 +

1

4
+

1

3
+

1

3


+


1 +

1

2


= 3.416̄.

Similar to the above, the portions relevant to the (parkinsonism,DRD) co-occurrences

according to the second abstract (PubMed ID: 8239569) are as follows:

1 There are two major syndromes presenting in the early decades of life
with dystonia and parkinsonism: dopa-responsive dystonia (DRD) and
early-onset idiopathic parkinsonism (EOIP).

2 DRD presents predominantly in childhood with prominent dystonia and
lesser degrees of parkinsonism.

... ...

5 Some have suggested, however, that DRD is a form of EOIP.

... ...

The co-occurrence score is then:

cooc((parkinsonism,DRD),PubMed8239569) =


1 +

1

2
+ 1 +

1

2


+

1

4
= 3.25.

Therefore the basic co-occurrence tuples produced from the two articles are:

(parkinsonism,DRD,3.416̄,PubMed9629849),

(parkinsonism,DRD,3.25,PubMed8239569).
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Computing a knowledge base from the extracted statements
From the basic co-occurrence statements, we compute a knowledge base, which is a

comprehensive network of interlinked entities. This network supports the process of

navigating a skeletal structure of the knowledge represented by the corpus of the input

PubMed articles (i.e., the actual skim reading). The knowledge base consists of two types of

statements: (1) corpus-wide co-occurrence and (2) similarity. The way to compute the par-

ticular types of statements in the knowledge base is described in the following two sections.

Corpus-wide co-occurrence
The basic co-occurrence tuples extracted from the PubMed abstracts only express the co-

occurrence scores at the level of particular documents. We need to aggregate these scores

to examine co-occurrence across the whole corpus. For that, we use point-wise mutual

information (Manning, Raghavan & Schütze, 2008), which determines how much two

co-occurring terms are associated or disassociated, comparing their joint and individual

distributions over a data set. We multiply the point-wise mutual information value by

the absolute frequency of the co-occurrence in the corpus to prioritise more frequent

phenomena. Finally, we filter and normalise values so that the results contain only scores in

the [0,1] range. The scores are computed using the formulae (2)–(5) in ‘Co-occurrences’.

The aggregated co-occurrence statements that are added to the knowledge base are in

the form of (x,cooc,y,ν(fpmi(x,y),P)) triples, where x,y range through all terms in the

basic co-occurrence statements, the scores are computed across all the documents where

x,y co-occur, and the cooc expression indicates co-occurrence as the actual type of the

relation between x,y. Note that the co-occurrence relation is symmetric, meaning that if

(x,cooc,y,w1) and (y,cooc,x,w2) are in the knowledge base, w1 must be equal to w2.

Example 2 Assuming our corpus consists only of the two articles from Example 1, the point-

wise mutual information score of the (parkinsonism,DRD) tuple can be computed using the

following data:

• p(parkinsonism, DRD)–joint distribution of the (parkinsonism,DRD) tuple within

all the tuples extracted from the PubMed abstracts with IDs 9629849 and 8239569, which

equals 3.416̄ + 3.25 = 6.6̄ (sum across all the (parkinsonism,DRD) basic co-occurrence

tuples);

• p(parkinsonism),p(DRD)–individual distributions of the parkinsonism,DRD argu-

ments within all extracted tuples, which equal 28.987 and 220.354, respectively (sums of

the weights in all basic co-occurrence statements that contain parkinsonism or DRD as

one of the arguments, respectively);

• F(parkinsonism, DRD),|T|–the absolute frequency of the parkinsonism,DRD

co-occurrence and the number of all basic co-occurrence statements extracted from the

abstracts, which equals to 2 and 1,414, respectively;

• P–the percentile for the normalisation, equal to 95, which results in the normalisation

constant 2.061 (a non-normalised score such that only 5% of the scores are higher than

that).

Nováček and Burns (2014), PeerJ, DOI 10.7717/peerj.483 5/38

https://peerj.com
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://dx.doi.org/10.7717/peerj.483


The whole formula is then:

npmi(parkinsonism, DRD) = ν(fpmi(parkinsonism, DRD),P) =

= ν(F(parkinsonism, DRD) · log2
p(parkinsonism,DRD)

p(parkinsonism)p(DRD)
,95)

.
=

.
=

2 · log2
6.6̄

28.987·220.354

2.061
.
= 0.545.

Thus the aggregated co-occurrence statement that is included in the knowledge base is

(parkinsonism,cooc,DRD,0.545).

Similarity
After having computed the aggregated and filtered co-occurrence statements, we add

one more type of relationship–similarity. Many other authors have suggested ways for

computing semantic similarity (see d’Amato, 2007 for a comprehensive overview). We base

our approach on cosine similarity, which has become one of the most commonly used

approaches in information retrieval applications (Singhal, 2001; Manning, Raghavan &

Schütze, 2008). The similarity and related notions are described in detail in ‘Similarities’,

formulae (6) and (7).

Similarity indicates a higher-level type of relationship between entities that may not

be covered by mere co-occurrence (entities not occurring in the same article may still be

similar). This adds another perspective to the network of connections between entities

extracted from literature, therefore it is useful to make similarity statements also a part

of the SKIMMR knowledge base. To do so, we compute the similarity values between

all combinations of entities x,y and include the statements (x,sim,y,sim(x,y)) into the

knowledge base whenever the similarity value is above a pre-defined threshold (0.25 is used

in the current implementation).4

4 Similar to the co-occurrence statements
described before, the sim expression
refers to the type of the relation between
x,y, i.e., similarity.

A worked example of how to compute similarity between two entities in the sample

knowledge base is given below.

Example 3 Let us use ‘parkinsonisms′, ‘mrpi values′ as sample entities a,b. In a full ver-

sion of Parkinson’s disease knowledge base (that contains the data used in the previous exam-

ples, but also hundreds of thousands of other statements), there are 19 shared entities among

the ones related to a,b (for purposes of brevity, each item is linked to a short identifier to be

used later on): (1) msa− p ∼ t0, (2) clinically unclassifiable parkinsonism ∼ t1,

(3) cup ∼ t2, (4) vertical ocular slowness ∼ t3, (5) baseline clinical

evaluation ∼ t4, (6) mr ∼ t5, (7) parkinsonian disorders ∼ t6,

(8) psp phenotypes ∼ t7, (9) duration ∼ t8, (10) patients ∼ t9,

(11) clinical diagnostic criteria ∼ t10, (12) abnormal mrpi values ∼ t11,

(13) pd ∼ t12, (14) magnetic resonance parkinsonism index ∼ t13,

(15) parkinson disease ∼ t14, (16) mri ∼ t15, (17) parkinson′s disease ∼ t16,

(18) psp ∼ t17, (19) normal mrpi values ∼ t18.
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The co-occurrence complements a,b of the parkinsonisms, mrpi values entities (i.e.,

associated co-occurrence context vectors) are summarised in the following table:

t0 t1 t2 t3 t4 t5 t6 t7 t8 t10 t11 t13 t14 t15 t17 t18

a 0.14 0.39 1.0 0.08 0.26 0.06 0.18 0.4 0.07 0.27 0.09 0.7 0.03 0.14 0.33 0.25

b 0.26 0.57 1.0 0.3 0.82 0.2 0.33 0.26 0.39 0.43 0.36 0.41 0.06 0.34 1.0 1.0

Note that the elements t9,t12,t16 are omitted since their weight in at least one of the

complements is <0.01 and thus does not contribute significantly to the result. The sizes of

the co-occurrence complement vectors are 3.048, 2.491 for parkinsonisms, mrpi values,

respectively, while their dot product is 2.773. Therefore their similarity is equal to
2.773

3.048·2.491
.
= 0.365 and the new statement to be added to the knowledge base is

(parkinsonisms,sim,mrpi values,0.365).

Indexing and querying the knowledge base
The main purpose of SKIMMR is to allow users to efficiently search and navigate in

the SKIMMR knowledge bases, and retrieve articles related to the content discovered

in the high-level entity networks. To support that, we maintain several indices of the

knowledge base contents. The way how the indices are built and used in querying SKIMMR

is described in the following two sections.

Knowledge base indices
In order to expose the SKIMMR knowledge bases, we maintain three main indices: (1)

a term index–a mapping from entity terms to other terms that are associated with them

by a relationship (like co-occurrence or similarity); (2) a statement index–a mapping that

determines which statements the particular terms occur in; (3) a source index–a mapping

from statements to their sources, i.e., the texts from which the statements have been

computed. In addition to the main indices, we use a full-text index that maps spelling

alternatives and synonyms to the terms in the term index.

The main indices are implemented as matrices that reflect the weights in the SKIMMR

knowledge base:

T1 T2 ... Tn

T1 t1,1 t1,2 ... t1,n

T2 t2,1 t2,2 ... t2,n
...

...
...

. . .
...

Tn tn,1 tn,2 ... tn,n

S1 S2 ... Sm

T1 s1,1 s1,2 ... s1,m

T2 s2,1 s2,2 ... s2,m
...

...
...

. . .
...

Tn sn,1 sn,2 ... sn,m

P1 P2 ... Pq

S1 p1,1 p1,2 ... p1,q

S2 p2,1 p2,2 ... p2,q
...

...
...

. . .
...

Sm pm,1 pm,2 ... pm,q

where:

• T1,...,Tn are identifiers of all entity terms in the knowledge base and ti,j ∈ [0,1] is the

maximum weight among the statements of all types existing between entities Ti,Tj in

the knowledge base (0 if there is no such statement);
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• S1,...,Sm are identifiers of all statements present in the knowledge base and si,j ∈ {0,1}

determines whether an entity Ti occurs in a statement Sj or not;

• P1,...,Pq are identifiers of all input textual resources, and pi,j ∈ [0,1] is the weight of the

statement Si if Pj was used in order to compute it, or zero otherwise.

Example 4 To illustrate the notion of the knowledge base indices, let us consider

a simple knowledge base with only two statements from Examples 1 and 3: S1 ∼

(parkinsonism,cooc,DRD,0.545), S2 ∼ (parkinsonisms,sim,mrpi values,0.365).

Furthermore, let us assume that: (i) the statement S1 has been computed from the articles

with PubMed identifiers 9629849, 8239569 (being referred to by the P1,P2 provenance

identifiers respectively); (ii) the statement S2 has been computed from articles with PubMed

identifiers 9629849, 21832222, 22076870 (being referred to by the P1,P3,P4 provenance

identifiers, respectively5). This corresponds to the following indices:

5 In reality, the number of source article
used for computing these statements
in Parkinson’s disease knowledge base
is much larger, but here we take into
account only a few of them to simplify
the example.

term index parkinsonism DRD parkinsonisms mrpi values

parkinsonism 0.0 0.545 0.0 0.0

DRD 0.545 0.0 0.0 0.0

parkinsonisms 0.0 0.0 0.0 0.365

mrpi values 0.0 0.0 0.365 0.0

statement index S1 S2

parkinsonism 1.0 0.0

DRD 1.0 0.0

parkinsonisms 0.0 1.0

mrpi values 0.0 1.0

provenance index P1 P2 P3 P4

S1 0.545 0.545 0.0 0.0

S2 0.0 0.0 0.365 0.365

Querying
The indices are used to efficiently query for the content of SKIMMR knowledge bases.

We currently support atomic queries with one variable, and possibly nested combinations

of atomic queries and propositional operators of conjunction (AND), disjunction (OR)

and negation (NOT). An atomic query is defined as ? ↔ T, where ? refers to the query

variable and T is a full-text query term.6 The intended purpose of the atomic query is

6 One can expand the coverage of their
queries using the advanced full-text
search features like wildcards or boolean
operators for the term look-up. Detailed
syntax of the full-text query language we
use is provided at http://pythonhosted.
org/Whoosh/querylang.html.

to retrieve all entities related by any relation to the expressions corresponding to the

term T. For instance, the ? ↔ parkinsonism query is supposed to retrieve all entities

co-occurring-with or similar-to parkinsonism.

Combinations consisting of multiple atomic queries linked by logical operators are

evaluated using the following algorithm:

1. Parse the query and generate a corresponding ‘query tree’ (where each leaf is an atomic

query and each node is a logical operator; the levels and branches of this tree reflect the

nested structure of the query).

Nováček and Burns (2014), PeerJ, DOI 10.7717/peerj.483 8/38

https://peerj.com
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=8239569
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=9629849
http://www.ncbi.nlm.nih.gov/pubmed/?term=21832222
http://www.ncbi.nlm.nih.gov/pubmed/?term=21832222
http://www.ncbi.nlm.nih.gov/pubmed/?term=21832222
http://www.ncbi.nlm.nih.gov/pubmed/?term=21832222
http://www.ncbi.nlm.nih.gov/pubmed/?term=21832222
http://www.ncbi.nlm.nih.gov/pubmed/?term=21832222
http://www.ncbi.nlm.nih.gov/pubmed/?term=21832222
http://www.ncbi.nlm.nih.gov/pubmed/?term=21832222
http://www.ncbi.nlm.nih.gov/pubmed/?term=22076870
http://www.ncbi.nlm.nih.gov/pubmed/?term=22076870
http://www.ncbi.nlm.nih.gov/pubmed/?term=22076870
http://www.ncbi.nlm.nih.gov/pubmed/?term=22076870
http://www.ncbi.nlm.nih.gov/pubmed/?term=22076870
http://www.ncbi.nlm.nih.gov/pubmed/?term=22076870
http://www.ncbi.nlm.nih.gov/pubmed/?term=22076870
http://www.ncbi.nlm.nih.gov/pubmed/?term=22076870
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://pythonhosted.org/Whoosh/querylang.html
http://dx.doi.org/10.7717/peerj.483


2. Evaluate the atomic queries in the nodes by a look-up in the term index, fetching the

term index rows that correspond to the query term in the atomic query.

3. The result of each term look-up is a fuzzy set (Hájek, 1998) of terms related to the atomic

query term, with membership degrees given by listed weights. One can then naturally

combine atomic results by applying fuzzy set operations corresponding to the logical

operators in the parsed query tree nodes (where conjunction, disjunction and negation

correspond to fuzzy intersection, union and complement, respectively).

4. The result is a fuzzy set of terms RT = {(T1,wT
1 ),(T2,wT

2 ),...,(Tn,wT
n )}, with their

membership degrees reflecting their relevance as results of the query.

The term result set RT can then be used to generate sets of relevant statements

(RS) and provenances (RP) using look-ups in the corresponding indices as follows:

(a) RS = {(S1,wS
1),(S2,wS

2),...,(Sm,wS
m)}, where wS

i = νs
n

j=1wT
j cj,i, (b) RP =

{(P1,wP
1 ),(P2,wP

2 ),...,(Pq,wP
q )}, where wP

i = νp
m

j=1wS
j wj,i. νs,νp are normalisation

constants for weights. The weight for a statement Si in the result set RS is computed as a

normalised a dot product (i.e., sum of the element-wise products) of the vectors given by:

(a) the membership degrees in the term result set RT , and (b) the column in the statement

index that corresponds to Si. Similarly, the weight for a provenance Pi in the result set RP

is a normalised dot product of the vectors given by the ST membership degrees and the

column in the provenance index corresponding to Pi.

The fuzzy membership degrees in the term, statement and provenance result sets can be

used for ranking and visualisation, prioritising the most important results when presenting

them to the user. The following example outlines how a specific query is evaluated.

Example 5 Let us assume we want to query the full SKIMMR knowledge base about Parkin-
son’s Disease for the following:

? ↔ parkinsonism AND (? ↔ mrpi OR ? ↔ magnetic resonance parkinsonism index)

This aims to find all statements (and corresponding documents) that are related to

parkinsonism and either magnetic resonance parkinsonism index or its mrpi ab-

breviation. First of all, the full-text index is queried, retrieving two different terms conform-

ing to the first atomic part of the query due to its stemming features: parkinsonism and

parkinsonisms. The other two atomic parts of the initial query are resolved as is. After the

look-up in the term index, four fuzzy sets are retrieved: 1. Tparkinsonism (3,714 results), 2.

Tparkinsonisms (151 results), 3. Tmrpi (39 results). 4. Tmagnetic resonance parkinsonism index

(29 results). The set of terms conforming to the query is then computed as

(Tparkinsonism ∪ Tparkinsonisms) ∩ (Tmrpi ∪ Tmagnetic resonance parkinsonism index).

When using maximum and minimum as t-conorm and t-norm for computing the fuzzy

union and intersection (Hájek, 1998), respectively, the resulting set has 29 elements with

non-zero membership degrees. The top five of them are

(1) cup, (2) mrpi, (3) magnetic resonance parkinsonism index, (4)

clinically unclassifiable parkinsonism, (5) clinical evolution
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with membership degrees 1.0,1.0,0.704,0.39,0.34, respectively. According to the statement

index, there are 138 statements corresponding to the top five term results of the initial query,

composed of 136 co-occurrences and 2 similarities. The top five co-occurrence statements and

the two similarity statements are:

Type Entity1 Entity2 Membership
degree

cooc mrpi cup 1.0

cooc mrpi magnetic resonance parkinsonism index 0.852

cooc cup magnetic resonance parkinsonism index 0.852

cooc mrpi clinically unclassifiable parkinsonism 0.695

cooc cup clinically unclassifiable parkinsonism 0.695

sim psp patients magnetic resonance parkinsonism index 0.167

sim parkinsonism clinical evolution 0.069

where the membership degrees are computed from the combination of the term weights

as described before the example, using an arithmetic mean for the aggregation. Finally, a

look-up in the source index for publications corresponding to the top seven result statements

retrieves 8 relevant PubMed identifiers (PMID). The top five of them correspond to the

following list of articles:

PMID Title Authors Weight

21832222 The diagnosis of neurodegenerative disorders based on clinical and
pathological findings using an MRI approach

Watanabe H et al. 1.0

21287599 MRI measurements predict PSP in unclassifiable parkinsonisms:
a cohort study

Morelli M et al. 0.132

22277395 Accuracy of magnetic resonance parkinsonism index for
differentiation of progressive supranuclear palsy from probable or
possible Parkinson disease

Morelli M et al. 0.005

15207208 Utility of dopamine transporter imaging (123-I Ioflupane
SPECT) in the assessment of movement disorders

Garcia Vicente AM et al. 0.003

8397761 Alzheimer’s disease and idiopathic Parkinson’s disease coexistence Rajput AH et al. 0.002

where the weights have been computed by summing up the statement set membership degrees

multiplied by the source index weights and then normalising the values by their maximum.

Evaluation methodology
In addition to proposing specific methods for creating knowledge bases that support

skim reading, we have also come up with a specific methodology for evaluating the

generated knowledge bases. An ideal method for evaluating the proposed approach,

implemented as a SKIMMR tool, would be to record and analyse user feedback and

behaviour via SKIMMR instances used by large numbers of human experts. We do have

such means for evaluating SKIMMR implemented in the user interface.7 However, we

7 See the SMA SKIMMR instance at http:/
/www.skimmr.org:8008/data/html/trial.
tmp for details.

have not yet managed to collect sufficiently large sample of user data due to the early stage

of the prototype deployment. Therefore we implemented an indirect methodology for

automated quantitative evaluation of SKIMMR instances using publicly available manually
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curated data. The methodology is primarily based on simulation of various types of human

behaviour when browsing the entity networks generated by SKIMMR. We formally define

certain properties of the simulations and measure their values in order to determine the

utility of the entity networks for the purposes of skim reading. Details are given in the

following sections.

Overview of the evaluation methods
The proposed methods intend to simulate human behaviour when using the data gener-

ated by SKIMMR. We apply the same simulations also to baseline data that can serve for the

same or similar purpose as SKIMMR (i.e., discovery of new knowledge by navigating entity

networks). Each simulation is associated with specific measures of performance, which can

be used to compare the utility of SKIMMR with respect to the baseline.

The primary evaluation method is based on random walks (Lovász, 1993) in an

undirected entity graph corresponding to the SKIMMR knowledge base. For the baseline,

we use a network of MeSH terms assigned by human curators to the PubMed abstracts

that have been used to create the SKIMMR knowledge base.8 This represents a very similar

8 MeSH (Medical Subject Headings) is a
comprehensive, manually curated and
regularly updated controlled vocabulary
and taxonomy of biomedical terms.
It is frequently used as a standard for
annotation of biomedical resources,
such as PubMed abstracts. See http://
www.ncbi.nlm.nih.gov/mesh for details.

type of content, i.e., entities associated with PubMed articles. It is also based on expert

manual annotations and thus supposed to be a reliable gold standard (or at least a decent

approximation thereof due to some level of transformation necessary to generate the entity

network from the annotations).

Example 6 Returning to the knowledge base statement from Example 2 in ‘Corpus-wide

co-occurrence’: (parkinsonism,cooc,DRD,0.545). In the SKIMMR entity graph, this

corresponds to two nodes (parkinsonism,DRD) and one edge between them with weight

0.545. We do not distinguish between the types of the edges (i.e., co-occurrence or similarity),

since it is not of significant importance for the SKIMMR users according to our experience so

far (they are more interested in navigating the connections between nodes regardless of the

connection type).

A baseline entity graph is generated from the PubMed annotations with MeSH terms.

For all entities X,Y associated with an abstract A, we construct an edge connecting

the nodes X and Y in the entity graph. The weight is implicitly assumed to be 1.0 for

all such edges. To explain this using concrete data, let us consider the two PubMed IDs

from Example 1, 9629849 and 8239569. Selected terms from the corresponding MeSH

annotations are {Parkinson Disease/radionuclide imaging,Male,Child},

{Parkinson Disease/radionuclide imaging,Dystonia/drug therapy}, respec-

tively. The graph induced by these annotations is depicted in Fig. 1.

The secondary evaluation method uses an index of related articles derived from the

entities in the SKIMMR knowledge bases. For the baseline, we use either an index of related

articles produced by a specific service of PubMed (Lin & Wilbur, 2007), or the evaluation

data from the document categorisation task of the TREC’04 genomics track (Cohen

& Hersh, 2006) where applicable. We use the TREC data since they were used also for

evaluation of the actual algorithm used by PubMed to compute related articles.
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Figure 1 Example of an entity graph derived from PubMed.

To generate the index of related articles from the SKIMMR data, we first use the

knowledge base indices (see ‘Extracting basic co-occurrence statements from texts’) to

generate a mapping EP : E → 2P from entities from a set E to a set of corresponding

provenance identifiers (subsets of a set P). In the next step, we traverse the entity graph GE

derived from the statements in the SKIMMR knowledge base and build an index of related

articles according to the following algorithm:

1. Initialise a map MP between all possible (Pi,Pj) provenance identifier pairs and the

weight of an edge between them so that all values are zero.

2. For all pairs of entities E1,En (i.e., nodes in GE), do:

• If there is a path P of edges {(E1,E2),(E2,E3),...,(En−1,En)} in GE:

– compute an aggregate weight of the path as wP = wE1,E2 · wE2,E3 · ... · wEn−1,En (as a

multiplication of all weights along the path P );

– set the values MP(Pi,Pj) of the map MP to max(MP(Pi,Pj),wP ) for every Pi,Pj such

that Pi ∈ EP(E1),Pj ∈ EP(En) (i.e., publications corresponding to the source and

target entities of the path).

3. Interpret the MP map as an adjacency matrix and construct a corresponding weighted

undirected graph GP.

4. For every node P in GP, iteratively construct the index of related articles by associating

the key P with a list L of all neighbours of P in GP sorted by the weights of the

corresponding edges.

Note that in practice, we restrict the maximum length of the paths to three and also remove

edges in GP with weight below 0.1. This is to prevent a combinatorial explosion of the

provenance graph when the entity graph is very densely connected.

The baseline index of related publications according to the PubMed service is simply a

mapping of one PubMed ID to an ordered list of the related PubMed IDs. The index based

on the TREC data is generated from the article categories in the data set. For a PubMed ID

X, the list of related IDs are all IDs belonging to the same category as X, ordered so that the

definitely relevant articles occur before the possibly relevant ones.9

9 The articles in the TREC data set
are annotated by membership in a
number of specific categories. The
membership is gradual, with three
possible values–definitely relevant,
possibly relevant and not relevant.
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Motivation of the evaluation methods
The random walks are meant to simulate user’s behaviour when browsing the SKIMMR

data, starting with an arbitrary entry point, traversing a number of edges linking the

entities and ending up in a target point. Totally random walk corresponds to when a user

browses randomly and tries to learn something interesting along the way. Other types

of user behaviour can be simulated by introducing specific heuristics for selection of the

next entity on the walk (see below for details). To determine how useful a random walk

can be, we measure properties like the amount of information along the walk and in its

neighbourhood, or semantic similarity between the source and target entities (i.e., how

semantically coherent the walk is).

The index of related articles has been chosen as a secondary means for evaluating

SKIMMR. Producing links between publications is not the main purpose of our current

work, however, it is closely related to the notion of skim reading. Furthermore, there are

directly applicable gold standards we can use for automated evaluation of the lists of related

articles generated by SKIMMR, which can provide additional perspective on the utility of

the underlying data even if we do not momentarily expose the publication networks to

users.

Running and measuring the random walks
To evaluate the properties of random walks in a comprehensive manner, we ran them in

batches with different settings of various parameters. These are namely: (1) heuristics for

selecting the next entity (one of the four defined below); (2) length of the walk (2, 5, 10 or

50 edges); (3) radius of the walk’s envelope, i.e., the maximum distance between the nodes

of the path and entities that are considered its neighbourhood (0, 1, 2); (4) number of

repetitions (100-times for each combination of the parameter (1–3) settings).

Before we continue, we have to introduce few notions that are essential for the definition

of the random walk heuristics and measurements. The first of them is a set of top-level

(abstract) clusters associated with an entity in a graph (either from SKIMMR or from

PubMed) according to the MeSH taxonomy. This is defined as a function CA : E → M,

where E,M are the sets of entities and MeSH cluster identifiers, respectively. The second

notion is a set of specific entity cluster identifiers CS, defined on the same domain and

range as CA, i.e., CS : E → M.

The MeSH cluster identifiers are derived from the tree path codes associated with

each term represented in MeSH. The tree path codes have the form L1.L2. ... .Ln−1.Ln

where Li are sub-codes of increasing specificity (i.e., L1 is the most general and Ln most

specific). For the abstract cluster identifiers, we take only the top-level tree path codes into

account as the values of CA, while for CS we consider the complete codes. Note that for the

automatically extracted entity names in SKIMMR, there are often no direct matches in the

MeSH taxonomy that could be used to assign the cluster identifiers. In these situations, we

try to find a match for the terms and their sub-terms using a lemmatised full-text index

implemented on the top of MeSH. This helps to increase the coverage two- to three-fold on

our experimental data sets.
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For some required measures, we will need to consider the number and size of specific

clusters associated with the nodes in random walks and their envelopes. Let us assume a

set of entities Z ⊆ E. The number of clusters associated with the entities from Z, cn(Z),

is then defined as cn(Z) = |


X∈Z C(X)| where C is one of CA,CS (depending on which

type of clusters are we interested in). The size of a cluster Ci ∈ C(X), cs(Ci), is defined as

an absolute frequency of the mentions of Ci among the clusters associated with the entities

in Z. More formally, cs(Ci) = |{X|X ∈ Z ∧ Ci ∈ C(X)}|. Finally, we need a MeSH-based

semantic similarity of entities simM(X,Y), which is defined in detail in the formula (8) in

‘Similarities’.

Example 7 To illustrate the MeSH-based cluster annotations and similarities,

let us consider two entities, supranuclear palsy, progressive, 3 and

secondary parkinson disease. The terms correspond to the MeSH tree code sets

{C10.228.662.700,...,C23.888.592.636.447.690,...,C11.590.472.500,...} and

{C10.228.662.600.700}, respectively, which are also the sets of specific clusters associated

with the terms. The top-level clusters are {C10, C11, C23} and {C10}, respectively. The least

common subsumer of the two terms is C10.228.662 of depth 3 (the only possibility with

anything in common is C10.228.662.700 and C10.228.662.600.700). The depths of the

related cluster annotations are 4 and 5, therefore the semantic similarity is 2·3
4+5 =

2
3 .

We define four heuristics used in our random walk implementations. All the heuristics

select the next node to visit in the entity graph according to the following algorithm:

1. Generate the list L of neighbours of the current node.

2. Sort L according to certain criteria (heuristic-dependent).

3. Initialise a threshold e to ei, a pre-defined number in the (0,1) range (we use 0.9 in our

experiments).

4. For each node u in the sorted list L, do:

• Generate a random number r from the [0,1] range.

• If r ≤ e:

– return u as the next node to visit.

• Else:

– set e to e · ei and continue with the next node in L.

5. If nothing has been selected by now, return a random node from L.

All the heuristics effectively select the nodes closer to the head of the sorted neighbour list

more likely than the ones closer to the tail. The random factor is introduced to emulate the

human way of selecting next nodes to follow, which is often rather fuzzy according to our

observations of sample SKIMMR users.

The distinguishing factor of the heuristics are the criteria for sorting the neighbour

list. We employed the following four criteria in our experiments: (1) giving preference to

the nodes that have not been visited before (H = 1); (2) giving preference to the nodes

connected by edges with higher weight (H = 2); (3) giving preference to the nodes that are
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more similar, using the simM function introduced before (H = 3); (4) giving preference to

the nodes that are less similar (H = 4). The first heuristic simulates a user that browses the

graph more or less randomly, but prefers to visit previously unknown nodes. The second

heuristic models a user that prefers to follow a certain topic (i.e., focused browsing). The

third heuristic represents a user that wants to learn as much as possible about many diverse

topics. Finally, the fourth heuristic emulates a user that prefers to follow more plausible

paths (approximated by the weight of the statements computed by SKIMMR).

Each random walk and its envelope (i.e., the neighbourhood of the corresponding paths

in the entity graphs) can be associated with various information-theoretic measures, graph

structure coefficients, levels of correspondence with external knowledge bases, etc. Out

of the multitude of possibilities, we selected several specific scores we believe to soundly

estimate the value of the underlying data for users in the context of skim reading.

Firstly, we measure semantic coherence of the walks. This is done using the

MeSH-based semantic similarity between the nodes of the walk. In particular, we

measure: (A) coherence between the source S and target T nodes as simM(S,T);

(B) product coherence between all the nodes U1,U2,...,Un of the walk as

Πi∈{1,...,n−1}simM(Ui,Ui+1); (C) average coherence between all the nodes U1,U2,...,Un of

the walk as 1
n


i∈{1,...,n−1}

simM(Ui,Ui+1). This family of measures helps us to assess how

convergent (or divergent) are the walks in terms of focus on a specific topic.

The second measure we used is the information content of the nodes on and along the

walks. For this, we use the entropy of the association of the nodes with clusters defined

either (a) by the MeSH annotations or (b) by the structure of the envelope. By definition,

the higher the entropy of a variable, the more information the variable contains (Shannon,

1948). In our context, a high entropy value associated with a random walk means that there

is a lot of information available for the user to possibly learn when browsing the graph. The

specific entropy measures we use relate to the following sets of nodes: (D) abstract MeSH

clusters, path only; (E) specific MeSH clusters, path only; (F) abstract MeSH clusters,

path and envelope; (G) specific MeSH clusters, path and envelope; (H) clusters defined by

biconnected components (Hopcroft & Tarjan, 1973) in the envelope.10 The entropies of the

10 Biconnected components can be
understood as sets of nodes in a graph
that are locally strongly connected
and therefore provide us with a simple
approximation of clustering in the entity
graphs based purely on their structural
properties.

sets (D–G) are defined by formulae (9) and (10) in ‘Entropies’.

The last family of random walk evaluation measures is based on the graph structure of

the envelopes: (I) envelope size (in nodes); (J) envelope size in biconnected components;

(K) average component size (in nodes); (L) envelope’s clustering coefficient. The first three

measures are rather simple statistics of the envelope graph. The clustering coefficient is

widely used as a convenient scalar representation of the structural complexity of a graph,

especially in the field of social network analysis (Carrington, Scott & Wasserman, 2005).

In our context, we can see it as an indication of how likely it is that the connections in the

entity graph represent non-trivial relationships.

To facilitate the interpretation of the results, we computed also the following auxiliary

measures: (M) number of abstract clusters along the path; (N) average size of the abstract

clusters along the path; (O) number of abstract clusters in the envelope; (P) average size

of the abstract clusters in the envelope; (Q) number of specific clusters along the path;
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(R) average size of the specific clusters along the path; (S) number of specific clusters in the

envelope; (T) average size of the specific clusters in the envelope. Note that all the auxiliary

measures use the MeSH cluster size and number notions, i.e., cs(...) and cn(...) as defined

earlier.

Comparing the indices of related articles
The indices of related articles have quite a simple structure. We can also use the baseline

indices as gold standard, and therefore evaluate the publication networks implied by the

SKIMMR data using classical measures of precision and recall (Manning, Raghavan &

Schütze, 2008). Moreover, we can also compute correlation between the ranking of the

items in the lists of related articles which provides an indication of how well SKIMMR

preserves the ranking imposed by the gold standard.

For the correlation, we use the standard Pearson’s formula (Dowdy, Weardon & Chilko,

2005), taking into account only the ranking of articles occurring in both lists. The measures

of precision and recall are defined using overlaps of the sets of related articles in the

SKIMMR and gold standard indices. The detailed definitions of the specific notions of

precision and recall we use are given in formulae (11) and (12) in ‘Precision and recall’. The

gold standard is selected depending on the experimental data set, as explained in the next

section. In order to cancel out the influence of different average lengths of lists of related

publications between the SKIMMR and gold standard indices, one can take into account

only a limited number of the most relevant (i.e., top) elements in each list.

RESULTS
We have implemented the techniques described in the previous section as a set of software

modules and provided them with a search and browse front-end. This forms a prototype

implementation of SKIMMR, available as an open source software package through the

GitHub repository (see ‘Software packages’ for details). We here describe the architecture

of the SKIMMR software (‘Architecture’) and give examples on the typical use of SKIMMR

in the domains of Spinal Muscular Atrophy and Parkinson’s Disease (‘Using SKIMMR’).

‘Evaluation’ presents an evaluation of the proposed approach to machine-aided skim

reading using SKIMMR running on three domain-specific sets of biomedical articles.

Architecture
The SKIMMR architecture and data flow is depicted in Fig. 2. First of all, SKIMMR

needs a list of PubMed identifiers (unique numeric references to articles indexed on

PubMed) specified by the user of system administrator. Then it automatically downloads

the abstracts of the corresponding articles and stores the texts locally. Alternatively, one

can export results of a manual PubMed search as an XML file (using the ‘send to file’

feature) and then use a SKIMMR script to generate text from that file. From the texts,

a domain-specific SKIMMR knowledge base is created using the methods described in

‘Extracting basic co-occurrence statements from texts’ and ‘Computing a knowledge base

from the extracted statements’. The computed statements and their article provenance

are then indexed as described in ‘Indexing and querying the knowledge base’. This allows
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Figure 2 Architecture of the SKIMMR system.

users to search and browse the high-level graph summaries of the interconnected pieces

of knowledge in the input articles. The degrees in the result sets (explained in detail in

‘Indexing and querying the knowledge base’) are used in the user interface to prioritise the

more important nodes in the graphs by making their font and size proportional to the sum

of the degrees of links (i.e., the number of statements) associated with them. Also, only a

selected amount of the top scoring entities and links between them is displayed at a time.

Using SKIMMR
The general process of user interaction with SKIMMR can be schematically described as

follows:

1. Search for an initial term of interest in a simple query text box.

2. A graph corresponding to the results of the search is displayed. The user has two options

then:

(a) Follow a link to another node in the graph, essentially browsing the underlying

knowledge base along the chosen path by displaying the search results correspond-

ing to the selected node and thus going back to step 1 above.

(b) Display most relevant publications that have been used for computing the content of

the result graph, going to step 3 below.

3. Access and study the displayed publications in detail using a re-direct to PubMed.

The following two sections illustrate the process using examples from two live instances of

SKIMMR deployed on articles about Spinal Muscular Atrophy and Parkinson’s Disease.11

11 The live instances are running at
http://www.skimmr.org:8008 and http:
//www.skimmr.org:8090, respectively,
as of June 2014. Canned back-up
versions of them are available at
http://www.skimmr.org/resources/
skimmr/sma.tgz and http://www.
skimmr.org/resources/skimmr/pd.
tgz (SMA and Parkinson’s Disease,
respectively). If the SKIMMR depen-
dencies are met (see https://github.com/
vitnov/SKIMMR), the canned instances
can be used locally on any machine with
Python installed (versions higher than
2.4 and lower than 3.0 are supported,
while 2.6.* and 2.7.* probably work
best). After downloading the archives,
unpack them and switch to the resulting
folder. Run the re-indexing script,
following Section 3.6 in the README
provided in the same folder. To execute
the SKIMMR front-end locally, run the
server as described in Section 3.7 of the
README. The last section of this part of the article gives a brief overview of the open source software

packages of SKIMMR available for developers and users interested in deploying SKIMMR

on their own data.
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Figure 3 Exploring SMA etiology.

Spinal muscular atrophy
Fig. 3 illustrates a typical session with the Spinal Muscular Atrophy12 instance of SKIMMR.

12 A genetic neurological disease caused
by mutation of SMN1 gene that leads to
death of motor neurons and consequent
progressive muscle atrophy. It is the
most common genetic cause of infant
death and there is no cure as of now.
See http://en.wikipedia.org/wiki/Spinal
muscular atrophy for details.

The SMA instance was deployed on a corpus of 1,221 abstracts of articles compiled by SMA

experts from the SMA foundation.13

13 See http://www.smafoundation.org/.

The usage example is based on an actual session with Maryann Martone, a neuroscience

professor from UCSD and a representative of the SMA Foundation who helped us to

assess the potential of the SKIMMR prototype. Following the general template from the

beginning of the section, the SMA session can be divided into three distinct phases:

1. Searching: The user was interested in the SMA etiology (studies on underlying causes of

a disease). The key word etiologywas thus entered into the search box.

2. Skimming: The resulting graph suggests relations between etiology of SMA,

various gene mutations, and the Lix1 gene. Lix1 is responsible for protein ex-

pression in limbs which seems relevant to the SMA manifestation, therefore the

Lix1− associated etiology path was followed in the graph, moving on to a slightly

different area in the underlying knowledge base extracted from the SMA abstracts.

When browsing the graph along that path, one can quickly notice recurring associations

with feline SMA. According to the neuroscience expert we consulted, the cat models

of the SMA disease appear to be quite a specific and interesting fringe area of SMA
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research. Related articles may be relevant and enlightening even for experienced

researchers in the field.

3. Reading: The reading mode of SKIMMR employs an in-line redirect to a specific

PubMed result page. This way one can use the full set of PubMed features for exploring

and reading the articles that are mostly relevant to the focused area of the graph the

user skimmed until now. The sixth publication in the result was most relevant for our

sample user, as it provided more details on the relationships between a particular gene

mutation in a feline SMA model and the Lix1 function for motor neuron survival.

This knowledge, albeit not directly related to SMA etiology in humans, was deemed as

enlightening by the domain expert in the context of the general search for the culprits of

the disease.

The whole session with the neuroscience expert lasted about two minutes and clearly

demonstrated the potential for serendipitous knowledge discovery with our tool.

Parkinson’s disease
Another example of the usage of SKIMMR is based on a corpus of 4,727 abstracts

concerned with the clinical studies of Parkinson’s Disease (PD). A sample session with

the PD instance of SKIMMR is illustrated in Fig. 4. Following the general template from the

beginning of the section, the PD session can be divided into three distinct phases again:

1. Searching: The session starts with typing parkinson′s into the search box, aiming to

explore the articles from a very general entry point.

2. Skimming: After a short interaction with SKIMMR, consisting of few skimming steps

(i.e., following a certain path in the underlying graphs of entities extracted from the PD

articles), an interesting area in the graph has been found. The area is concerned with

Magnetic Resonance Parkinsons Index (MRPI). This is a numeric score calculated

by multiplying two structural ratios: one for the area of the pons relative to that of the

midbrain and the other for the width of the Middle Cerebellar Peduncle relative to the

width of the Superior Cerebellar Peduncle. The score is used to diagnose PD based on

neuroimaging data (Morelli et al., 2011).

3. Reading: When displaying the articles that were used to compute the subgraph

surrounding MRPI, the user reverted to actual reading of the literature concerning

MRPI and related MRI measures used to diagnose Parskinson’s Disease as well a range of

related neurodegenerative disorders.

This example illustrates once again how SKIMMR provides an easy way of navigating

through the conceptual space of a subject that is accessible even to novices, reaching

interesting and well-specified components areas of the space very quickly.

Software packages
In addition to the two live instances described in the previous sections, SKIMMR is

available for local installation and custom deployment either on biomedical article

abstracts from PubMed, or on general English texts. Moreover, one can expose SKIMMR
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Figure 4 Exploring Parkinson’s disease.

via a simple HTTP web service once the back-end has compiled a knowledge base from

selected textual input. The latter is particularly useful for the development of other

applications on the top of the content generated by SKIMMR. Open source development

snapshots (written in the Python programming language) of SKIMMR modules are

available via our GitHub repository14 with accompanying documentation.

14 See https://github.com/vitnov/
SKIMMR. Evaluation

In the following we report on experiments we used for evaluating SKIMMR using

the method explained in ‘Evaluation methodology’. The results of our experiments

empirically demonstrate that the SKIMMR networks allow for more focused browsing

Nováček and Burns (2014), PeerJ, DOI 10.7717/peerj.483 20/38

https://peerj.com
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
https://github.com/vitnov/SKIMMR
http://dx.doi.org/10.7717/peerj.483


of the publication content than is possible with tools like PubMed. SKIMMR also has the

potential for offering more information of higher complexity during the browsing process.

The following sections provide details on the data sets used in the experiments and the

results of the evaluation.

Evaluation data
We have evaluated SKIMMR using three corpora of domain-specific biomedical articles.

The first one was SMA: a representative corpus of 1,221 PubMed abstracts dealing with

Spinal Muscular Atrophy (SMA), compiled by experts from SMA Foundation. The second

corpus was PD: a set of 4,727 abstracts that came as results (in February 2013) of a search

for clinical studies on Parkinson’s Disease on PubMed. The last corpus was TREC: a

random sample15 of 2,247 PubMed abstracts from the evaluation corpus of the TREC’04

15 We processed only a subset of the
experimental data available from TREC
so that the experimental knowledge
bases are of a size within similar range of
hundreds of thousands of statements.

genomics track (document categorisation task).

For running the experiment with random walks, we generated two graphs for each of

the corpora (using the methods described in Example 6): (1) network of SKIMMR entities;

(2) network of MeSH terms based on the PubMed annotations of the articles that were

used as sources for the particular SKIMMR instance.

As outlined before in the methods section, we also used some auxiliary data structures

for the evaluation. The first auxiliary resource was the MeSH thesaurus (version from

2013). From the data available on the National Library of Medicine web site, we generated

a mapping from all MeSH terms and their synonyms to the corresponding tree codes

indicating their position in the MeSH hierarchy. We also implemented a lemmatised

full-text index on the MeSH mapping keys to increase the coverage of the tree annotations

when the extracted entity names do not exactly correspond to the MeSH terms.

The second type of auxiliary resource (a gold standard) were indices of related articles

based on the corresponding PubMed service. For the other type of gold standard, we

used the TREC’04 category associations from the genomics track data. This is essentially

a mapping between PubMed IDs, category identifiers and a degree of membership of the

specific IDs in the category (definitely relevant, possibly relevant, not relevant). From that

mapping, we generated the index of related articles as a gold standard for the secondary

evaluation method (the details of the process are described in the previous section).

Note that for the TREC corpus, the index of related articles based on the TREC data is

applicable as a gold standard for the secondary evaluation. However, for the other two data

sets (SMA and PD), we used the gold standard based on the PubMed service for fetching

related articles. This is due to almost zero overlap between the TREC PubMed IDs and the

SMA, PD corpora, respectively.

Data statistics

Corpus and knowledge base statistics. Basic statistics of the particular text corpora are given

in Table 1, with column explanations as follows: (1) |SRC| is the number of the source

documents; (2) |TOK| is the number of tokens (words) in the source documents; (3) |BC|

is the number of base co-occurrence statements extracted from the sources (see ‘Extracting

basic co-occurrence statements from texts’ for details); (4) |LEX| is the vocabulary size
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Table 1 Basic statistics of the SKIMMR instances.

Data set ID |SRC| |TOK| |BC| |LEX| |KBcooc| |KBsim|

SMA 1,221 223,257 333,124 15,288 308,626 23,167

PD 4,727 943,444 1,096,037 43,410 965,753 57,876

TREC 2,247 439,202 757,762 39,431 745,201 65,510

Table 2 Derived statistics of the SKIMMR instances.

Data set ID T/S B/S L/T SM/KB KB/S KB/L

SMA 182.848 272.829 0.068 0.07 271.739 21.703

PD 199.586 231.867 0.046 0.057 216.549 23.58

TREC 195.462 337.233 0.09 0.081 360.797 20.56

(i.e., the number of unique entities occurring in the basic co-occurrence statements);

(5) |KBcooc| is the number of aggregate co-occurrence statements in the corresponding

SKIMMR knowledge base (see ‘Corpus-wide co-occurrence’); (6) |KBsim| is the number of

similarity statements in the corresponding SKIMMR knowledge base (see ‘Similarity’).

Derived statistics on the SKIMMR instances are provided in Table 2, with column

explanations as follows: (1) T/S is an average number of tokens per a source document;

(2) B/S is an average number of basic co-occurrence statements per a source document;

(3) L/T is a ratio of the size of the lexicon with respect to the overall number of tokens in

the input data; (4) SM/KB is a ratio of the similarity statements to the all statements in the

knowledge base; (5) KB/S is an average number of statements in the knowledge base per a

source document; (6) KB/L is an average number of statements in the knowledge base per

a term in the lexicon. The values in the columns are computed from the basic statistics as

follows:

T/S =
|TOK|

|SRC|
, B/S =

|BC|

|SRC|
, L/T =

|LEX|

|TOK|
, SM/KB =

|KBsim|

|KBsim| + |KBcooc|
,

KB/S =
|KBsim| + |KBcooc|

|SRC|
, KB/L =

|KBsim| + |KBcooc|

|LEX|
.

The statistics of the data sets are relatively homogeneous. The TREC data contains more

base co-occurrence statements per article, and has an increased ratio of (unique) lexicon

terms per absolute number of (non-unique) tokens in the documents. TREC knowledge

base also contains more statements per article than the other two, but the ratios of number

of statements in it per lexicon term are more or less balanced. We believe that the statistics

do not imply the need to treat each of the data sets differently when interpreting the results

reported in the next section.

Graph statistics. The statistics of the graph data that are utilised in the random walks

experiment are given in Tables 3 and 4 for PubMed and SKIMMR, respectively. The specific
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Table 3 Statistics of the PubMed graphs for random walks.

Data set ID |V| |E|
|E|

|V|
D d lG |C|

SMA 5,364 78,608 14.655 5.465 · 10−3 5.971 3.029 2

PD 8,622 133,188 15.447 3.584 · 10−3 6 2.899 2

TREC 10,734 161,838 15.077 2.809 · 10−3 7.984 3.146 3

Table 4 Statistics of the SKIMMR graphs for random walks.

Data set ID |V| |E|
|E|

|V|
D d lG |C|

SMA 15,287 305,077 19.957 2.611 · 10−3 5 2.642 1

PD 43,411 952,296 21.937 1.011 · 10−3 5 2.271 2

TREC 37,184 745,078 20.038 1.078 · 10−3 5.991 2.999 12

statistics provided on the graphs are: (1) number of nodes (|V |); (2) number of edges16

16 Note that the number of edges is lower
in the SKIMMR graphs than in the
corresponding SKIMMR knowledge
bases due to the fact that we do not
distinguish between the different
relationships. Therefore, if two nodes are
connected by more than one statements,
there is still only one edge for those
nodes in the graph.

(|E|); (3) average number of edges per a node ( |E|

|V |
); (4) density (D =

2·|E|

|V |(|V |−1)
, i.e., a ratio

of the actual bidirectional connections between nodes relative to the maximum possible

number of connections); (5) diameter (d, computed as an arithmetic mean of the longest

possible paths in the connected components of the graph, weighted by the size of the

components in nodes); (6) average shortest path length (lG, computed similarly to d as

an average weighted mean of the value for each connected component); (7) number of

connected components (|C|).

The statistics demonstrate that the SKIMMR graphs are larger and have higher absolute

number of connections per a node, but are less dense than the PubMed graphs. All the

graphs exhibit the “small-world” property (Watts & Strogatz, 1998), since the graphs have

small diameters and there are also very short paths between the connected nodes despite

the low density and relatively large size of the graphs.

Auxiliary data statistics. The MeSH data contained 719,877 terms and 54,935 tree codes,

with ca. 2.371 tree code annotations per term in average. The statistics of the indices of

related publications for SKIMMR and for gold standards are provided in Table 5. We

provide values for the size of the index in numbers of publications covered (|P|) and an

average number of related publications associated with each key (R̄). The average length

of the lists of related publications is much higher for all three instances of SKIMMR. This

is a result of the small-world property of the SKIMMR networks which makes most of the

publications connected with each other (although the connections mostly have weights

close to zero).

Evaluation results
In the following we report on the results measured using the specific SKIMMR knowledge

bases and corresponding baseline data. Each category of the evaluation measures is covered
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Table 5 Statistics of the indices of related publications.

Gold standard SKIMMR

Data set ID |P| R̄ |P| R̄

SMA 1,221 36.15 1,220 959.628

PD 4,727 28.61 4,724 4327.625

TREC 434 18.032 2,245 1251.424

in a separate section. Note that we mostly provide concise plots and summaries of the

results here in the article, however, full results can be found online (Data Deposition).

Semantic coherence. Figure 5 shows the values of the aggregated semantic coherence

measures (i.e., source-target coherence, product path coherence and average path

coherence) for the PD, SMA and TREC data sets. The values were aggregated by computing

their arithmetic means and are denoted by the y-axis of the plots. The x-axis corresponds to

different combinations of the heuristics and path lengths for the execution of the random

walks (as the coherence does not depend on the envelope size, this parameter is zero all

the time in this case).17 The combinations are grouped by heuristics (random preference,

17 The exact form of labels on the x-axis is
a combination of heuristic (H), envelope
diameter (E) and path length (L) pa-
rameters with their numeric identifiers
(in case of heuristics) or values (for
envelope size and path length). For
instance, H = 2.E = 1.L = 10 stands
for a measurement using the weight
preference heuristic (identifier 2),
envelope of diameter 1 and path of
length 10. weight preference, similarity preference, dissimilarity preference from left to right). The

path length parameter increases from left to right for each heuristic group on the x-axis.

The green line is for the SKIMMR results and the blue line is for the PubMed baseline.

For any combination of the random walk execution parameters, SKIMMR outperforms

the baseline by quite a large relative margin. The most successful heuristic in terms of

coherence is the one that prefers more similar nodes to visit next (third quarter of the

plots), and the coherence is generally lower for longer paths, which are all observations

corresponding to intuitive assumptions.

Information content. Figure 6 shows the values of the arithmetic mean of all types of

information content measures for the particular combinations of the random walk

execution parameters (including also envelope sizes in increasing order for each heuristic).

Although the relative difference is not as significant as in the semantic coherence case,

SKIMMR again performs consistently better than the baseline. There are no significant

differences between the specific heuristics. The information content increases with longer

walks and larger envelopes, which is due to generally larger numbers of clusters occurring

among more nodes involved in the measurement.

Graph Structure. Figure 7 shows the values of the clustering coefficient, again with green

and blue lines for the SKIMMR and PubMed baseline results, respectively. SKIMMR

exhibits larger level of complexity than the baseline in terms of clustering coefficient,

with moderate relative margin in most cases. There are no significant differences between

the particular walk heuristics. The complexity generally increases with the length of the

path, but, interestingly enough, does not so with the size of the envelopes. The highest

complexity is typically achieved for the longest paths without any envelope. We suspect
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Figure 5 Aggregated semantic coherence (blue: PubMed, green: SKIMMR).

this to be related to the small world property of the graphs–adding more nodes from the

envelope may not contribute to the actual complexity due to making the graph much more

“uniformly” dense and therefore less complex.

Auxiliary measures. The number of clusters associated with the nodes on the paths

(measures M and Q) is always higher for SKIMMR than for the PubMed baseline. The

number of clusters associated with the whole envelopes (measures O and S) is almost

always higher for SKIMMR with few exceptions of rather negligible relative differences in
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Figure 6 Aggregated information content (blue: PubMed, green: SKIMMR).

favour of the baseline. The average numbers of nodes per cluster on the path (measures

N and R) are higher for SKIMMR except for the heuristic that prefers similar nodes to

visit next. This can be explained by the increased likelihood of populating already “visited”

clusters with this heuristic when traversing paths with lower numbers of clusters along

them. Finally, the average number of nodes per cluster in the envelope (measures P and T)

is higher for SKIMMR in most cases.

The general patterns observed among the auxiliary measure values indicates higher

topical variability in the SKIMMR graphs, as there are more clusters that have generally

higher cardinality than in the PubMed baselines. This is consistent with the observation of
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Figure 7 Clustering coefficient (blue: PubMed, green: SKIMMR).

the generally higher information content associated with the random walks in SKIMMR

graphs.

Related articles. The results of the evaluation measures based on the lists of related articles

generated by SKIMMR and by related baselines are summarised in Table 6. Note that as

explained in ‘Evaluation data’, we used actual TREC evaluation data for the TREC dataset,

while for PD and SMA, we used the related articles provided by PubMed due to negligible

overlap with the TREC gold standard.

The preavg and recavg columns in Table 6 contain the precision and recall values for each

data set, respectively, and the C ≥ 0.7 contains the ratio of SKIMMR results that have
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Table 6 Results for the related articles.

PD SMA TREC

preavg recavg C ≥ 0.7 preavg recavg C ≥ 0.7 preavg recavg C ≥ 0.7

0.0095 0.0240 0.5576 0.0139 0.0777 0.5405 0.0154 0.0487 0.5862

significant correlation (i.e., at least 0.7) with the corresponding baseline. The absolute

values of the average precision and recall are very poor, in units of percents. The correlation

results are more promising, showing that more than half of the related document rankings

produced by SKIMMR are reasonably aligned with the gold standard. Moreover, the

correlation is highest for the TREC data set based on the only gold standard that is

manually curated.

DISCUSSION
SKIMMR provides a computational instantiation of the concept of ‘skim reading.’ In

the early prototype stage, we generally focussed on delivering as much of the basic

functionality as possible in a lightweight interface. Lacking enough representative data

collected from ongoing user studies, we have designed a series of automated experiments to

simulate several skim reading modes one can engage in with SKIMMR. We evaluated these

experiments using gold standards derived from manually curated biomedical resources.

Here we offer a discussion of the results in relation to the concept of machine-aided skim

reading as realised by the SKIMMR prototype. The discussion is followed by an overview of

related work and an outline of possible future directions.

Interpreting the results
The secondary evaluation using lists of related publications induced by the SKIMMR

knowledge bases did not bring particularly good results in terms of precision and recall.

However, the correlation with the related document ranking provided by baselines was

more satisfactory. This indicates that with better methods for pruning the rather extensive

lists of related publications produced with SKIMMR, we may be able to improve the

precision and recall substantially. Still, this evaluation was indirect since generating lists of

related publications is not the main purpose of SKIMMR. Apart from indirect evaluation,

we were also curious whether the data produced by SKIMMR could not be used also

for a rather different task straightaway. The lesson learned is that this may be possible,

however, some post-processing of the derived publication lists would be required to make

the SKIMMR-based related document retrieval more accurate for practical applications.

Our main goal was to show that our approach to machine-aided skim reading can be

efficient in navigating high-level conceptual structures derived from large numbers of

publications. The results of the primary evaluation experiment—simulations of various

types of skimming behaviour by random walks—demonstrated that our assumption

may indeed be valid. The entity networks computed by SKIMMR are generally more

semantically coherent, more informative and more complex than similar networks based on
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the manually curated PubMed article annotations. This means that users will typically be

able to browse the SKIMMR networks in a more focused way. At the same time, however,

they will learn more interesting related information from the context of the browsing

path, and can also potentially gain additional knowledge from more complex relationships

between the concepts encountered on the way. This is very promising in the context of our

original motivations for the presented research.

Experiments with actual users would have brought many more insights regarding the

practical relevance of the SKIMMR prototype. Still, the simulations we have proposed

cover four distinct classes of possible browsing behaviour, and our results are generally

consistent regardless of the particular heuristic used. This leads us to believe that the

evaluation measures computed on paths selected by human users would not be radically

different from the patterns observed within our simulations.

Related work
The text mining we use is similar to the techniques mentioned in Yan et al. (2009), but we

use a finer-grained notion of co-occurrence. Regarding biomedical text mining, tools like

BioMedLEE (Friedman et al., 2004), MetaMap (Aronson & Lang, 2010) or SemRep (Liu

et al., 2012) are closely related to our approach. The tools mostly focus on annotation of

texts with concepts from standard biomedical vocabularies like UMLS which is very useful

for many practical applications. However, it is relatively difficult to use the corresponding

software modules within our tool due to complex dependencies and lack of simple APIs

and/or batch scripts. The tools also lack the ability to identify concepts not present in

the biomedical vocabularies or ontologies. Therefore we decided to use LingPipe’s batch

entity recogniser in SKIMMR. The tool is based on a relatively outdated GENIA corpus,

but is very easy to integrate, efficient and capable of capturing unknown entities based

on the underlying statistical model, which corresponds well to our goal of delivering a

lightweight, extensible and easily portable tool for skim-reading.

The representation of the relationships between entities in texts is very close to the ap-

proach of Baroni & Lenci (2010), however, we have extended the tensor-based representa-

tion to tackle a broader notion of text and data semantics, as described in detail in Nováček,

Handschuh & Decker (2011). The indexing and querying of the relationships between

entities mentioned in the texts is based on fuzzy index structures, similarly to Zadrozny &

Nowacka (2009). We make use of the underlying distributional semantics representation,

though, which captures more subtle features of the meaning of original texts.

Graph-based representations of natural language data have previously been generated

using dependency parsing (Ramakrishnan et al., 2008; Biemann et al., 2013). Since these

representations are derived directly from the parse structure, they are not necessarily

tailored for the precise task of skim-reading but could provide a valuable intermediate

representation. Another graph-based representation that is derived from the text of

documents are similarity-based approaches derived from ‘topic models’ of document

corpora (Talley et al., 2011). Although these analyses typically provide a visualization of

the organization of documents, not of their contents, the topic modeling methods provide
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statistical representation of the text that can then be leveraged to examine other aspects of

the context of the document, such as its citations (Foulds & Smyth, 2013).

A broad research area of high relevance to the presented work is the field of ‘Machine

Reading’ that can be defined as “the autonomous understanding of text” (Etzioni, Banko

& Cafarella, 2006). It is an ambitious goal that has attracted much interest from NLP

researchers (Mulkar et al., 2007; Strassel et al., 2010; Poon & Domingos, 2010). By framing

the reading task as ‘skimming’ (which provides a little more structure than simply

navigating a set of documents, but much less than a full representation of the semantics

of documents), we hope to leverage machine reading principles into practical tools that can

be used by domain experts straightforwardly.

Our approach shares some similarities with applications of spreading activation in

information retrieval which are summarised for instance in the survey (Crestani, 1997).

These approaches are based on associations between search results computed either

off-line or based on the “live” user interactions. The network data representation used

for the associations is quite close to SKIMMR, however, we do not use the spreading

activation principle to actually retrieve the results. We let the users to navigate the graph by

themselves which allows them to discover even niche and very domain-specific areas in the

graph’s structure that may not be reached using the spreading activation.

Works in literature based discovery using either semantic relationships (Hristovski et

al., 2006) or corresponding graph structures (Wilkowski et al., 2011) are conceptually very

similar to our approach to skim reading. However, the methods are quite specific when

deployed, focusing predominantly on particular types of relationships and providing

pre-defined schema for mining instances of the relationships from the textual data.

We keep the process lightweight and easily portable, and leave the interpretation of the

conceptual networks on the user. We do lose some accuracy by doing so, but the resulting

framework is easily extensible and portable to a new domain within minutes, which

provides for a broader coverage compensating the loss of accuracy.

From the user perspective, SKIMMR is quite closely related to GoPubMed (Dietze et

al., 2008), a knowledge-based search engine for biomedical texts. GoPubMed uses Medical

Subject Headings and Gene Ontology to speed up finding of relevant results by semantic

annotation and classification of the search results. SKIMMR is oriented more on browsing

than on searching, and the browsing is realised via knowledge bases inferred from the

texts automatically in a bottom-up manner. This makes SKIMMR independent on any

pre-defined ontology and lets users to combine their own domain knowledge with the data

present in the article corpus.

Tools like DynaCat (Pratt, 1997) or QueryCat (Pratt & Wasserman, 2000) share the basic

motivations with our work as they target the information overload problem in life sciences.

They focus specifically on automated categorisation of user queries and the query results,

aiming at increasing the precision of document retrieval. Our approach is different in that

it focuses on letting users explore the content of the publications instead of the publications

themselves. This provides an alternative solution to the information overload by leading
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users to interesting information spanning across multiple documents that may not be

grouped together by Pratt (1997) and Pratt & Wasserman (2000).

Another related tool is Exhibit (Huynh, Karger & Miller, 2007), which can be used for

faceted browsing of arbitrary datasets expressed in JSON (Crockford, 2006). Using Exhibit

one can dynamically define the scope from which they want to explore the dataset and

thus quickly focus on particular items of interest. However, Exhibit does not provide any

solution on how to get the structured data to explore from possibly unstructured resources

(such as texts).

Textpresso (Müller, Kenny & Sternberg, 2004) is quite similar to SKIMMR concerning

searching for relations between concepts in particular chunks of text. However, the

underlying ontologies and their instance sets have to be provided manually which

often requires years of work, whereas SKIMMR operates without any such costly input.

Moreover, the system’s scale regarding the number of publications’ full-texts and concepts

covered is generally lower than the instances of SKIMMR that can be set up in minutes.

CORAAL (Nováček et al., 2010) is our previous work for cancer publication search,

which extracts relations between entities from texts, based on the verb frames occurring in

the sentences. The content is then exposed via a multiple-perspective search and browse

interface. SKIMMR brings the following major improvements over CORAAL: (1) more

advanced back-end (built using our distributional data semantics framework introduced

in Nováček, Handschuh & Decker, 2011); (2) simplified modes of interaction with the

data leading to increased usability and better user experience; (3) richer, more robust

fuzzy querying; (4) general streamlining of the underlying technologies and front-ends

motivated by the simple, yet powerful metaphor of machine-aided skim reading.

Future work
Despite the initial promising results, there is still much to do in order to realise the full

potential of SKIMMR as a machine-aided skim reading prototype. First of all, we need

to continue our efforts in recruiting coherent and reliable sample user groups for each of

the experimental SKIMMR instances in order to complement the presented evaluation by

results of actual user studies. Once we get the users’ feedback, we will analyse it and try to

identify significant patterns emerging from the tracked behaviour data in order to correlate

them with the explicit feedback, usability assessments and the results achieved in our

simulation experiments. This will provide us with a sound basis for the next iteration

of the SKIMMR prototype development, which will reflect more representative user

requirements.

Regarding the SKIMMR development itself, the most important things to improve

are as follows. We need to extract more types of relations than just co-occurrence and

rather broadly defined similarity. One example of domain specific complex relation

are associations of potential side effects with drugs. Another, more general example, is

taxonomical relations (super-concept, sub-concept), which may help provide additional

perspective to browsing the entity networks (i.e., starting with high-level overview of

the relations between more abstract concepts and then focusing on the structure of the
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connections between more specific sub-concepts of selected nodes). Other improvements

related to the user interface are: (1) smoother navigation in the entity networks (the nodes

have to be active and shift the focus of the displayed graph upon clicking on them, they

may also display additional metadata, such as summaries of the associated source texts);

(2) support of more expressive (conjunctive, disjunctive, etc.) search queries not only in

the back-end, but also in the front-end, preferably with a dedicated graphical user interface

that allows to formulate the queries easily even for lay users; (3) higher-level visualisation

features such as evolution of selected concepts’ neighbourhoods in time on a sliding scale.

We believe that realisation of all these features will make SKIMMR a truly powerful tool for

facilitating knowledge discovery (not only) in life sciences.
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APPENDIX. FORMULAE DEFINITIONS
In this appendix we give full account on definitions of some of the formal notions used

throughout the main article but not covered in detail there.

Co-occurrences
The basic co-occurrence score cooc((ex,ey),PubMedPMID) for two entities ex,ey in an article

PubMedPMID, introduced in ‘Extracting basic co-occurrence statements from texts’, is

computed as

cooc((ex,ey),PubMedPMID) =


i,j∈S(ex,ey)

1

1 + |i − j|
(1)

where S(ex,ey) is a set of numbers of sentences that contain the entity ex or ey (assuming

the sentences numbered sequentially from the beginning of the text). In practice, one may

impose a limit on the maximum allowed distance of entities to be taken into account in the

co-occurrence score computation (we disregard entities occurring more than 3 sentences

apart from the score sum).

The non-normalised formula for corpus-wide co-occurrence for two outcomes (i.e.,

terms in our specific use case) x,y, using a base-2 logarithm (introduced in ‘Corpus-wide

co-occurrence’), is:

fpmi(x,y) = F(x,y)log2
p(x,y)

p(x)p(y)
(2)

where F(x,y) is the absolute frequency of the x,y co-occurrence and p(x,y),p(x),p(y) are

the joint and individual distributions, respectively. In our case, the distributions are the
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weighted relative frequencies of the entity terms in the basic co-occurrence tuples gener-

ated from the input texts which are computed as follows. Let us assume a set T of tuples

t1 = (e1,x,e1,y,cooc((e1,x,e1,y),PubMedPMID1),PubMedPMID1),

t2 = (e2,x,e2,y,cooc((e2,x,e2,y),PubMedPMID2),PubMedPMID2),

...

tn = (en,x,en,y,cooc((en,x,en,y),PubMedPMIDn),PubMedPMIDn)

as a result of the basic co-occurrence statement extraction described in the previous

section. The joint distribution of terms x,y specific to our case can then be computed as:

p(x,y) =


w∈W(x,y,T)w

|T|
(3)

where W(x,y,T) = {w|∃e1,e2,w,i.(e1,e2,w,i) ∈ T ∧ ((e1 = x ∧ e2 = y)∨ (e1 = y ∧ e2 = x))}

is the set of weights in the basic co-occurrence tuples that contain both x,y as entity

arguments. Finally, the individual distribution of a term z is computed as:

p(z) =


w∈W(z,T)w

|T|
(4)

where W(z,T) = {w|∃e1,e2,w,i.(e1,e2,w,i) ∈ T ∧ (e1 = z ∨ e2 = z)} is the set of weights

in the basic co-occurrence tuples that contain z as any one of the entity arguments. In the

eventual result, all co-occurrence tuples with score lower than zero are omitted, while the

remaining ones are normalised as follows:

npmi(x,y) = ν(fpmi(x,y),P) (5)

where ν is a function that divides the scores by the P-th percentile of all the scores and

truncates the resulting value to 1 if it is higher than that. The motivation for such definition

of the normalisation is that using the percentile, one can flexibly reduce the influence of

possibly disproportional distributions in the scores (i.e., when there are few very high

values, normalisation by the sum of all values or by the maximal value would result in most

of the final scores being very low, whereas the carefully selected percentile can balance that

out, reducing only relatively low number of very high scores to crisp 1).

Similarities
Firstly we define the cosine similarity introduced in ‘Similarity’. For that we need few

auxiliary notions. First of them is a so called ‘co-occurrence complement’ x̄ of an entity x:

x̄ = {(e,w)|∃e,w.(e,cooc,x,w) ∈ KB ∨ (x,cooc,e,w) ∈ KB} (6)

where KB is the knowledge base, i.e., the set of the aggregated co-occurrence statements

computed as shown in ‘Corpus-wide co-occurrence’. Additionally, we define an element-

set projection of an entity’s co-occurrence complement x̄ as x̄1 = {y|∃w.w ≠ 0∧ (y,w) ∈ x̄},
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i.e., set of all the entities in the co-occurrence complement abstracting from the

corresponding co-occurrence weights. Finally, we use a shorthand notation x̄[y] = w

such that (y,w) ∈ x̄ for a quick reference to the weight corresponding to an entity in a

co-occurrence complement. If an entity y is missing in the co-occurrence complement of x,

we define x̄[y] = 0.

Example 8 Assuming that the knowledge base consists only from one co-occurrence tuple

(parkinsonism,cooc,DRD,0.545) from the previous Example 2, we can define two

co-occurrence complements on the entities in it:

parkinsonism = {(DRD,0.545)}, DRD = {(parkinsonism,0.545)}.

The element-set projection of parkinsonism is then a set {DRD}, while

parkinsonism[DRD] equals 0.545.

Now we can define the similarity between two entities a,b in a SKIMMR knowledge base

as:

sim(a,b) =


z∈ā1∩b̄1

ā[z]b̄[z]
x∈ā1

ā[x]2


y∈b̄1
b̄[y]2

(7)

where ā,b̄ are the co-occurrence complements of a,b, and ā1,b̄1 their element-set

projections. It can be easily seen that the formula directly corresponds to the definition

of cosine distance: its top part is the dot product of the co-occurrence context vectors

corresponding to the entities a,b, while the lower part is multiplication of the vectors’ sizes

(Euclidean norms in particular).

The MeSH-based semantic similarity of entities, introduced in ‘Running and measuring

the random walks’, is defined as

simM(X,Y) = max
u∈CS(X),v∈CS(Y)

2 · dpt(lcs(u,v))

dpt(u) + dpt(v)
(8)

where the specific tree codes in the CS(X),CS(Y) are interpreted as nodes in the MeSH

taxonomy, the lcs stands for the least common subsumer of two nodes in the taxonomy

and dpt is the depth of a node in the taxonomy (defined as zero if no node is supplied

as an argument, i.e., if lcs has no result). The formula we use is essentially based on a

frequently used taxonomy-based similarity measure defined in Wu & Palmer (1994). We

only maximise it across all possible cluster annotations of the two input entities to find

the best match. Note that this strategy is safe in case of a resource with as low ambiguity

as MeSH – while there are often more annotations of a term, they do not refer to different

senses but rather to different branches in the taxonomy. Therefore using the maximum

similarity corresponds to finding the most appropriate branch in the MeSH taxonomy

along which the terms can be compared.
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Entropies
‘Running and measuring the random walks’ introduced entropies for expressing

information value of SKIMMR evaluation samples (i.e., random walks and their contexts).

The entropies are defined using the notion of MeSH cluster size (cs(...)) introduced in the

main part of the article. Given a set Z of nodes of interest, the entropy based on MeSH

cluster annotations, HM(Z), is computed as

HM(Z) = −


Ci∈C(Z)

cs(Ci)
Cj∈C(Z)cs(Cj)

· log2
cs(Ci)

Cj∈C(Z)cs(Cj)
(9)

where C is one of CA,CS, depending whether we consider the abstract or the specific nodes.

Similarly, the component-based entropy HC(Z) is defined as

HC(Z) = −


Ci∈B(Z)

|Ci|
Cj∈B(Z) |Cj|

· log2
|Ci|

Cj∈B(Z) |Cj|
(10)

where B(Z) is a function returning a set of biconnected components in the envelope Z,

which is effectively a set of subsets of nodes from Z.

Precision and recall
The indices of related articles are compared using precision and recall measures, as stated

in ‘Comparing the indices of related articles’. Let IS : P → 2P,IG : P → 2P be the SKIMMR

and gold standard indices of related publications, respectively (P being a set of publication

identifiers). Then the precision and recall for a publication p ∈ P are computed as

pre(p) =
|IS(p) ∩ IG(p)|

|IS(p)|
, rec(p) =

|IS(p) ∩ IG(p)|

|IG(p)|
(11)

respectively. To balance the possibly quite different lengths of the lists of related articles,

we limit the computation of the precision and recall up to at most 50 most relevant items

in the lists. The average values of precision and recall for a corpus of articles X ⊆ P are

computed as

preavg(X) =


p∈X pre(p)

|X|
, recavg(X) =


p∈X rec(p)

|X|
(12)

respectively.
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