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The selective properties of fishing acting on behavioural traits have recently gained

interest. Recent acoustic tracking experiments have revealed consistent among-individual

differences on circadian behavioural traits across time and ecological contexts generating

different chronotypes on marine fish. We have hypothesized here that fishing directional

selection operates on these wild circadian behavioural variation acting against certain

individuals of the same population that differ in traits like awakening time or rest onset.

We have developed a spatially-explicit social-ecological Individual-Based Model (IBM) to

test this hypothesis. The parametrization of our IBM was fully based on empirical data, and

represent a fishery formed by patchily distributed resident fish that are exploited by a fleet

of mobile boats (any bottom fisheries). We run our IBM with and without the observed

circadian behavioural variation and estimated selection gradients as a quantitative

measure of trait change. Our simulations revealed significant and strong selection

gradients against early-riser chronotypes when compared with other behavioural and life-

history traits. Significant selection gradients were consistent across a wide range of fishing

effort scenarios. Our theoretical findings open a new dimension understanding the

selective properties of fishing by bridging gaps between three traditionally separated

fields: fisheries science, behavioural ecology and chronobiology. We derive some general

predictions of our theoretical findings and outline a list of research needs to understand

the consequences of circadian behavioural variation in marine exploited environments.
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12 Abstract

13 The selective properties of fishing acting on behavioural traits have recently gained interest. Recent 

14 acoustic tracking experiments have revealed consistent among-individual differences on circadian 

15 behavioural traits across time and ecological contexts generating different chronotypes on marine fish. 

16 We have hypothesized here that fishing directional selection operates on these wild circadian behavioural 

17 variation acting against certain individuals of the same population that differ in traits like awakening time 

18 or rest onset. We have developed a spatially-explicit social-ecological Individual-Based Model (IBM) to 

19 test this hypothesis. The parametrization of our IBM was fully based on empirical data, and represent a 

20 fishery formed by patchily distributed resident fish that are exploited by a fleet of mobile boats (any 

21 bottom fisheries). We run our IBM with and without the observed circadian behavioural variation and 

22 estimated selection gradients as a quantitative measure of trait change. Our simulations revealed 

23 significant and strong selection gradients against early-riser chronotypes when compared with other 

24 behavioural and life-history traits. Significant selection gradients were consistent across a wide range of 

25 fishing effort scenarios. Our theoretical findings open a new dimension understanding the selective 

26 properties of fishing by bridging gaps between three traditionally separated fields: fisheries science, 
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27 behavioural ecology and chronobiology. We derive some general predictions of our theoretical findings 

28 and outline a list of research needs to understand the consequences of circadian behavioural variation in 

29 marine exploited environments.

30

31 Keywords

32 Chronotypes, circadian behavioural traits, fisheries induced-evolution, individual-based model, selection 

33 gradient

34

35 Introduction

36 Humans exploit fish populations through trait-selective harvesting since the origin of our species 

37 (Allendorf & Hard 2009). Fishing is in fact widely recognized today as a major driver of 

38 contemporaneous evolution and trait change in wild fish populations (Sullivan et al. 2017). The selection 

39 gradient (S), as a central measure of selection in traditional quantitative genetics with heritability (Price 

40 1970), has been widely used to describe trait change either in commercial and recreational fisheries. 

41 There is substantial evidence that positive size-selective harvesting (e.g., gear-selectivity) selects for fast 

42 life-histories and generates selection gradients in traits like maturation and reproduction investment (Alós 

43 et al. 2014; Heino et al. 2015; Laugen et al. 2014; Matsumura et al. 2011). Although the economic 

44 consequences of fisheries selection may be addressed by proper fisheries management (Eikeset et al. 

45 2013), they can generate undesirable consequences for ecosystem functioning (Audzijonyte et al. 2013; 

46 Jørgensen et al. 2007), may notably slow down the recovery (Uusi-Heikkilä et al. 2015; Walsh et al. 

47 2006) and may decrease the recreational utility of fisheries (Sutter et al. 2012).

48 What traits make more vulnerable one individual from others is, however, a complex and multi-

49 trait phenomena (Lennox et al. 2017b). Vulnerability may involve not life-history traits, but also 

50 physiology, morphological and behavioural traits that usually, but not always, co-vary (Uusi-Heikkilä et 

51 al. 2008). In fact, the behavioural dimension of fisheries selection has recently gained interested among 

52 fisheries scientists and managers due to two major recent facts (Biro & Sampson 2015; Diaz Pauli & Sih 
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53 2017). In one hand, nowadays, there is massive literature demonstrating the existence of consistent (in 

54 time and ecological context) among-individual differences on fish behavioural traits like boldness or 

55 aggressiveness, leading to the formation of fish behavioural types (Conrad et al. 2011; Mittelbach et al. 

56 2014). In the other hand, with the recent development of aquatic telemetry, fisheries scientists have a 

57 powerful tool available to study fish individual heterogeneity and behavioural types in free-living fishes 

58 (Hussey et al. 2015; Lennox et al. 2017a). Fish tracking has provided a new and unique opportunity to 

59 add realism in the study on how fisheries produce selection in behavioural traits (e.g., Alós et al. 2016b; 

60 Monk & Arlinghaus 2017; Olsen et al. 2012). These two facts together have generated today substantial 

61 empirical evidence demonstrating that bolder, more aggressive and/or more explorative behavioural types 

62 (e.g., Alós et al. 2012b; Biro & Sampson 2015; Härkönen et al. 2014; Klefoth et al. 2011) and/or 

63 individuals with larger foraging areas and swimming speeds (e.g., Alós et al. 2016b; Olsen et al. 2012), 

64 are more prone to be harvested independently of their body size. Because this reason, the idea of a 

65 timidity syndrome for what fish exploited populations are formed by shy, low active and resident 

66 individuals (Arlinghaus et al. 2017), is quickly gaining theoretical and empirical support.

67 Behavioural traits that determine timing have been surprisingly poorly considered in the context 

68 of the selective properties of fishing. Recently, Tillotson & Quinn (2017) have proposed timing of 

69 migration or breeding as candidate traits target by fisheries selection. Both timing of migration or 

70 breeding season have strong impact in the populations dynamics (Lowerre-Barbieri et al. 2017), and 

71 selection imposed in these traits would strongly impact the trajectory of the stocks in the long-term. 

72 Similarly, an ubiquitous fish timing behaviour that has been overlooked by the scientific fisheries 

73 community is the manifestation of underlying circadian rhythms. Life on earth is governed by a 24 h 

74 rotation cycle that has leaded the evolution of endogenous circadian clocks across taxa, including fish 

75 species (Kreitzman & Foster 2005). Similar to behavioural types, humans and some animals show 

76 consistent among-individual variation in different circadian-related behaviours like awakening time or 

77 sleep onset that are the result from the interactions between those endogenous individual circadian clocks 

78 and the environment, defining chronotypes (Roenneberg et al. 2007).
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79 In animals, the science of circadian rhythms or chronobiology has a long story of studies 

80 (Rattenborg et al. 2017), and have demonstrated the ubiquity and high heritability of circadian clocks 

81 across taxa (Bloch et al. 2013). For example, Helm & Visser (2010) quantified the heritability of the 

82 chronotypes in great tit (Parus major) to be 0.86. However, only few studies have demonstrated the 

83 existence of chronotypes by exploring the amount of behavioural variation explained by among-

84 individual differences (Randler 2014), mainly on bird species (Dominoni et al. 2013; Steinmeyer et al. 

85 2010; Stuber et al. 2015; Stuber et al. 2014). Recently, Alós et al. (2017) have found the first evidence of 

86 the existence of chronotypes on fish facilitated by the abovementioned new tracking facilities. Similar to 

87 bird chronotypes, the pearly razorfish, Xyrichthys novacula, exhibited a significant proportion of variation 

88 in circadian-related behaviours explained by among-individuals differences forming different chronotypes 

89 (Fig. 1); early-delayed risers for instance. Thus, when an individual within a population of diurnal or 

90 nocturnal fish species starts or finishes its activity, is not just a plastic component of the individual life-

91 history, but consistent differences among-individual exist independently of its personality or 

92 environmental variables (Alós et al. 2017). 

93 Far from being anecdotal, chronotypes are frequently linked to many fitness processes 

94 (Roenneberg et al. 2003, and see review by Adan et al. 2012) and any directional selection pressure 

95 (either natural or human-induced) acting on them could lead trait change on circadian behavioural 

96 rhythms (Helm et al. 2017). In fact, there is one recent study that has demonstrated the potential of 

97 human-induced selection in circadian clocks with impact on their fitness (Dominoni et al. 2013); city 

98 birds start their activity earlier than their forest conspecifics highlighting urban environments (artificial 

99 lighting) can significantly modify biologically important rhythms in wild organisms. Similarly, we 

100 hypothesized here that early riser fish chronotypes should be more vulnerable to fishing simply due to the 

101 odds of enhanced encounters with fishers. According to this idea, the objective of this work was to 

102 explore from a theoretical point of view the plausibility of selection acting on fish chronotypes using a 

103 spatially-explicit individual-based model (IBM). Our IBM was based in relatively simple movement rules 

104 that lead encounters between fish and fishers, it is based in the real properties of a general coastal bottom 

PeerJ reviewing PDF | (2018:02:24612:0:1:NEW 26 Feb 2018)

Manuscript to be reviewed



105 fishery, and explicitly incorporate social-ecological factors aiming to add realism to our model (and 

106 simulations). We aimed to estimate mean-standardized selection gradients in circadian behavioural traits, 

107 as a quantitative measure of directional selection, to compare them with previously reported gradients in 

108 other traits (Hereford et al. 2004). Our final objective was to make broader predictions about the expected 

109 direction of selection on chronotypes and their consequences, stimulate research on the topic and provide 

110 a list of research needs for empirical approaches to fully disentangle the fitness consequences of fish 

111 chronotypes in exploited environments.

112

113 Material and methods

114 To explore our hypothesis, we have developed a computational IBM where a fish population spatially 

115 behaves in a 2-D landscape and it is exploited by a fleet of fishing boats during a fishing session (see Fig. 

116 2 and video in SM1). Our IBM is spatially-explicit because fish and fishers move (change the position 

117 every min) across the landscape according to different types of movement models. Encounters fish and 

118 fishers determined the mortality of the fish. Our model was built under a prototypical bottom fishery 

119 where i) target fish performed a sedentary spatial behaviour that lead the establishment of a home range 

120 (HR) area, ii) the centres of activity were patchily distributed forming a patchy landscape (which could be 

121 the consequence of a fragmented habitat), and iii) fish is exploited by a fleet of fishing mobile boats. Our 

122 model was parametrized based on empirical data from a popular recreational fishery located in Mallorca 

123 Island (Spain) targeting pearly razorfish (see full details in Alós et al. 2016b), but it is generalizable to 

124 any other system displaying these three main properties. Our computational IBM simulation was 

125 implemented and run in R (R Core Team 2017) and the R-Code is provided as Supplementary Material 

126 (SM2).

127

128 (a) The ecological landscape: fish moving with individual heterogeneity in circadian and spatial 

129 behaviour 
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130 We created a 2-D landscape of 12.1 Km2 with open boundaries where 6.4 Km2 were formed by 

131 the preferred habitat of the pearly razorfish (hereinafter, the targeted species) to create a realistic 

132 ecological landscape (see map in Fig. 2). We randomly distributed 2,000 centres of activity (centre of the 

133 HR, see below) in the preferred habitat to create a patchy distribution of fish across the ecological 

134 landscape and were attributed to one fish id (initial population = 2,000 individuals, density = 312 

135 individuals per Km2). Then fish were monitored (for survival) every minute during a whole prototypical 

136 fishing season; here 15 full fishing days after the opening of the fishery in September 1st 00:00, according 

137 to (Alós et al. 2016b). Thus, the IBM was discretised on time (every 1 min), had 21,600 time-steps (n), 

138 and a position (latitude and longitude) of each fish was mechanistically generated according to the 

139 movement and the circadian behavioural variation described below.

140 Fish movement is usually mechanistically explained by different types of random walks (Smouse 

141 et al. 2010). Different to the purely random walks that generate standard diffusion across the space, many 

142 fish species use a confined area and form stable HR areas (Alós et al. 2016a). The idea behind the HR 

143 movement is that an individual moves within a harmonic potential field following random stimuli 

144 (random walk) but with a general tendency to remain around a central residence area (Börger et al. 2006). 

145 In such cases there is a need for an additional behavioural rule that maintains the individual attracted to a 

146 specific core site (Benhamou 2014; Smouse et al. 2010), which can be described by a an Ornstein–

147 Uhlenbeck process defining a Biased Random Walk (BRW) (Alós et al. 2016a). 

148 For the aim of this study, we considered two descriptors of this BRW movement described in 

149 Alós et al. (2016a): i) the size of the circular HR-radius (in metres) that can be interpreted as a surrogate 

150 of the total foraging area and activity space, and ii) the harmonic force (k in min-1) that can be interpreted 

151 as the strength of the drift or attraction force toward the centre of its HR, which ultimately determines the 

152 slope of the curve describing the cumulative space used in function of time (we refer this as exploration). 

153 We randomly assigned a value of both parameters to our virtual population of fish from the real data 

154 estimated in (Alós et al. 2016a); range for radius: 67-470 m and exploration: 0.0005-0.025 min-1) using 

155 the function sample of the R-package. See Fig. 2 to see the realized daily trajectories of a given fish.
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156 Most diurnal fish species show a circadian-related behaviour switching from active during the 

157 day-time to resting during the night-time, or vice-versa for nocturnal species (Krumme 2009). Here, we 

158 were interested in the individual differences in the daily timing of switching the circadian state, 

159 particularly in the repeatability score (R) in two behavioral manifestations of circadian rhythms (Fig. 1): i) 

160 awakening time and ii) rest onset (referred as minutes from sunrise or sunset, respectively). R assesses the 

161 degree of consistency of behaviors shown by individuals over time (Nakagawa & Schielzeth 2010), 

162 represents the phenotypic variation attributable to individual heterogeneity and is often used to 

163 characterize animal personalities and, in our context, to detect chronotypes (Alós et al. 2017; Dingemanse 

164 & Dochtermann 2013; Stuber et al. 2015).

165 To test our hypothesis, we simulated two R simulating scenarios. In the first scenario, the fish 

166 population showed significant repeatability in the awakening and rest onset times generating chronotypes 

167 (Fig. 1). We randomly assigned to each of the 2,000 fish an individual mean and standard deviation (s.d.) 

168 in the awaking and rest onset times according to the real data published in (Alós et al. 2017) to generate 

169 chronotypes using the function sample of the R-package (i.e., the real circadian behavioural diversity 

170 revealed from acoustic tracking was simulated, Fig. 1). In the second scenario, all individuals of the 

171 population had an awakening time and rest onset times with the same mean and s.d. (mean = 0 min and 

172 s.d. = 15 min) to obtain an ecological landscape where chronotypes did not exist (i.e., no real circadian 

173 behavioural variation nor between-individual differences were simulated). This second scenario of 

174 simulation was used to confirm that potential selection gradients in the circadian behavioral traits 

175 obtained in the first scenario were certainly caused by the chronotypes.

176 Once a set of movement parameters and circadian behaviors was assigned to each fish id, we 

177 generated a Markovian Chain of states (active vs. resting) for each fish for the whole fishing season 

178 simulated. Therefore, we re-sampled in a daily basis the mean and s.d. of each individual in both traits 

179 (i.e., awakening and rest onset times), and generated one value for every day and individual id. Hence, we 

180 constructed a Markovian chain of states according to the individual values and the local sunset and 

181 sunrise times. Finally, a position to all time-steps in active state was generated for the whole fishing 

PeerJ reviewing PDF | (2018:02:24612:0:1:NEW 26 Feb 2018)

Manuscript to be reviewed



182 season according to our HR mechanistic model and the individual movement parameters of each fish (Fig. 

183 1 and see SM1). During resting state the individual remained in the same position, but invulnerable to 

184 fishing as the fish remained in the shelter (the pearly razorfish remains buried in the sand during the 

185 night-time according to Alós et al. 2012a). The complete sequence of time-steps and positions of each fish 

186 was used to create a realistic dynamic ecological landscape (see movie SM1).

187

188 b) The social landscape: a fleet of mobile boats targeting the ecological landscape

189 A fleet of mobile fishing boats exploited the ecological landscape. We considered a total number 

190 of 133 fishing boats (spatial fishing effort: 11 boats per km2) according to the empirical data found in our 

191 target fishery (Alós et al. 2016b). However, we run our two simulation scenarios in different fishing effort 

192 scenarios to evaluate the strength of the potential selection under different pressures (2, 4, 6, 8, 10 and 12 

193 boats per km2). The whole fleet exploited the fishery every day for the whole fishing season (here 15 

194 days). At the daily basis, the IBM carefully considered a different time of arrival and leaving of the boats 

195 to the fishery (with respect the local sunrise data, to synchronize with the ecological landscape) as this 

196 aspect is highly relevant for the aims of our study. Specially, we put effort in reproducing the real daily 

197 dynamics of the fishing pressure by assigning a time of arrival and leaving to each boat (Fig. 2); fishers 

198 exploited the scenario in a range of 160-460 min after sunrise with an effective fishing effort of 4.6 ± 1.2 

199 h. For simplicity, no within-individual variability in the time of arrival and leaving was considered (i.e., 

200 each angler arrived to the fishery at the same moment every day), but some individuals arrived earlier 

201 than others did similarly to the idea of fish chronotypes.

202 As fishers arrived to the fishery (depending on their individual arrival time), they spatially 

203 behaved accordingly to a movement models based on two states. Individual boat fisher’s trajectories are 

204 usually composed by different states, mainly three: cruising, searching and fishing (Vermard et al. 2010; 

205 Walker & Bez 2010). In our scenario, when fishers have already arrived to the fishery, they performed a 

206 classical search pattern formed by two states: fishing and searching (see Fig. 2). Here we considered a 

207 relatively simple Hidden Markov Model (HMM) movement with two types of random walks describing 
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208 each state (Auger-Méthé et al. 2015). HMM are widely used for modelling any type on animal or fishers 

209 movement data (Patterson et al. 2017), and a recent R-package have been recently developed (Michelot et 

210 al. 2016). 

211 Accordantly, a bi-variate times-series for each fisher composed by step lengths (in m) and turning 

212 angles (in rad) were generated to describe its trajectory every day. These temporal series were drawn by a 

213 state-dependent process at moment n (unobserved in a real situation; the hidden Markov chain) using two 

214 distributions of the step lengths and turning angles (one per each state; fishing vs. searching). The 

215 transition among the two states was generated by a 2 × 2 transition probability matrix, , where  Γ= (𝛾𝑖𝑗) 𝛾𝑖𝑗
216 was the probability of the fisher switching from the current state (at time-step n) to the future state (at 

217 time-step n+1). Here, we considered  meaning that fisher spent most of the time fishing Γ= (0.95 0.05
0.5 0.5 )

218 to obtain realistic fisher trajectories (see a realized trajectory of the fisher in Fig. 2). 

219 Each state of the sequence was associated to a distinct random walk movement model; a BRW for 

220 fishing and a correlated biased random walk (CBRW) for searching to properly reproduce the spatial 

221 dynamics of the fleet (Fig. 2). When the fisher was in fishing state, the boat just drifted following the 

222 current. While this process is not a random walk, we used the mathematical description of a conventional 

223 BRW for simplicity by biasing the angle of the trajectory according to the surface current in the area and 

224 adding some noise (see Fig. 2 and SM1). Accordantly, the step-lengths of this state were described by a 

225 gamma distribution (as velocity cannot reach negative values) with mean= 1 m and s.d.= 0.5 m, and an 

226 angle described by a von Mises distribution of mean equal to the angle of the surface current and 

227 concentration= 1.2 rad (noise) to reproduce similar real patterns observed in the fishery. To add realism, 

228 we used the real observed angle of the surface current for each time-step n since September 1st 00:00 in 

229 2016 obtained from an oceanographic buoy located in the study area by the SOCIB (www-

230 socib.es)(Tintoré et al. 2013). 

231 The searching state of the fisher was modelled using  a CBRW model described by Langrock et 

232 al. (2014) developed to model group dynamics of animal movement. Accordantly, the searching state was 
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233 mathematically described by a mixture of a BRW, where the bias was imposed by the social information 

234 generating a tendency to move to the centroid of the other boats were fishing (by watching other boats – 

235 social information); and a conventional Correlated Random Walk (CRW) where searching was described 

236 by a turning angle drawn form a von Mises distribution with mean= 0 and concentration= 5 rad. In both 

237 cases, the step lengths were described by a gamma distribution of step lengths with mean= 150 m and 

238 s.d.= 130 m (searching velocity). The peculiarity of the BCRW developed by (Langrock et al. 2014), is 

239 the existence of a parameter (η) which specifies the weight of the BRW with respect the CRW part of the 

240 BCRW. Here, we considered η=0.7 which generated behaviour of the fleet with a tendency to remain 

241 close to the other fisher boats. The full day fisher trajectory was generated according to the Markov chain 

242 of the two states (see Fig. 2) and one independent trajectory was generated every day. The initial location 

243 in the fishery of each fisher at was randomly generated in the 2D landscape and the first state of the day 

244 was searching. For simplicity, no among-fishers variability in the movement was considered.

245

246 c) Exploitation model and estimation of selection gradients

247 The coupled social-ecological landscapes were simulated and the encounters between fish and 

248 fishers quantified in the two scenarios of simulations under the different fishing pressures described above 

249 (Fig. 2 and see movie in SM1). We defined a successful encounter when i) the distance between the fish 

250 and a fisher was lower than 5 m (a reasonable distance to assume visual contacts of the fish with the bait) 

251 in a given time-step n, ii) the fish was in a vulnerable state (i.e., active), iii) was not encountered before 

252 by another fisher (emulating harvest with depletion) and, iv) the fisher was in fishing state. When the four 

253 conditions were met, the fish id was considered harvested. Once the fishing season simulation finished, 

254 we characterized the survival individuals (exploited population) in the terms of their circadian and spatial 

255 behavioural variation. We then estimated the selection gradient (S) in the two circadian (awakening time 

256 and rest onset) and spatial (radius of the HR and exploration) as a measure of selection commonly used in 

257 traditional quantitative genetics (Falconer & Mackay 1996). S values were mean-standardized ( ) to S
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258 generate a normalized measure of selection strength following (Matsumura et al. 2012) and make them 

259 comparable with previously reported data in other traits (Hereford et al. 2004). is a clean measure of S

260 selection strength and allows ranking the strength of selection acting on each of the various behavioral 

261 traits independent of the trait’s mean and variance.  can be interpreted as an elasticity of fitness to trait S

262 change. For example, an = 0.5 means that doubling the trait value elevates fitness by 50%. We S

263 computed the 95% confidential intervals in  for each behavioral by bootstrapping (1,000 iterations) the S

264 results of the simulations using the boot function of the R-package.

265

266 Results

267 The first simulation scenario considering real wild circadian variability (observed fish chronotypes) 

268 properly reproduced the existence of chronotypes (Fig. 1). R scores in this scenario were of 0.43 [0.37-

269 0.6] for awakening time and 0.45 [0.39-0.6] for rest onset, scores similar to those obtained from the real 

270 data by Alós et al. (2017). Fish started their activity up to 400 min after sunrise and among-individuals 

271 differences in awakening times were clearly recognizable defining early-riser chronotypes (Fig. 1).  In 

272 contrast, fish finished their activity in a shorter period of time (up to 20 min after the sunset), but some 

273 individuals extended their activity few minutes on average according to the real data (Fig. 1).

274 The mean and standard deviation in the four behavioral traits in the initial and exploited 

275 populations are shown in Table 1.  In total, 650 individuals survived (exploitation rate = 67.5%) in the 

276 simulation scenario and, in general, the exploited population was formed by individuals with later 

277 awakening times, similar rest onsets, smaller HRs and slower exploration (Table 1). These results 

278 generated significant mean-standardized selection gradients ( ) in awakening time (mean = 0.85), S S

279 HR size (mean = -0.52) and exploration rate (mean = -0.22, Table 1). These results were consistent S S

280 along the simulated gradient of fishing effort, and the strength of significant    increased as fishing S

281 effort increased (Fig. 3).
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282 In the second simulation scenario, where no fish chronotypes were simulated, the number of 

283 survivals was 315 individuals (exploitation rate = 84.2%). In this case, the exploited population was 

284 formed by individuals with similar awakening times and rest onsets, and smaller HRs and exploration 

285 rates (Table 1). These results only generated significant  for the HR size (mean = -0.49) and S S

286 exploration (mean = -0.36, Table 1), and we discarded significant  for the circadian behavioural S S

287 traits (Table 1). These results were also consistent across the simulated gradient of fishing effort (Fig. 3). 

288 Therefore, we discarded that the observed significant   in awakening time in the observed fish S

289 chronotypes simulation scenario was caused by other factors than the circadian behavioural variation.

290

291 Discussion

292 Fish behaviour has emerged as an important component of the selective properties of fisheries (Diaz Pauli 

293 & Sih 2017), including timing of migration and breeding behaviours  (Tillotson & Quinn 2017). Recently, 

294 consistent-among individual’s differences in circadian behavioural traits (chronotypes) have been 

295 evidenced in fish using novel acoustic tracking technologies and novel models applied to movement data 

296 (Alós et al. 2017). Chronotypes have key implications for individual fitness in human and birds, and 

297 many eco-evolutionary trends are dependent on the realized expression of circadian rhythms (Roenneberg 

298 et al. 2003; Wicht et al. 2014), but nothing is known about the consequences of fish chronotypes. Here we 

299 have developed a social-ecological IBM to test some of their potential consequence in exploited 

300 environments. IBMs are especially appropriate to formulate and test emergent population properties from 

301 individual processes in predator-prey systems (Barbier & Watson 2016; Watkins & Rose 2017), including 

302 fisheries (Alós et al. 2012b). The R score is a classic example of the emergent population properties from 

303 individuals and makes IBMs particularly suited to test our hypothesis. In addition, our novel IBM allowed 

304 us to test our working hypotheses in two different simulations and in a wide range of fishing pressure 

305 scenarios, by reproducing as well the real dynamics of coastal fisheries using real data (e.g., the actual 

306 among-individuals circadian behavioural variation was considered as revealed by acoustic tracking). 
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307 Therefore, we feel our results are representative of many other fisheries around the globe, and we propose 

308 individual-based circadian behaviours as important drivers in vulnerability of fish to be harvested across 

309 oceans.

310 The results of the first simulation scenario, with real wild circadian variability, revealed a 

311 significant selection gradient in the awakening time. Fish that survived the simulated fishing season were 

312 clearly not a random sample of the initial population and early-riser chronotypes were more prone to be 

313 captured by the fleet of boats. This finding adds a new variable into the complex concept of vulnerability 

314 of fish to fishing (Lennox et al. 2017b). This result was consistent across all fishing pressure levels 

315 suggesting that, even in low fishing pressure scenarios (2 boats per km2), fishing selection may act in 

316 circadian behavioural traits. In fact, the strength of selection was expected to increase as fishing pressure 

317 (mortality) increases. In contrast, no evidence for any selective properties was found regarding the rest 

318 onset, probably related with the fact that simulated fishing activity was mainly focused during the day-

319 time. In the second scenario, where no wild circadian behavioural variation was simulated, the selection 

320 gradient in awakening time was not significant, confirming chronotypes as major drivers of selection 

321 force, as it was found in the first and real based data simulation scenario.

322 The potential for eco-evolutionary changes of chronotypes under human pressure has been 

323 recently claimed (Helm et al. 2017). In fact,  Dominoni et al. (2013) have demonstrated that city 

324 European blackbirds (Turdus merula) started their activity earlier and had faster circadian oscillation than 

325 their forest con-specifics. The results by Dominoni et al. (2013) therefore suggested that human (thought 

326 artificial lightning) have selected individuals favouring large circadian period lengths. In this example, the 

327 selective force imposed by artificial acts in the opposite direction of our working hypothesis. In our work, 

328 the selective force is imposed by the timing of the fishing pressure (Fig. 2) and, accordantly, should 

329 favour small circadian period lengths and small foraging periods. What is relevant in this context is that 

330 either artificial lighting in cities or fishing pressure in the sea may impose selection gradients and may act 

331 as eco-evolutionary drivers in wild populations that should be further considered (Helm et al. 2017). Our 

332 work, in addition, provides the first evidence that fishing may alter the circadian rhythms in oceans.
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333 Our theoretical selection gradients were mean-standardized which allow to be compared with 

334 others traits. We, first, have found significant selection gradients in the two spatial behavioural traits 

335 considered here suggesting selection against large HRs and fast exploitation rates. Although both were 

336 smaller than the obtained by the circadian behavioural traits, significant selection gradients were 

337 consistent between the two simulation scenarios and across all fishing pressures. Interestingly, the 

338 direction of selection was consistent with the empirical selection gradients on these spatial behavioural 

339 traits which makes our IBM robust (Alós et al. 2016b). The strength of the obtained selection gradients in 

340 circadian behavioural traits were also stronger when compared with other life history ( = 0.66) and S

341 morphological ( = 0.29) previously reported traits (Hereford et al. 2004). However, the strength of S

342 selection may vary according to the morality pressure as revealed by the different fishing effort scenarios. 

343 This fact highlights the relevance of estimating selection gradients in real populations exposed to 

344 mortality and using realistic set-ups (based in data from the wild). However, our work demonstrates that 

345 the potential of selection in circadian behavioural traits certainly exists, and its strength could be stronger 

346 than other more classical considered traits.

347 The selection gradient is, however, only one component addressing trait change and deriving eco-

348 evolutionary trajectories (Price 1970). The heritability, or the degree of variation in a phenotypic trait in a 

349 population that is due to genetic variation between individuals, is a key component forecasting the 

350 population consequences of any mortality pressure (including fishing). There is no information on the 

351 heritability of chronotypes in marine fish, although Helm & Visser (2010) demonstrated the heritability of 

352 the chronotypes to be high in birds. In addition, our study is a computational simulation and it is possible 

353 that ore results are overestimating because we are not considering other sources of mortality or 

354 connectivity, neither other traits under fisheries selection (e.g., size, personality-related behavioural traits, 

355 age, etc). The early-life stages of the pearly razorfish are pelagic and the connectivity of surrounded non-

356 exploited populations should be integrated estimating the selection gradients (Alós et al. 2014). Therefore, 

357 there is a need to provide empirical data to our predictions and to develop a more complex meta-
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358 population dynamics to provide a more accurate view of the strength of the selection gradients of the 

359 circadian behavioural variation. 

360 Although our work is theoretical, we can derive some ecological implications of the selective 

361 properties of fishing acting against early riser chronotypes. Chronotypes are ubiquitous across taxa and 

362 key determinants of reproductive success; for instance, females choose males with early awakening time 

363 (Helm & Visser 2010). We therefore could predict a reduction in the overall population reproductive 

364 output due to the absence of high reproductive early riser males. In addition, fish like the pearly razorfish 

365 play a key role in the food-web by preying against other taxa (Castriota et al. 2005), and being predated 

366 by larger animals like dolphins. A change in the daily timing of the populations in the population of the 

367 pearly razorfish could induce behavioural changes in the lower and upper levels of the food-web. We can 

368 also speculate that fishing-induced selection against early risers is actually acting today, and the results 

369 observed in Alós et al. (2017) are the results of such selective process. We therefore suggest that the 

370 negative ecological consequences of the selective properties acting on circadian behavioural traits are 

371 plausible but also may be happening already. In all cases, there is a need to deep inside the causes and 

372 consequences of fish chronotypes selection and work deeper in their eco-evolutionary consequences 

373 (Bloch et al. 2013; Helm & Visser 2010).

374

375 Conclusions

376 Our work demonstrates that, far from being an anecdote, the timing associated to the fleet activity 

377 may generate significant selection against early-risers, and they strength may be larger than those 

378 imposed by spatial behavioural traits (Alós et al. 2016b). In fact, direct selection acting on chronotypes 

379 can indirectly be the mechanism of fishing selection on  migration or breeding behaviours (Graham et al. 

380 2017). Our work therefore opens a novel dimension understanding the selective properties on time-related 

381 behavioural traits and opens a new field in fish and fisheries science and generates a list of research 

382 needs. First, we should explore how widespread are chronotypes across fish taxa and how they are 

383 generated from molecular and environmental drivers. The technology and approaches to measure 
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384 chronotypes in the wild are certainly available (Alós et al. 2017; Helm et al. 2017; Rattenborg et al. 

385 2017). Second, there is a need to validate our theoretical predictions by performing, for example, 

386 experiments in the wild. Third, we should provide the genetic variation and heritability of fish 

387 chronotypes to evaluate the potential evolution on circadian behavioural traits. In a quantitative genetic 

388 way, we should explore genes and their polymorphisms like the CLOCK or the NPAS2 (Stuber et al. 

389 2016), and study how they are translated across generations (Helm & Visser 2010). Fourth, in our 

390 previous study we found chronotypes as independent axis of the fish personality (Alós et al. 2017). 

391 However, there is need to extend our research to other personality traits like boldness, aggressiveness or 

392 sociability (Conrad et al. 2011). This would help to understand the role of the circadian rhythms in the 

393 architecture of the behavioural variation of fish. In addition, there is need to study what are the fitness 

394 consequences of fish chronotypes. For example, how chronotypes correlates with the individual growth 

395 (productivity) or reproductive success as other behavioural traits do (Biro & Stamps 2008). Fifth and 

396 finally, there is need to improve our knowledge in the role of fish chronotypes in ecosystem functioning 

397 and in what services can be derived from them. Once this information would be available, we will be able 

398 to forecast the eco-evolutionary consequences of human selection against circadian behavioural traits. We 

399 hope our work stimulates research and debate on this topic.

400
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Figure 1(on next page)

Figure 1

Repeatability (R) of the wild behavioural variation in awakening time (moment of initiation of

the active phase minutes relative to the sunrise) and rest onset (moment of initiation of the

resting phase as minutes relative to the sunset) observed in the pearly razorfish, Xyrithchys

novacula. Sunset and sunrise are denoted by dashed red line. (a) Density and histogram

plots showing the distribution in awakening time and rest onset from 25 randomly selected

individuals from the simulated population. (b) Daily awakening time and rest onset (each

colour represent a fish Id) across 15 days of simulated exploitation. The R scores and their

confidential interval are plotted for each trait. (c) Individual violin plots showing the within-

and among-individuals variability (the individual mean is plotted as a black dot) in awakening

and rest onset describing different types of chronotypes (e.g., early risers). Simulated data

showed is based on the empirical work by Alós et al. (2017).
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Figure 2(on next page)

Figure 2

Properties of the spatially-explicit individual based model (IBM) developed here. (a) The 2-D

landscape simulated here composed by different types of habitats (land, satellite seawater as

the preferred fish habitat, seagrass in green and gravels in light brown). The centres of

activity of each simulated fish (2,000 individuals) are shown in red. (b) Number of boats in

the virtual scenario every day aggregated in 15 min slots since the sunrise (the real data

obtained using visual census is plotted in blue and the simulated data is plotted in green).

The dashed red line represents the sunrise. (c) Trajectory (positions every minute) of one fish

in two different days. Red dots represent the first and the last positions of the active diurnal

phase. (d) Trajectory of one fisher in two different days. Red dots represent the positions

were the fisher was fishing while blue dots represents the positions were the fisher was

searching according to the two-state movement pattern. The IBM was developed according

to the real characteristics of the fishery developed in the waters of Mallorca Island (NW

Mediterranean targeting the pearly razorfish, Xyrithchys novacula, (Alós et al. 2016b).
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Figure 3(on next page)

Figure 3

Mean-standardized selection gradients ( ) and their confidential interval (CI) obtained in the

two simulation scenarios (observed fish chronotypes vs. no fish chronotypes) in a gradient of

fishing effort (defined as number of boats per km2 per exploitation day) in the four

behavioural traits considered: awakening time (as min relative to the sunrise), rest onset (as

min relative to the sunset), the home range of the individual (defined as the radius of the

circular home range in m) and the level of the exploration of the home range (as min-1). We

considered significant when the CI didn’t overlapped with the non-directional selection

scenario (plotted as a dashed blue line).
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Table 1

Mean and standard deviation (s.d.) in the initial and exploited populations of the four

behavioural traits studied here resulting from the simulation scenario where wild fish

chronotypes were and fishing effort was 11 boats per km2 per exploitation day. Mean and s.d.

of the mean-standardized selection gradients (S) and their confidential interval (CI) resulting

from the 1,000 bootstrap iterations. S in bold were considered significant.
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1 Table 1

Initial (n=2,000)

Exploited 

(n=650) S
Observed fish 

chronotypes

Mean s.d. Mean s.d. Mean s.d.

CI-

low

CI-

high

Home range size (m) 203 90 183 79 -0.52 0.07 -0.65 -0.37

Exploration (min-1) 0.006 0.005 0.005 0.005 -0.22 0.03 -0.29 -0.15

Awakening time (min) 139 73 165 68 0.85 0.05 0.74 0.95

Rest onset (min) 4 7 4.2 6.8 -0.002

0.01

9 -0.039 0.035

No fish chronotypes Initial (n=2,000)

Exploited 

(n=315)  

Home range size (m) 204 88 185 83 -0.49 0.11 -0.72 -0.28

Exploration (min-1) 0.006 0.005 0.004 0.004 -0.36 0.05 -0.44 -0.26

Awakening time (min) 0.7 3.8 0.7 3.8 -0.0003 0.01 -0.02 0.02

Rest onset (min) -0.5 3.9 -0.3 4 -0.008

0.00

7 -0.021 0.006

2
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