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Background. The pycnodontiform fish Pycnodus is one of the representatives of the highly diverse

actinopterygian fish fauna from the early Eocene Bolca Lagerstätte, representing one of the youngest

and thus last occurrences of this extinct neopterygian clade . This genus has historically been used as a

wastebasket taxon in regards to poorly known pycnodontiform fossils. Authors have argued over the

specific status of the Bolca Lagerstätte Pycnodus in terms of how many species are contained within the

genus with some arguing for multiple species and others suggesting lumping all Bolca specimens

together into one species.

Methods. Here, we use a quantitative approach performing biometric and geometric morphometric

analyses on 52 specimens of Pycnodus in order to determine if the morphological variability within the

sample might be related to inter- or intraspecific variation.

Results. The analyses revealed that the variations of body shape, morphometric and meristic characters

cannot be used to distinguish different morphotypes. On the contrary, our results show a remarkable link

between shape and size, related to ontogeny.

Discussion. Differences in body shape of small (juvenile) and large (adult) individuals is probably related

to different microhabitats occupation on the Bolca reef with juveniles sheltering within crevices on the

reef and adults being more powerful swimmers that swim above the coral. Taxonomically, we suggest

that the Bolca Pycnodus should be referred to strictly as Pycnodus apodus as this was the name given to

the holotype. Additionally, an overview of species assigned to Pycnodus is given.
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31 ABSTRACT

32

33 Background. The pycnodontiform fish Pycnodus is one of the representatives of the highly 

34 diverse actinopterygian fish fauna from the early Eocene Bolca Lagerstätte, representing one of 

35 the youngest and thus last occurrences of this extinct neopterygian clade .  This genus has 

36 historically been used as a wastebasket taxon in regards to poorly known pycnodontiform fossils. 

37 Authors have argued over the specific status of the Bolca Lagerstätte Pycnodus in terms of how 

38 many species are contained within the genus with some arguing for multiple species and others 

39 suggesting lumping all Bolca specimens together into one species. 

40 Methods. Here, we use a quantitative approach performing biometric and geometric 

41 morphometric analyses on 52 specimens of Pycnodus in order to determine if the morphological 

42 variability within the sample might be related to inter- or intraspecific variation. 

43 Results. The analyses revealed that the variations of body shape, morphometric and meristic 

44 characters cannot be used to distinguish different morphotypes. On the contrary, our results show 

45 a remarkable link between shape and size, related to ontogeny. 

46 Discussion. Differences in body shape of small (juvenile) and large (adult) individuals is 

47 probably related to different microhabitats occupation on the Bolca reef with juveniles sheltering 

48 within crevices on the reef and adults being more powerful swimmers that swim above the coral. 

49 Taxonomically, we suggest that the Bolca Pycnodus should be referred to strictly as Pycnodus 

50 apodus as this was the name given to the holotype. Additionally, an overview of species assigned 

51 to Pycnodus is given.

52
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53 INTRODUCTION

54 Pycnodontiform fishes were a highly successful group of neopterygian fishes that colonized 

55 shallow marine, brackish, and freshwater habitats from the Norian to the middle Eocene during 

56 ca. 170 Ma (e.g., Tintori, 1981; Longbottom, 1984; Poyato-Ariza et al., 1998; Kriwet 2005). 

57 They were particularly diverse during the Late Cretaceous when they showed the highest degree 

58 of morphological diversity (Marramà et al., 2016a; Cawley & Kriwet, 2017). Pycnodonts 

59 underwent a severe drop in their diversity and disparity at the end of the Cretaceous, and the last 

60 representatives survived in restricted biotopes until the Middle Eocene (Poyato-Ariza, 2005; 

61 Marramà et al., 2016a). One of the last Palaeogene representatives is Pycnodus apodus (Volta 

62 1796), which is represented by several complete and articulated skeletons from the early Eocene 

63 (late Ypresian, c. 49 Ma) (Papazzoni et al., 2014; Marramà et al., 2016b) Bolca Koservat-

64 Lagerstätte. This deposit yielded a huge amount of exquisitely preserved fishes, which are 

65 housed today in several museums and research institutions around the world, and that are 

66 represented by more than 230 bony and cartilaginous fish species (see e.g. Blot, 1987; Blot & 

67 Tyler, 1990; Bannikov, 2004, 2006, 2008; Bannikov & Carnevale, 2009, 2010, 2016; Carnevale 

68 & Pietsch, 2009, 2010, 2011, 2012; Carnevale et al., 2014, 2017; Marramà & Carnevale, 2015a, 

69 b, 2016, 2017; Marramà et al., 2017a, b). 

70 Pycnodus apodus has a long and complex taxonomic history (see e.g., Blot, 1987; 

71 Poyato-Ariza & Wenz, 2002). Volta (1796) originally designated it as Coryphaena apoda. 

72 Blainville (1818) subsequently redescribed the same specimens without illustrations, and erected 

73 for them the taxon Zeus platessus. Finally, Agassiz (1833, 1839) created the genus Pycnodus for 

74 these specimens but kept the specific name of Blainville (1818). Agassiz (1844) noted that the 

75 existence of small specimens with a swelling of the forehead to be juveniles of Pycnodus 

76 platessus. Heckel (1856) erected using the same material as Agassiz (but probably also including 

77 other specimens) from Bolca a second species of Pycnodus, P. gibbus, due to differential 

78 characters such as the presence of a gibbosity on the forehead, higher vertebrae length to body 

79 depth ratio than P. platessus  and the body depth being one and a half times that of the body 

80 length in contrast to P. platessus having a body depth half that of the length. Another character 

81 not explicitly mentioned in the text but was drawn (Heckel, 1856; Plate 8, Figure 4) is that P. 

82 gibbus has 2 interdigitations between the vertebrae while P. platessus has 3-4. More recently, 

83 Blot (1987) examined specimens that were labelled P. platessus in various institutional 
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84 collections and compared their anatomy to that of specimens labelled P. gibbus and concluded 

85 that P. gibbus is synonymous with P. platessus and variations recorded among specimens were 

86 due to intraspecific differences. However, this hypothesis has never been tested employing a 

87 robust quantitative approach. Traditional and geometric morphometrics (Zelditch et al., 2004) 

88 have been successfully used to interpret the patterns of morphospace occupation, quantifying the 

89 morphological diversification, solving taxonomic debates, as well as to test if morphometric 

90 variations are due to intra- or interspecific variability (Wretman, Blom & Kear,  2016; Marramà 

91 & Carnevale, 2017; Marramà et al., 2017c).

92 In this perspective, this paper aims to analyse if the morphometric variation among 

93 Pycnodus species of Bolca, can be related to interspecific or intraspecific variability as 

94 hypothesized by Blot (1987). For this, we examined abundant Pycnodus specimens from various 

95 museum collections which were labelled as either P. apodus, P. platessus, P. gibbus or Pycnodus 

96 sp. to establish whether these species separate substantially from each other in the morphospace 

97 and if morphometric and meristic data can be useful to detect significant differences between the 

98 labelled taxa. Since the studied sample had a range of specimens of different sizes, we 

99 investigated whether different shapes can be related to possible ontogenetic differences of 

100 Pycnodus representing different growth stages from juvenile to adult.

101

102 The taxonomic history of Pycnodus

103

104 Pycnodus has long been used as wastebasket taxon in the study of pycnodontiforms, being used 

105 as a default name particularly for many Mesozoic taxa. Later revisions revealed said taxa to have 

106 significant morphological differences with Pycnodus leading to the creation of new genera. 

107 Species of pycnodontiforms previously referred to as Pycnodus include Anomoeodus subclavatus 

108 from the Maastrichtian of the Netherlands (Agassiz, 1833; Davis, 1890; Forir, 1887); other 

109 species of Anomoeodus referred to as Pycnodus include A. angustus, A. muensteri, A. phaseolus, 

110 A. sculptus (Agassiz, 1844) and A. distans (Coquand, 1860; Sauvage, 1880). Pycnodus liassicus 

111 Egerton, 1855 from the Early Jurassic, of Barrow-on-Soar of Leicestershire, United Kingdom 

112 was assigned to the genus Eomesodon by Woodward (1918) and Stemmatodus rhombus 

113 (Agassiz, 1839) from the Early Cretaceous of Capo d’Orlando, close to Naples, Italy was 

114 originally named Pycnodus rhombus (see Heckel, 1854). Pycnodus flabellatum Cope, 1866 from 
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115 the Cenomanian-Coniacian of Brazil was assigned to Nursallia flabellatum by Blot (1987). The 

116 pycnodonts Pycnodus achillis Costa 1853, Pycnodus grandis Costa 1853 and Pycnodus 

117 rotundatus Costa 1864 are all synonymous with Ocloedus costae (d’Erasmo, 1914, Poyato-Ariza 

118 & Wenz, 2002). Poyato-Ariza (2013) revised “Pycnodus” laveirensis Veiga Ferreira 1961 from 

119 the Cenomanian of Lavieras, Portugal and found that due to morphological differences in 

120 characters such as absence of dermocranial fenestra, number of premaxillary teeth, contact type 

121 of arcocentra and median fin morphology, it represents a member of a different genus and 

122 consequently erected the new genus Sylvienodus as a replacement. An articulated specimen of 

123 ‘Pycnodus’ was found in the Campanian-Maastrichtian of Nardò, Italy, which certainly 

124 represents a different pycnodont (Taverne, 1997). An extremely fragmentary specimen referred 

125 to as “Pycnodus” nardoensis from Apulia (Nardò), Italy is comprised of the anterior part of the 

126 body along with some posterior elements of the skull (Taverne, 1997). However, in a later study 

127 Taverne (2003) studied new material of this taxon, which revealed that this species does not 

128 belong to Pycnodus due to the possession of a narrower cleithrum and peculiar morphology of 

129 the contour scales. This new data led to the creation of the new genus Pseudopycnodus to 

130 allocate the Nardò material.

131 All other Mesozoic species of Pycnodus are based on isolated dentitions or teeth. The 

132 earliest records of Pycnodus are dentitions found in the limestones from the Upper Jurassic 

133 (Kimmeridgian) of Orbagnoux, France (Sauvage, 1893). Isolated teeth and an isolated vomerine 

134 dentition were referred to cf. Pycnodus sp. (Goodwin et al., 1999) from the Mugher Mudstone 

135 formation of the Tithonian. However, its identity is doubted due to the stratigraphic position and 

136 could be attributed to Macromesodon (Kriwet, 2001b). Pictet, Campiche & Tribolet (1858-60) 

137 described remains of the Early Cretaceous fish assemblages from Switzerland where three 

138 species of Macromesodon (M. couloni from the Hauterivian and Barremian, M. cylindricus from 

139 the Valanginian, Barremian, and Aptian and M. obliqus from the Albian) were all originally 

140 referred to as Pycnodus. Isolated dentitions belonging to ‘Pycnodus’ heterotypus and ‘Pycnodus’ 

141 quadratifer were reported from the Hauterivian of the Paris basin (Cornuel, 1883, 1886). Several 

142 isolated teeth derived from the Cenomanian strata of the Chalk Group of southern England were 

143 attributed to Pycnodus scrobiculatus Reuss 1845 whose systematic affinity is still uncertain. 

144 Other teeth belonging to P. scrobiculatus were reported from the Turonian of northern Germany. 

145 Roemer (1841) described isolated remains belonging to Pycnodus harlebeni from the Late 
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146 Cretaceous of Hilsconglomerat of Ostenvald, Germany. Another possible Portuguese 

147 representative of Pycnodus is reported from the Turonian of Bacarena, ‘Pycnodus’ sp. aff. ‘P.’ 

148 gigas Jonet 1964. However, the identification of the Portuguese specimens as Pycnodus are 

149 uncertain and the material most likely pertains to a different pycnodont taxon (Kriwet, 2001b). 

150 Isolated dentitions of what were claimed to be Pycnodus scrobiculatus, P. rostratus and P. 

151 semilunaris from the Turonian of Czechoslovakia (Reuss, 1845) should be regarded as 

152 indeterminable pycnodontids  due to the lack of characters useful to determine their affinities 

153 (Kriwet, 2001b). Isolated teeth attributed to “Pycnodus” lametae were reported from the 

154 Maastrichtian Lameta Formation of Dongargaon, India (Woodward, 1908).  Infratrappean and 

155 intertrappean beds of Late Cretaceous and early Palaeocene age respectively, contains “P”. 

156 lametae alongside Pycnodus sp. in Asifibad, India (Prasad & Sahni, 1987).

157 Pycnodus is the most dominant taxon of the Palaeogene pycnodont assemblages being 

158 widely distributed in shallow water contexts worldwide. The earliest record of Pycnodus in the 

159 Palaeogene is represented by Pycnodus praecursor from the Danian of Angola (Dartevelle & 

160 Casier, 1949) and P. sp. cf. P. praecursor from the Thanetian of Niger (Cappetta, 1972). 

161 Pycnodus toliapicus was reported from the Thanetian of Togo, Thanetian of Nigeria and the 

162 upper Palaeocene of Niger (White, 1934; Kogbe & Wozny, 1979; Longbottom, 1984). Several 

163 remains of isolated dentitions and teeth from the Eocene have been attributed to Pycnodus. These 

164 include Pycnodus bicresta from the northwestern Himalayan region, India (Kumar & Loyal, 

165 1987; Prasad & Singh, 1991); Pycnodus bowerbanki from the Ypresian, England, middle Eocene 

166 of Mali and Ypresian of Algeria (Longbottom, 1984; Savornin, 1915); Pycnodus sp. cf. P. 

167 toliapicus from the Eocene of Katar at the Persian Gulf (Casier, 1971); Pycnodus toliapicus from 

168 the Ypresian and Lutetian of England and Lutetian of the Paris basin and Belgium (Savornin, 

169 1915; Casier, 1950; Taverne & Nolf, 1978); Pycnodus mokattamensis from the Lutetian of Egypt 

170 (Priem, 1897); P. mokattamensis occurs alongside Pycnodus legrandi, Pycnodus lemellefensis, 

171 Pycnodus thamallulensis, Pycnodus vasseuri and Pycnodus pellei from the Ypresian of Algeria 

172 (Savornin, 1915); Pycnodus pachyrhinus Grey-Egerton 1877 from the Ypresian of Kent, 

173 England; Pycnodus funkianus Geinitz 1883 from the Ypresian of Brunswick, Germany;  

174 Pycnodus munieri  Priem 1902 and Pycnodus savini Priem 1902 from the Ypresian, France and a 

175 rather diverse assemblage from the middle Eocene of Mali which includes Pycnodus jonesae, P. 

176 maliensis, P. munieri, P. variablis and P. zeaformis (Longbottom, 1984).
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177 A nearly complete specimen of P. lametae with crushed skull and missing caudal fin was 

178 reported from the freshwater Maastrichtian of Bhatali, India close to the Dongargaon area 

179 (Mohabey & Udhoji, 1996). However, the assignment of the name Pycnodus to this fish is 

180 dubious, since it lacks the post-parietal process typical of the Pycnodontidae (pers. comm. JJC, 

181 2018). A more complete specimen of Pycnodus was found in the Palaeocene rocks of Palenque, 

182 Mexico (Alvarado-Ortega et al., 2015), which solely differs from the Eocene specimens from 

183 Bolca by having a greater number of ventral and post-cloacal ridge scales, less dorsal- and anal-

184 fin pterygiophores and a large or regular-sized posteriormost neural spine. However, due to the 

185 inadequacy of the available sample, it is not possible to determine the actual differences between 

186 the Palaeocene material from Mexico and that from the Eocene of Bolca, and for this reason this 

187 taxon is referred to as Pycnodus sp.

188

189

190

191 MATERIAL AND METHODS

192 Specimen sampling

193 We studied a selection of Pycnodus specimens from various museum collections, which were 

194 labelled either P. apodus, P. platessus, P. gibbus or Pycnodus sp. A total of 52 Pycnodus 

195 specimens from nine museum collections were used to obtain biometric information with 39 

196 specimens from that sample being used for the geometric morphometric analysis as their higher 

197 quality preservation provided sufficient morphological information for the aim of this study 

198 (BM; Museo dei Fossili di Bolca; NHMUK, Natural History Museum of London; SNSB-BSPG, 

199 Staatliche Naturwissenshaftliche Sammlungen Bayerns-Bayerische Staatssammlung für 

200 Paläontologie und Geologie, München, Germany; CM, Carnegie Museum, Pittsburgh, 

201 Pennsylvania; FMNH, Field Museum of Natural History, Chicago; MGP-PD; Museo di Geologia 

202 e Paleontologia dell’Università di Padova; MNHN, Muséum National d’Histoire Naturelle, Paris; 

203 MCSNV, Museo Civico di Storia Naturale di Verona; NHMW; Naturhistorisches Museum 

204 Wien) (see Supplementary material). For this analysis,the sample includes 17 specimens 

205 identified originally as Pycnodus sp., 14 specimens as P. platessus, six specimens as P. gibbus, 

206 and two specimens as P. apodus.

207
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208 Geometric morphometric protocol

209 A total of 18 landmarks and 14 semi landmarks were digitized on photos taken from the studied 

210 specimens in the corresponding collections using the software TPSdig (Rohlf, 2005). Landmarks 

211 indicating homologous points were selected on the basis of their possible ecological or functional 

212 role following the scheme applied in some studies (Claverie & Wainwright, 2014; Tuset et al., 

213 2014; Clarke, Lloyd & Friedman, 2016; Marramà, Garbelli & Carnevale, 2016a, b; Marramà et 

214 al., 2016a; Marramà & Carnevale, 2017) about shape variation in modern or extinct fishes 

215 (Figure 1). he traits used match 12 out of 17 of the landmarks that was used for 57 species of 

216 Pycnodontiformes by Marramà et al (2016a). Additional traits used here are the anterior and 

217 posterior margins of the cloaca to see if they shift significantly between morphotypes; using four 

218 landmarks around the orbit instead of one in the centre to capture more precisely the variability 

219 surrounding the orbit; not using the insertion of the pelvic fin as this character was rarely 

220 preserved in our specimens; the posterior tip of the supraoccipital being used as a semilandmark 

221 instead of a landmark to function as a fixed anchor for the other semilandmarks; the use of two 

222 landmarks for the cleithrum to capture variability in position and size of the pectoral fin instead 

223 of using just the one landmark for the insertion of the first pectoral fin ray due to the poor 

224 preservation of the pectoral fins in many specimens in contrast to the concave notch in the 

225 cleithrum. 

226 The landmark coordinates were translated, rotated and scaled at unit centroid size by 

227 applying a Generalized Procrustes Analysis (GPA) to minimize the variation caused by size, 

228 orientation, location and rotation (Rohlf & Slice, 1990; Zelditch et al., 2004). The GPA was 

229 performed using the TPSrelw software package (Rohlf, 2003) and a principal component 

230 analysis (PCA) was performed on Procrustes coordinates to obtain the Relative Warp (RW). 

231 Shape changes were shown along the axes using deformation grid plots. Missing values are 

232 replaced using the algorithm “Mean value imputation” (Hammer, Harper & Ryan, 2001).

233 Two non-parametric tests were performed to analyse the quantitative morphospace 

234 occupation of our Pycnodus specimens. In order to assess the degree of overlap between 

235 morphospaces, an analysis of similarities (ANOSIM, Clarke, 1993) was performed on the entire 

236 dataset of standardised morphometric and meristic parameters. PERMANOVA (Anderson, 2001) 

237 was used to test similarities of in-group centroid position between the different groups 
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238 representing a species of Pycnodus. Euclidean distances are the distance measure chosen for both 

239 tests. All statistical analyses were performed in PAST 3.18 (Hammer, Harper & Ryan, 2001). 

240 Since the studied specimens vary greatly in size (smallest being 4.0 cm and largest being 

241 30.6 cm) we also investigated whether size could be correlated with shape change in Pycnodus 

242 and enable us to see whether and how body shape changes throughout ontogeny. To analyse the 

243 relationship between size and shape, we performed a Partial Least Square analysis (PLS) using 

244 the software TPSpls (Rohlf & Corti, 2000 ). Alpha (level of significance) was set to 0.05.

245

246 Biometric analyses

247 We used ten meristic counts (Number of vertebrae, ribs, scale bars, paired fin rays, median fin 

248 rays, median fin pterygiophores and caudal fin rays) and 19 measurements in order to capture 

249 morphological variability, to test the homogeneity of the sample, and confirming its assignment 

250 to a single morphotype. Histograms were used to illustrate the variation of morphometric and 

251 meristic data in order to ascertain if more than one morphotype  of Pycnodus could be identified. 

252 Least squares regression was used to obtain the relationship between standard length (SL) and all 

253 other morphometric variables. Specimens of possible additional taxa were indicated by the 

254 presence of statistical outliers from the regression line (Simon et al., 2010) and will require 

255 additional scrutiny in order to truly differentiate the outlier from all other specimens. The linear 

256 regression results were shown using scatterplots. Log-transformed data were used to perform the 

257 least squares regression in order to determine the degree of correlation between the standard 

258 length (SL) and all other morphometric variables. 

259

260

261 RESULTS

262 Geometric morphometrics

263 The relative warp analysis produced 38 RWs with the first three axes together explaining about 

264 72% of the total variation. Figures 2 and 3 show that there is significant overlap between the 

265 morphospaces of the Pycnodus taxonomic groups and the thin plate splines show the changes in 

266 shape along the axes. Negative values on RW1 (56.1% explained) are related to Pycnodus 

267 specimens with large orbits and deep bodies while positive scores identify Pycnodus with 

268 reduced orbits and elongated bodies. Negative values of RW2 (10.4% explained) show 
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269 specimens having the pectoral fin with a wide base moved higher up the body alongside a long 

270 caudal peduncle (Figure 2). Conversely, on positive scores of RW2 lie specimens with pectoral 

271 fin with a narrower base located more ventrally on the body alongside a small caudal peduncle. 

272 The negative values of RW3 (6% explained) show the skull becoming deeper and more 

273 elongated with the dermosupraoccipital in particular reaching far back (Figure 3). Body becomes 

274 shallower near the caudal peduncle with the cloaca shifting posteriorly, as well as the dorsal 

275 apex. Positive scores of RW3 are related to a shorter and shallower skull with the body becoming 

276 deeper close to the caudal peduncle and the anterior shift in the cloaca with the body becoming 

277 deeper just anterior to the cloaca. The dorsal apex shifts forward in position.  

278 ANOSIM performed on the first three axes suggests that there is strong overlap between 

279 groups, showing they are barely distinguishable from each other (r-value is 0.10 and p > 0.05; 

280 see Table 1), except for a single pairwise comparison between Pycnodus sp. and P. platessus (p 

281 < 0.05). The PERMANOVA suggests the same trend (Table 2), showing that group centroids are 

282 not significantly different on each pairwise comparison (f-value is 2.83), except between 

283 Pycnodus sp. and P. platessus (p < 0.05) which lends significance to the overall p-value (< 0.05). 

284 Significant differences detected between Pycnodus sp. and P. platessus can be explained with the 

285 fact that the indeterminate Pycnodus specimens show a wide range of morphologies, with the 

286 extreme shapes ranging from negative to positive values of all the first three axes. 

287 The PLS performed on the entire sample (Figure 4) revealed a strong and significant 

288 correlations between size and shape (r = 0.88; p < 0.05), therefore suggesting that different 

289 shapes of the individuals are related to changes in shape of different ontogenetic stages. In fact, 

290 small-sized individuals are associated with larger orbits, deeper skull and body shape, long skull, 

291 higher position of pectoral fin and a wide, indistinct caudal peduncle that is in distant proximity 

292 to both medial fins. Larger individuals, on the other hand, have a reduced orbit, shallower skull 

293 and body depth, shorter skull, lower position of pectoral fin and narrow caudal peduncle in close 

294 proximity to both medial fins. The PLS analysis therefore suggests that the morphological 

295 variations of the orbit, body depth and caudal peduncle are strongly related to ontogeny.

296

297 Biometric analyses

298 Morphometrics and meristic counts for all the studied specimens are given in Table 3 and Table 

299 4 respectively and mean biometric parameters are given in Table 5. Most of the histograms based 
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300 on meristic counts (Figure 5) do not show a normal (Gaussian) distribution due to the small 

301 sample size being unable to detect significant high frequency of mean values that might have 

302 suggested a Gaussian curve, with intermediate states dominating and extreme states being rare. 

303 The linear regression performed on morphometric characters (Figure 6) shows that all specimens 

304 fit within the cloud of points near the regression line and that no particular specimens of 

305 Pycnodus deviates from this line. Variation in meristic values and the few outliers in partial least 

306 square regression analyses have been interpreted here as measurement errors due to incomplete 

307 preservation of some structures due to taphonomy or incomplete mineralization in juvenile 

308 individuals. The high values of the coefficient of determination (r2) ranging from 0.76-0.99 

309 (Table 6) indicate a high degree of positive correlation between standard length and each 

310 morphometric character. Linear regression analysis also revealed the highly significant 

311 relationship between the standard length and all morphometric characters (p < 0.001). Neither 

312 morphometric nor meristic characters are therefore useful in determining two or more different 

313 morphologically identifiable specieswithin Pycnodus, strongly supporting Blot’s (1987) 

314 hypothesis that only one species (P. apodus; see also below) is present in the Bolca Lagerstätte. 

315

316

317 DISCUSSION

318 Intraspecific variation of Pycnodus apodus

319 The results demonstrate that all Pycnodus species cannot be separated morphologically using the 

320 morphometric traits used herein in a quantitative approach, supporting the intraspecific variation 

321 hypothesis of Blot (1987). Pycnodus gibbus is a problematic taxon to identify due to Heckel 

322 (1856) not mentioning exactly which specimen he used to desiginate the specific name for P. 

323 gibbus. Blot (1987) mentions that Heckel worked on specimens from the NHMW in order to 

324 erect P. gibbus. However, such specimens could not be found and so the holotype still remains 

325 unknown. However, Heckel (1856; plate 8) does illustrate a specimen of Pycnodus gibbus and it 

326 conforms with what we have found to be the juvenile morphotype in our sample lending 

327 credence to the  hypothesis by Agassiz (1844) that the specimens he studied were specifically the 

328 juvenile of P. platessus. One of the characters separating P. gibbus from P. platessus (Heckel, 

329 1856; plate 8, figure 4) is the number of interdigitations between vertebrae (P. gibbus: two; P. 

330 platessus: three-four). However, a survey of the vertebral column of all our specimens reveals 
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331 two to be the predominant number of interdigitations, including specimens labelled P. platessus 

332 and P. apodus. Apart from specimens where the degree of preservation was insufficient to do a 

333 count, only one specimen (MGP-PD 8868C) has three interdigitations which we ascertain to be 

334 due to intraspecific variation. Blot (1987; table 6) also did not see any difference in the number 

335 of interdigitations between P. gibbus and P. platessus.  

336 As suggested by Grande and Young (2004), ontogenetic variation of morphological 

337 characters actually represents a primary source of intraspecific variation; this is confirmed by our 

338 analysis, specifically by the morphological changes mostly occurring along RW1 in the 

339 morphospace that are related to ontogeny and the very significant results deriving from the PLS 

340 analysis. The unimodal (Gaussian) distribution cannot be seen in most of the meristic data, as 

341 revealed by the Kernel density estimator on the frequency histograms (Figure 5), due to the fact 

342 that the sample is too small to detect high frequency of mean values. However, a few meristic 

343 characters reveal a domination of intermediate values and comparably rare extremes, which is 

344 typical of a homogenous population. Furthermore, the linear regression showed a significant 

345 dependence between standard length and all morphometric variables, therefore suggesting that 

346 morphometric characters are not useful to distinguish different taxa. Meristic and morphometric 

347 data seem to show that all specimens studied belong to a single taxonomic entity (see Dagys, 

348 Bucher & Weitschat, 1999; Dagys, 2001; Weitschat, 2008; Marramà & Carnevale, 2015a; 

349 Sferco, López-Arbarello & Báez, 2015). 

350 Figure 7 shows some notable differences between the juvenile and larger specimens 

351 including the degree of ossification, particularly in the skull and caudal fin, being reduced in 

352 juvenile in comparison to adults and the notochord not being surrounded by arcocentra in 

353 juveniles whereas it is completely enclosed in adults. The so-called gibbosity that Heckel (1856) 

354 used to distinguish P. gibbus from P. platessus is formed by the angle of the anterior profile and 

355 the axis of the body. This angle decreases in larger specimens of Pycnodus from 70° to 55° (Blot, 

356 1987) due to the skull roof moving posteriorly during growth revealing that this character does 

357 not denote a species but a growth stage within a single species. The high vertebrae length/body 

358 depth ratio said to be another indicator of P. gibbus is something that also decreases during 

359 growth. When Blot plotted all Pycnodus specimens onto a growth curve (Blot, 1987; figure 32) 

360 Pycnodus gibbus fitted into the curve neatly on the lower end of the growth curve. 
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361 Differences in meristic counts (Table 7) are suggestive of intraspecific variation as seen 

362 in other fossil actinopterygians such as Sinamiidae from the Late Jurassic (Su, 1973; Zhang & 

363 Zhang, 1980) and Early Cretaceous (Stensiö, 1935); Palaeosconiformes from the Triassic 

364 (Lehman, 1952); Parasemionotidae from the Early Triassic (Olsen, 1984) Teleosteomorpha from 

365 the Middle to Late Triassic (Tintori, 1990); Bobasatraniiformes from the Middle Triassic 

366 (Bürgin, 1992) Paramblypteidae from the Early Permian (Dietze, 1999, 2000) Dapediidae from 

367 the Early Jurassic (Thies & Hauff, 2011); stem Actinopteri from the Middle Triassic (Xu, Shen 

368 & Zhao, 2014); stem Teleostei from the Middle Triassic (Tintori et al., 2015); Pachycormiformes 

369 from the Early Jurassic (Wretman, Blom & Kear, 2016); and  the incertae sedis Teffichthys from 

370 the Early Triassic Marramà et al., 2017c). The analysis of the morphological variability of 

371 Pycnodus, one of the last representatives of a basal neopterygian lineage that has been around 

372 since at least the Late Triassic (Tintori, 1981; Kriwet 2001a; Poyato-Ariza, 2015), indicates that 

373 pycnodontiforms also produce substantial intraspecific variation similar to living representatives 

374 of other ancient actinopterygian lineages such as amiids (Jain, 1985) and acipenserids (Hilton & 

375 Bemis, 1999). Therefore, the identification of different Bolca Pycnodus species such as P. gibbus 

376 (Heckel, 1856), may be the result of species over-splitting and can be on the contrary explained 

377 by intraspecific variation in meristic counts and ontogeny.

378

379 Habitat use during ontogeny

380 Our morphometric results show that the morphology of the smaller individuals differ 

381 significantly from that of the adults and that Pycnodus, like extant actinopterygians, would go 

382 through morphological changes throughout ontogeny. Large eye size found in the smaller 

383 Pycnodus specimens is usually a sign of the specimen being in a juvenile stage as can be seen in 

384 many extant teleosts (Pankhurst & Montgomery, 1990). Large eye size in pycnodonts has been 

385 related to behavioural flexibility and possible nocturnal behaviour (Goatley, Bellwood & 

386 Bellwood, 2010). This could also apply for the Bolca Pycnodus although the individuals with the 

387 largest eyes (juveniles) are not believed to be more nocturnal as larger eye size in smaller fishes 

388 is a natural consequence of ontogeny. The deep body shape of the smaller Pycnodus specimens 

389 can be interpreted as a sign that the juveniles live within the branches of corals and as they get 

390 bigger they start to occupy the water column above the reef. This change to a benthopelagic 

391 lifestyle also is supported by the more fusiform body and the narrower caudal peduncle (Webb, 
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392 1982) seen in larger specimens. Ecologically similar extant analogues to Pycnodus, fishes of the 

393 genus Lethrinus undergo ontogenetic changes in head shape as they grow in size but their body 

394 depth in relation to length does not change drastically during growth (Wilson, 1998). The sparid 

395 species Diplodus sargus and D. puntazzo also spend their time as juveniles in crevices in the 

396 rocks in shallow water 0-2 m deep and move to rocky bottoms and sea grass beds when adult 

397 (Macpherson, 1998). However, their ontogenetic trajectory differs from Pycnodus as they are 

398 more elongate as juveniles and body depth increases with age. Juvenile carangids also have a 

399 deeper body than that seen in adults (Leis et al., 2005) and are found within lagoonal patch 

400 reefs(Wetherbee et al., 2004) only moving out of this habitat when larger than 40 cm and 

401 becoming more pelagic in their habitat preferences (Kuiter, 1993; Myers, 1999). Eurasian perch 

402 (Perca fluviatilis) go through three different feeding modes during their life span; 

403 zooplanktivory, benthic macroinvertebrate feeding and piscivory. The middle stage, benthic 

404 feeding results in them shifting to the littoral zone where they have a deeper body and longer fins 

405 which aid in maneuverability whereas piscivores and zooplanktivores have a similar body type 

406 due to both life stages living in the pelagic realm (Hjelm, Persson & Christensen, 2000). 

407 Ontogenetically–related habitat changes also occur in other coral fishes, such as labrids, in which 

408 the pectoral fins increase their aspect ratio as these fishes grow in size, enabling them to increase 

409 their use of the water column while juveniles stay closer to the bottom (Fulton, Bellwood & 

410 Wainwright, 2002). Since both juveniles and adults of Pycnodus are found in the Bolca 

411 Lagerstätte, we hypothesize that unlike many modern coral reef fishes, which significantly 

412 change the habitat during ontogeny (Nagelkerken et al., 2002; Dorenbosch et al., 2005a, b; 

413 Adams et al., 2006; Nagelkerken, 2007; Nakamura et al., 2008; Shibuno et al., 2008; Kimirei et 

414 al., 2011), there is a shift instead in microhabitat use within the reef, in this case juveniles living 

415 within coral crevices to adults roaming over the coral reefs.

416

417

418 CONCLUSIONS

419 The quantitative approach here performed supports the hypothesis of Blot (1987) that the various 

420 Pycnodus nominal species (P. apodus, P. platessus, P. gibbus) from the Eocene Bolca 

421 Konservat-Lagerstätte actually belong to a single species. Due to the holotype of Pycnodus being 

422 given the specific name of apoda, all known specimens of Pycnodus from Bolca should be 
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423 referred to as Pycnodus apodus. Most of the morphological variation can be explained by the 

424 close correlation between morphometric changes and ontogeny, with juveniles and adults 

425 occupying different parts of the morphospace. The morphometric differences between juveniles 

426 and adults may be due to occupation of different habitats with juveniles sheltering among cover 

427 and adults being better adapted to a roaming lifestyle swimming over the benthos to feed The 

428 complex taxonomic history shows that most species typically referred to as Pycnodus are 

429 different taxa altogether e.g. not valid (all Jurassic and Cretaceous Pycnodus specimens being 

430 other taxa) and with the majority of Palaeogene Pycnodus being represented by isolated dentition 

431 it seems that the only definitive articulated skeletal remains attributed to the genus Pycnodus are 

432 Pycnodus apodus from the Bolca Lagerstätte and Pycnodus sp. from south-eastern Mexico 

433 (Alvarado-Ortega et al., 2015). Future studies should analyse other problematic pycnodontiform 

434 taxa such as the widely distributed Gyrodus from the Middle Jurassic to the Early Cretaceous 

435 (Kriwet & Schmitz, 2005) to investigate if intraspecific variation might partially explain the 

436 supposed diversity of species this genus contains. 

437
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952 Figure captions

953

954 Figure 1: Landmarks represented by red circles, which were used on Pycnodus (MCSNV T.998) 
955 for the geometric morphometric analysis. These are 1) tip of premaxilla; 2) ventralmost margin 
956 of orbit; 3) posteriormost margin of orbit; 4) anteriormost margin of orbit; 5) dorsalmost margin 
957 of orbit; 6) first dorsal pterygiophore; 7) last dorsal pterygiophore; 8) tip of dorsal lobe of caudal 
958 fin; 9) medial convex margin of caudal fin; 10) tip of ventral lobe of caudal fin; 11) final anal 
959 pterygiophore; 12) first anal pterygiophore; 13) posterior cloacal scale; 14) anterior cloacal scale; 
960 15) joint between quadrate and prearticular; 16) ventral most concave margin of cleithrum 
961 accommodating pectoral fin; 17) dorsal most concave margin of cleithrum accommodating 
962 pectoral fin; 18) Point of contact between neurocranium and vertebral column. The 
963 semilandmarks are reperesented by small white circles and are split into two sets; the first set  
964 consists of seven semilandmarks between the tip of the dermosupraoccipital and the base of the 
965 first principal caudal fin ray; the second set has an additional seven semilandmarks between the 
966 base of the ventral most principal caudal fin ray and the antero-ventral corner of the cleithrum. 
967 Photo credit: Jürgen Kriwet.
968

969 Figure 2: Morphospace of Pycnodus on the first two RW axes together accounting for about 66% 
970 of the overall shape variation. Deformation grids illustrate the shapes lying at extreme values 
971 along each axis. 
972

973 Figure 3: Morphospace of Pycnodus  showing RW 1 on the x-axis and RW 3 on y-axis the latter 
974 accounting for 6% of the overall shape variation. Deformation grids illustrate the shapes lying at 
975 extreme values along each axis.
976

977 Figure 4: PLS analysis showing a correlation of morphometric variation with size. Smallest, 
978 medium sized and largest specimens are used to represent the juvenile, small adult and large 
979 adult stages  respectively. Significance of this correlation is shown by the r and p-values.  
980 Smallest specimen is 4.02 cm,medium sized specimen is 10.6 cm, largest specimen is 30.6 cm.
981
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982 Figure 5: Histograms showing the distributions of meristic characters of Pycnodus. The x-axis 
983 represents the number of elements and the y-axis the relative frequency. Red curved line is the 
984 Kernel density estimator which measures the normality of each sample. And reveals that there is 
985 a non-Gaussian distribution among all the samples. (A) Vertebrae. (B) Rib pairs. (C) Scale bars. 
986 (D) Dorsal fin rays. (E) Anal fin rays. (F) Pectoral fin rays. (G) Pelvic fin rays. (H) Dorsal fin 
987 pterygiophores. (I) Anal fin pterygiophores. (J) Caudal fin rays. (K) Arcocentra interdigitations. 
988

989 Figure 6: Scatterplots and regression lines with 95% confidence bands of the relationships 
990 between each morphometric character and the standard length of Pycnodus. (A) Head length. (B) 
991 Head depth. (C) Maximum body depth. (D) Pectoral fin base. (E) Dorsal fin base. (F) Anal fin 
992 base. (G) Caudal peduncle length. (H) Caudal peduncle depth. (I) Caudal fin span.   (J) 
993 Prepectoral distance. (K) Predorsal distance. (L) Prepelvic distance. (M) Preanal distance. (N) 
994 Preorbital length. (O) Postorbital length. (P) Orbit diameter. (Q) Lower jaw length. 
995

996 Figure 7: Ontogenetic series of Pycnodus. (A) juvenile 4.02 cm (MCSNV T.309). (B) small adult 
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Figure 1

Landmarks represented by red circles, which were used on Pycnodus (MCSNV T.998) for

the geometric morphometric analysis.

These are 1) tip of premaxilla; 2) ventralmost margin of orbit; 3) posteriormost margin of

orbit; 4) anteriormost margin of orbit; 5) dorsalmost margin of orbit; 6) first dorsal

pterygiophore; 7) last dorsal pterygiophore; 8) tip of dorsal lobe of caudal fin; 9) medial

convex margin of caudal fin; 10) tip of ventral lobe of caudal fin; 11) final anal pterygiophore;

12) first anal pterygiophore; 13) posterior cloacal scale; 14) anterior cloacal scale; 15) joint

between quadrate and prearticular; 16) ventral most concave margin of cleithrum

accommodating pectoral fin; 17) dorsal most concave margin of cleithrum accommodating

pectoral fin; 18) Point of contact between neurocranium and vertebral column. The

semilandmarks are reperesented by small white circles and are split into two sets; the first

set consists of seven semilandmarks between the tip of the dermosupraoccipital and the

base of the first principal caudal fin ray; the second set has an additional seven

semilandmarks between the base of the ventral most principal caudal fin ray and the antero-

ventral corner of the cleithrum. Photo credit: Jürgen Kriwet.
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Figure 2

Morphospace of Pycnodus on the first two RW axes together accounting for about 66%

of the overall shape variation.

Deformation grids illustrate the shapes lying at extreme values along each axis.
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Figure 3

Morphospace of Pycnodus showing RW 1 on the x-axis and RW 3 on y-axis the latter

accounting for 6% of the overall shape variation.

Deformation grids illustrate the shapes lying at extreme values along each axis.
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Figure 4

PLS analysis showing a correlation of morphometric variation with size.

Smallest, medium sized and largest specimens are used to represent the juvenile, small adult

and large adult stages respectively. Significance of this correlation is shown by the r and p-

values. Smallest specimen is 4.02 cm,medium sized specimen is 10.6 cm, largest specimen is

30.6 cm.
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Figure 5

Histograms showing the distributions of meristic characters of Pycnodus.

The x-axis represents the number of elements and the y-axis the relative frequency. Red

curved line is the Kernel density estimator which measures the normality of each sample.

And reveals that there is a non-Gaussian distribution among all the samples. (A) Vertebrae.

(B) Rib pairs. (C) Scale bars. (D) Dorsal fin rays. (E) Anal fin rays. (F) Pectoral fin rays. (G)

Pelvic fin rays. (H) Dorsal fin pterygiophores. (I) Anal fin pterygiophores. (J) Caudal fin rays.

(K) Arcocentra interdigitations.
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Figure 6

Scatterplots and regression lines with 95% confidence bands of the relationships

between each morphometric character and the standard length of Pycnodus.

(A) Head length. (B) Head depth. (C) Maximum body depth. (D) Pectoral fin base. (E) Dorsal

fin base. (F) Anal fin base. (G) Caudal peduncle length. (H) Caudal peduncle depth. (I) Caudal

fin span. (J) Prepectoral distance. (K) Predorsal distance. (L) Prepelvic distance. (M) Preanal

distance. (N) Preorbital length. (O) Postorbital length. (P) Orbit diameter. (Q) Lower jaw

length.
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Figure 7

Ontogenetic series of Pycnodus.

(A) juvenile 4.02 cm (MCSNV T.309). (B) small adult 13.25 cm (BSPG AS I 1208). (C) large

adult 30.61 cm (BSPG AS I 1209). Scale bar for all specimens equals 1 cm. Photo credit:

Jürgen Kriwet.
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Table 1(on next page)

ANOSIM results.

R-value is 0.10 and P-value is 0.06.
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1

ANOSIM P. apodus P. gibbus P. platessus Pycnodus sp.

P. apodus 0 0.3583 0.7879 0.1717

P. gibbus 0.3583 0 0.3411 0.4755

P. platessus 0.7879 0.3411 0 0.0389

Pycnodus sp. 0.1717 0.4755 0.0389 0

2
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Table 2(on next page)

PERMANOVA results.

F-value is 2.83 and P-value is 0.03.
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PERMANOVA P. apodus P. gibbus P. platessus Pycnodus sp.

P. apodus 0 0.3228 0.5671 0.1586

P. gibbus 0.3228 0 0.2358 0.2876

P. platessus 0.5671 0.2358 0 0.0048

Pycnodus sp. 0.1586 0.2876 0.0048 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
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Table 3(on next page)

Measurements as percentage of SL (mean values in parentheses) used for identifying

Pycnodus apodus.

Range of measurements are represented by the 25th and 75th percentile.
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1

2

Morphometric character Measurements in % of SL

Head length 27.9-32.9 (30.4)

Head depth 48.5-57.7 (53.1)

Maximum body depth 55.6-65.1 (60.8)

Pectoral fin base 6.5-9.2 (8.1)

Dorsal fin base 37.4-44.3 (40.9)

Anal fin base 25.3-29.4 (27.8)

Caudal peduncle depth 3.8-5.1 (4.6)

Caudal peduncle length 13.6-15.7 (14.7)

Caudal fin span 32.9-38.6 (35.9)

Prepectoral distance 28.1-30.7 (29.6)

Predorsal distance 41.9-48.3 (45.2)

Prepelvic distance 48.6-52.7 (50.4)

Preanal distance 56.9-60.3 (58.6)

Preorbital distance 9.9-14.4 (12.3)

Postorbital length 5.4-8.3 (7.1)

Orbit diameter 9.3-12.5 (11.0)

Lower jaw 12.5-16.5 (14.7)

3

4

5

6

7

8

9
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Table 4(on next page)

Mean meristic values used for identifying Pycnodus apodus.

Range of meristic counts are represented by the 25th and 75th percentile.
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1

Meristic Character Mean meristic value

Vertebrae 24-26 (25)

Rib pairs 10-12 (11)

Scale bars 8-10 (9)

Dorsal fin rays 54-60 (56)

Anal fin rays 42-48 (45)

Pectoral fin rays 30-40 (35)

Dorsal fin pterygiophores 53-60 (56)

Anal fin pterygiophores 41-41 (45)

Caudal fin rays 25-34 (30)

2
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Table 5(on next page)

Mean morphometric and meristic data for the examined specimens of Pycnodus.
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Morphometric/meristic 

data

Min Max Mean Median Variance Standard 

deviation

25th 

percentile

75th 

percentile

Standard length 2.9 27.7 11.1 8.8 46.7 6.8 5.9 16.4

Head length 1.1 7.1 3.3 2.8 2.9 1.7 2.0 4.6

Head depth 2.0 11.6 5.6 4.4 7.7 2.8 3.5 7.8

Maximum body depth 2.1 13.4 5.8 4.9 8.4 2.9 3.8 7.4

Pectoral fin base 0.2 1.8 0.8 0.7 0.2 0.4 0.5 1.1

Dorsal fin base 1.1 12.5 4.9 3.7 10.5 3.2 2.4 6.3

Anal fin base 0.7 9.6 3.4 2.5 5.6 2.4 1.6 5.0

Caudal peduncle depth 0.2 1.2 0.5 0.4 0.1 0.3 0.3 0.6

Caudal peduncle 

length

0.6 3.7 1.6 1.3 0.8 0.9 1.0 2.4

Caudal fin span 0.9 10.7 4.1 3.0 6.7 2.6 2.2 6.9

Prepectoral distance 1.1 7.2 3.1 2.8 2.5 1.6 1.9 4.0

Predorsal distance 1.6 11.0 5.0 4.2 7.4 2.7 2.9 7.6

Prepelvic distance 1.7 12.4 5.3 4.3 8.9 3.0 3.2 6.4

Preanal distance 2.2 14.2 6.6 5.4 12.8 3.6 3.7 9.3

Preorbital distance 0.3 4.1 1.4 1.1 1.0 1.0 0.8 1.9

Postorbital length 0.3 1.7 0.7 0.6 0.1 0.3 0.5 0.8

Orbit diameter 0.4 2.2 1.1 1.0 0.2 0.4 0.8 1.3

Lower jaw 0.5 4.6 1.7 1.3 1.1 1.0 0.9 2.4

Vertebrae 23 27 25.1 25 1.4 1.2 24 26

Rib pairs 9 13 11.1 11 1.1 1.1 10 12

Scale bars 7 11 8.7 8 0-9 1.0 8 10

Dorsal fin rays 46 66 56.4 56 18.2 4.3 54 60

Anal fin rays 37 52 45.0 45 14.5 3.8 42 47.8

Pectoral fin rays 24 47 35.2 35.5 43.9 6.6 30.3 39.8

Pelvic fin rays 3 5 4.3 4 0.6 0.8 4 5

Dorsal fin 

pterygiophores

38 65 55.8 57 30.5 5.5 52.8 60

Anal fin 

pterygiophores

39 58 44.8 45 16.3 4.0 41 47

Caudal fin rays 22 43 29.5 29 35.8 6.0 24.5 33.5

Arcocentra 

interdigitations

2 3 2 2 0 0.2 2 2

1

2

3
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Table 6(on next page)

Relationships between morphometric characters and standard length using least

squares regression for Pycnodus.
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Variable character 

log (y)

Slope (a) Intercept (b) Coefficient of 

determination 

(r2)

95% CI on a 95% CI on b

Head length 0.86 -0.38 0.97 0.80 0.90 -0.42 -0.33

Head depth 0.80 -0.09 0.98 0.77 0.83 -0.11 -0.06

Maximum body 

depth

0.83 -0.06 0.99 0.81 0.85 -0.08 -0.04

Pectoral fin base 0.89 -1.00 0.76 0.77 0.99 -1.11 -0.88

Dorsal fin base 1.12 -0.51 0.97 1.07 1.17 -0.56 -0.46

Anal fin base 1.16 -0.71 0.97 1.09 1.22 -0.78 -0.64

Caudal peduncle 

depth

0.77 -1.13 0.89 0.68 0.87 -1.23 -1.05

Caudal peduncle 

length

0.91 -0.75 0.97 0.85 0.97 -0.81 -0.69

Caudal fin span 1.04 -0.49 0.98 1.00 1.09 -0.54 -0.45

Prepectoral 

distance

0.87 -0.40 0.98 0.83 0.90 -0.43 -0.36

Predorsal distance 0.91 -0.26 0.98 0.86 0.95 -0.30 -0.21

Prepelvic distance 0.92 -0.22 0.99 0.89 0.94 -0.24 -0.19

Preanal distance 0.93 -0.17 0.99 0.91 0.95 -0.19 -0.14

Preorbital distance 1.09 -1.01 0.89 0.99 1.20 -1.12 -0.90

Postorbital length 0.66 -0.83 0.78 0.56 0.76 -0.93 -0.74

Orbit diameter 0.64 -0.63 0.89 0.57 0.71 -0.69 -0.56

Lower jaw 0.94 -0.78 0.92 0.87 1.02 -0.86 -0.70

1

2
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Table 7(on next page)

Meristic counts of Pycnodus.

Museum abbreviations are mentioned in main text.
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Species 

name  on 

museum 

label

Specimen no. No. of 

vertebrae

Rib 

pairs

No. of scale 

bars

Dorsal fin 

rays

Anal fin 

rays

Pectoral 

fin rays

Pelvic 

fin rays

Dorsal fin 

pterygiophores

Anal fin 

pterygiophores

Caudal 

fin rays

Arcocentra 

interdigitations

Museum

Pycnodus 

sp.

12058 26 13 8 60 ? 39 ? 57 ? 32 2 MGP-PD

Pycnodus 

sp.

12059 25 ? 9 52 ? 44 ? 53 ? 29 2 MGP-PD

Pycnodus 

sp.

12808 24 12 8 ? ? 44 ? ? 40 26 2 MGP-PD

Pycnodus 

sp.

12809 25 ? 8 56 42 28 ? 56 44 30 2 MGP-PD

Pycnodus 

sp.

26968 ? 12 8 ? 43 33 ? ? 40 ? 2 MGP-PD

Pycnodus 

sp.

26969 25 11 10 55 46 25 ? 58 44 30 2 MGP-PD

Pycnodus 

platessus

1853.XXVI.i.a/b 25 10 9 61 46 47 5 ? 47 ? 2 NHMW

Pycnodus 

platessus

1855.VI.75 23 10 8 54 42 38 3 54 40 24 2 NHMW

Pycnodus 

platessus

6880Z 25 13 10 ? ? 36 ? 48 ? 22 2 MGP-PD

Pycnodus 

gibbus

7433C 25 11 9 ? ? ? 4 52 ? 25 2 MGP-PD

Pycnodus 

platessus

8867C 26 11 8 56 ? ? ? 57 46 23 ? MGP-PD

Pycnodus 

platessus

8868C ? 13 7 54 49 ? ? 60 46 25 3 MGP-PD

Pycnodus 

platessus

A.III.a.S.48 24 11 8 56 45 ? ? 59 46 28 2 NHMW

Pycnodus 

platessus

BMNH 38000 26 10 8 66 ? ? 5 65 48 24 ? BMNH

Pycnodus 

gibbus

BMNH P.11992 27 11 10 55 ? ? 3 60 46 26 2 BMNH

Pycnodus 

gibbus

BMNH 

P.1632/P.3760

27 11 11 49 ? ? 3 53 ? 31 2 BMNH

Pycnodus 

platessus

BMNH P.1633 25 11 9 59 47 31 5 62 45 29 2 BMNH

Pycnodus 

gibbus

BMNH P.17025 24 10 10 52 41 30 ? 49 39 27 2 BMNH

Pycnodus 

gibbus

BMNH P.4386 ? 12 10 ? ? 46 5 ? ? 43 2 BMNH

Pycnodus 

gibbus

BMNH P.44519 26 12 8 61 50 35 3 63 44 36 2 BMNH

Pycnodus 

gibbus

BMNH P.44520 26 10 9 62 39 ? ? 60 ? 37 2 BMNH

Pycnodus 

platessus

BMNH P.7459 ? 10 8 63 45 36 5 59 51 34 2 BMNH

Pycnodus 

apodus

Bol 126/127 26 11 10 52 ? 40 5 ? ? 33 2 MNHN

Pycnodus 

apodus

Bol 130/131 ? 10 9 ? ? ? ? ? ? ? 2 MNHN

Pycnodus 

apodus

Bol 134/135 25 11 10 59 52 ? 5 61 48 37 ? MNHN

Pycnodus 

apodus

Bol 94/95 26 11 8 62 52 ? ? 59 45 43 2 MNHN

Pycnodus 

platessus

BSPG AS I 

1208

24 9 8 53 42 40 4 56 44 42 2 BSPG

Pycnodus 

platessus

BSPG AS I 

1209

26 12 8 60 47 ? ? 58 48 22 2 BSPG

Pycnodus 

platessus

CM 4479 ? 12 8 ? ? ? 5 ? ? ? ? CM

Pycnodus 

platessus

CM 4479a ? 12 8 ? ? ? ? 52 41 ? ? CM

Pycnodus 

gibbus

CM 4480 24 ? 8 60 49 45 4 61 50 34 2 CM
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Pycnodus 

gibbus

CM 4480.1 26 11 7 59 48 ? ? 60 48 39 2 CM

Pycnodus 

gibbus

CM 4481 24 11 8 59 46 35 4 58 46 40 2 CM

Pycnodus 

sp.

Coll Baja 

Pesciara 4 

(T.998)

25 13 8 56 44 28 ? 56 43 30 2 MCSNV

Pycnodus 

sp.

Coll Baja 

Pesciara 5 

(T.999)

23 ? 9 55 43 25 ? 58 41 24 2 MCSNV

Pycnodus 

sp.

I.G.135608 23 9 8 58 46 ? 4 59 58 31 2 MCSNV

Pycnodus 

sp.

I.G.135609 23 10 10 59 44 24 5 59 41 ? 2 MCSNV

Pycnodus 

sp.

I.G.135664 26 12 8 49 37 ? ? 46 ? 30 ? MCSNV

Pycnodus 

sp.

II D 167 27 11 8 51 47 33 ? 51 46 25 2 MCSNV

Pycnodus 

sp.

II D 168 25 ? 9 54 44 ? ? 55 40 25 2 MCSNV

Pycnodus 

sp.

II D 170 27 ? 7 59 51 ? ? 60 47 28 2 MCSNV

Pycnodus 

sp.

II D 171 27 11 8 56 42 ? ? 53 41 24 2 MCSNV

Pycnodus 

sp.

II D 180 25 11 9 60 49 32 4 62 50 33 ? MCSNV

Pycnodus 

gibbus

PF 3234 25 13 10 54 ? 38 5 56 ? 25 2 FMNH

Pycnodus 

sp.

(I.G.23???) 25 11 9 54 43 ? 4 55 42 23 ? MCSNV

Pycnodus 

sp.

(I.G.186666) 26 10 10 46 39 ? ? 50 42 23 2 MCSNV

Pycnodus 

sp.

(I.G.186667) 25 11 10 ? ? ? ? 43 ? 27 2 MCSNV

Pycnodus 

sp.

(I.G.24497) 24 11 9 ? ? ? ? 38 ? 22 ? MCSNV

Pycnodus 

sp.

unknown 23 10 8 54 41 ? ? 51 40 30 ? MCSNV

Pycnodus 

sp.

 (I.G.135680) ? 9 10 ? ? ? ? ? ? ? ? MCSNV

Pycnodus 

sp.

I.G.37581 ? 12 ? ? ? ? ? ? ? 23 ? MCSNV

Pycnodus 

sp.

T.309 24 11 8 ? ? ? ? ? ? 34 ? MCSNV

1

2

3
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