

A quantitative approach to determine the taxonomic identity and ontogeny of the pycnodontiform fish *Pycnodus* (Neopterygii, Actinopterygii) from the Eocene of Bolca Lagerstätte, Italy

John Joseph Cawley Corresp., 1, Giuseppe Marrama 1, Giorgio Carnevale 2, Jürgen Kriwet 1

Corresponding Author: John Joseph Cawley Email address: john.cawley@univie.ac.at

Background. The pycnodontiform fish *Pycnodus* is one of the representatives of the highly diverse actinopterygian fish fauna from the early Eocene Bolca Lagerstätte, representing one of the youngest and thus last occurrences of this extinct neopterygian clade . This genus has historically been used as a wastebasket taxon in regards to poorly known pycnodontiform fossils. Authors have argued over the specific status of the Bolca Lagerstätte *Pycnodus* in terms of how many species are contained within the genus with some arguing for multiple species and others suggesting lumping all Bolca specimens together into one species.

Methods. Here, we use a quantitative approach performing biometric and geometric morphometric analyses on 52 specimens of *Pycnodus* in order to determine if the morphological variability within the sample might be related to inter- or intraspecific variation.

Results. The analyses revealed that the variations of body shape, morphometric and meristic characters cannot be used to distinguish different morphotypes. On the contrary, our results show a remarkable link between shape and size, related to ontogeny.

Discussion. Differences in body shape of small (juvenile) and large (adult) individuals is probably related to different microhabitats occupation on the Bolca reef with juveniles sheltering within crevices on the reef and adults being more powerful swimmers that swim above the coral. Taxonomically, we suggest that the Bolca *Pycnodus* should be referred to strictly as *Pycnodus* as this was the name given to the holotype. Additionally, an overview of species assigned to *Pycnodus* is given.

 $^{^{}f 1}$ Department of Paleontology, University of Vienna, Vienna, Austria

² Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy

- 1 A quantitative approach to determine the taxonomic identity
- 2 and ontogeny of the pycnodontiform fish Pycnodus
- 3 (Neopterygii, Actinopterygii) from the Eocene of Bolca
- 4 Lagerstätte, Italy
- 5 JOHN JOSEPH CAWLEY^{1*}, GIUSEPPE MARRAMÀ¹, GIORGIO CARNEVALE² &
- 6 JÜRGEN KRIWET¹
- 7 Department of Paleontology, University of Vienna, Geozentrum, Althanstrasse 14, Vienna, Austria.
- 8 ² Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, Turin, Italy

1011 Corresponding Author:12 John Joseph Cawley

13 Althanstr. 14, Vienna, 1090, Austria

14 Email address: john.cawley@univie.ac.at

1516

9

17

18

19

20 21

22

23

24

25

26

27 28

29

30

PeerJ

31	ABSTRACT
32	
33	Background. The pycnodontiform fish <i>Pycnodus</i> is one of the representatives of the highly
34	diverse actinopterygian fish fauna from the early Eocene Bolca Lagerstätte, representing one of
35	the youngest and thus last occurrences of this extinct neopterygian clade This genus has
36	historically been used as a wastebasket taxon in regards to poorly known pycnodontiform fossils.
37	Authors have argued over the specific status of the Bolca Lagerstätte <i>Pycnodus</i> in terms of how
38	many species are contained within the genus with some arguing for multiple species and others
39	suggesting lumping all Bolca specimens together into one species.
40	Methods. Here, we use a quantitative approach performing biometric and geometric
41	morphometric analyses on 52 specimens of <i>Pycnodus</i> in order to determine if the morphological
42	variability within the sample might be related to inter- or intraspecific variation.
43	Results. The analyses revealed that the variations of body shape, morphometric and meristic
44	characters cannot be used to distinguish different morphotypes. On the contrary, our results show
45	a remarkable link between shape and size, related to ontogeny.
46	Discussion. Differences in body shape of small (juvenile) and large (adult) individuals is
47	probably related to different microhabitats occupation on the Bolca reef with juveniles sheltering
48	within crevices on the reef and adults being more powerful swimmers that swim above the eoral.
49	Taxonomically, we suggest that the Bolca Pycnodus should be referred to strictly as Pycnodus
50	apodus as this was the name given to the holotype. Additionally, an overview of species assigned
51	to Pycnodus is given.
52	

INTRODUCTION

- 54 Pycnodontiform fishes were a highly successful group of neopterygian fishes that colonized
- shallow marine, brackish, and freshwater habitats from the Norian to the middle Eocene during
- 56 ca. 170 Ma (e.g., Tintori, 1981; Longbottom, 1984; Poyato-Ariza et al., 1998; Kriwet 2005).
- 57 They were particularly diverse during the Late Cretaceous when they showed the highest degree
- of morphological diversity (Marramà et al., 2016a; Cawley & Kriwet, 2017). Pycnodonts
- underwent a severe drop in their diversity and disparity at the end of the Cretaceous, and the last
- 60 representatives survived in restricted biotopes until the Middle Eocene (Poyato-Ariza, 2005;
- 61 Marramà et al., 2016a). One of the last Palaeogene representatives is *Pycnodus apodus* (Volta
- 62 1796), which is represented by several complete and articulated skeletons from the early Eocene
- 63 (late Ypresian, c. 49 Ma) (Papazzoni et al., 2014; Marramà et al., 2016b) Bolca Koservat-
- 64 Lagerstätte. This deposit yielded a huge amount of exquisitely preserved fishes, which are
- 65 housed today in several museums and research institutions around the world, and that are
- represented by more than 230 bony and cartilaginous fish species (see e.g. Blot, 1987; Blot &
- 67 Tyler, 1990; Bannikov, 2004, 2006, 2008; Bannikov & Carnevale, 2009, 2010, 2016; Carnevale
- 68 & Pietsch, 2009, 2010, 2011, 2012; Carnevale et al., 2014, 2017; Marramà & Carnevale, 2015a,
- 69 b, 2016, 2017; Marramà et al., 2017a, b).
- 70 Pycnodus apodus has a long and complex taxonomic history (see e.g., Blot, 1987;
- 71 Poyato-Ariza & Wenz, 2002). Volta (1796) originally designated it as *Coryphaena apoda*.
- 72 Blainville (1818) subsequently redescribed the same specimens without illustrations, and erected
- 73 for them the taxon Zeus platessus. Finally, Agassiz (1833, 1839) created the genus Pycnodus for
- 74 these specimens but kept the specific name of Blainville (1818). Agassiz (1844) noted that the
- 75 existence of small specimens with a swelling of the forehead to be juveniles of *Pycnodus*
- 76 platessus. Heckel (1856) erected using the same material as Agassiz (but probably also including
- other specimens) from Bolca a second species of *Pycnodus*, *P. gibbus*, due to differential
- 78 characters such as the presence of a gibbosity on the forehead, higher vertebrae length to body
- 79 depth ratio than *P. platessus* and the body depth being one and a half times that of the body
- 80 length in contrast to *P. platessus* having a body depth half that of the length. Another character
- not explicitly mentioned in the text but was drawn (Heckel, 1856; Plate 8, Figure 4) is that P.
- 82 *gibbus* has 2 interdigitations between the vertebrae while *P. platessus* has 3-4. More recently,
- 83 Blot (1987) examined specimens that were labelled *P. platessus* in various institutional

113

114

84	collections and compared their anatomy to that of specimens labelled P. gibbus and concluded
85	that P. gibbus is synonymous with P. platessus and variations recorded among specimens were
86	due to intraspecific differences. However, this hypothesis has never been tested employing a
87	robust quantitative approach. Traditional and geometric morphometrics (Zelditch et al., 2004)
88	have been successfully used to interpret the patterns of morphospace occupation, quantifying the
89	morphological diversification, solving taxonomic debates, as well as to test if morphometric
90	variations are due to intra- or interspecific variability (Wretman, Blom & Kear, 2016; Marramà
91	& Carnevale, 2017; Marramà et al., 2017c).
92	In this perspective, this paper aims to analyse if the morphometric variation among
93	Pycnodus species of Bolca, can be related to interspecific or intraspecific variability as
94	hypothesized by Blot (1987). For this, we examined abundant Pycnodus specimens from various
95	museum collections which were labelled as either P. apodus, P. platessus, P. gibbus or Pycnodus
96	sp. to establish whether these species separate substantially from each other in the morphospace
97	and if morphometric and meristic data can be useful to detect significant differences between the
98	labelled taxa. Since the studied sample had a range of specimens of different sizes, we
99	investigated whether different shapes can be related to possible ontogenetic differences of
100	Pycnodus representing different growth stages from juvenile to adult.
101	
102	The taxonomic history of <i>Pycnodus</i>
103	
104	Pycnodus has long been used as wastebasket taxon in the study of pycnodontiforms, being used
105	as a default name particularly for many Mesozoic taxa. Later revisions revealed said taxa to have
106	significant morphological differences with Pycnodus leading to the creation of new genera.
107	Species of pycnodontiforms previously referred to as Pycnodus include Anomoeodus subclavatus
108	from the Maastrichtian of the Netherlands (Agassiz, 1833; Davis, 1890; Forir, 1887); other
109	species of Anomoeodus referred to as Pycnodus include A. angustus, A. muensteri, A. phaseolus,
110	A. sculptus (Agassiz, 1844) and A. distans (Coquand, 1860; Sauvage, 1880). Pycnodus liassicus
111	Egerton, 1855 from the Early Jurassic, of Barrow-on-Soar of Leicestershire, United Kingdom

was assigned to the genus Eomesodon by Woodward (1918) and Stemmatodus rhombus

(Agassiz, 1839) from the Early Cretaceous of Capo d'Orlando, close to Naples, Italy was

originally named Pycnodus rhombus (see Heckel, 1854). Pycnodus flabellatum Cope, 1866 from

115	the Cenomanian-Coniacian of Brazil was assigned to <i>Nursallia flabellatum</i> by Blot (1987). The
116	pycnodonts Pycnodus achillis Costa 1853, Pycnodus grandis Costa 1853 and Pycnodus
117	rotundatus Costa 1864 are all synonymous with Ocloedus costae (d'Erasmo, 1914, Poyato-Ariza
118	& Wenz, 2002). Poyato-Ariza (2013) revised "Pycnodus" laveirensis Veiga Ferreira 1961 from
119	the Cenomanian of Lavieras, Portugal and found that due to morphological differences in
120	characters such as absence of dermocranial fenestra, number of premaxillary teeth, contact type
121	of arcocentra and median fin morphology, it represents a member of a different genus and
122	consequently erected the new genus Sylvienodus as a replacement. An articulated specimen of
123	'Pycnodus' was found in the Campanian-Maastrichtian of Nardò, Italy, which certainly
124	represents a different pycnodont (Taverne, 1997). An extremely fragmentary specimen referred
125	to as "Pycnodus" nardoensis from Apulia (Nardò), Italy is comprised of the anterior part of the
126	body along with some posterior elements of the skull (Taverne, 1997). However, in a later study
127	Taverne (2003) studied new material of this taxon, which revealed that this species does not
128	belong to <i>Pycnodus</i> due to the possession of a narrower cleithrum and peculiar morphology of
129	the contour scales. This new data led to the creation of the new genus Pseudopycnodus to
130	allocate the Nardò material.
131	All other Mesozoic species of Pycnodus are based on isolated dentitions or teeth. The
132	earliest records of <i>Pycnodus</i> are dentitions found in the limestones from the Upper Jurassic
133	(Kimmeridgian) of Orbagnoux, France (Sauvage, 1893). Isolated teeth and an isolated vomerine
134	dentition were referred to cf. Pycnodus sp. (Goodwin et al., 1999) from the Mugher Mudstone
135	formation of the Tithonian. However, its identity is doubted due to the stratigraphic position and
136	could be attributed to <i>Macromesodon</i> (Kriwet, 2001b). Pictet, Campiche & Tribolet (1858-60)
137	described remains of the Early Cretaceous fish assemblages from Switzerland where three
138	species of Macromesodon (M. couloni from the Hauterivian and Barremian, M. cylindricus from
139	the Valanginian, Barremian, and Aptian and M. obliqus from the Albian) were all originally
140	referred to as <i>Pycnodus</i> . Isolated dentitions belonging to ' <i>Pycnodus</i> ' heterotypus and ' <i>Pycnodus</i> '
141	quadratifer were reported from the Hauterivian of the Paris basin (Cornuel, 1883, 1886). Several
142	isolated teeth derived from the Cenomanian strata of the Chalk Group of southern England were
143	attributed to <i>Pycnodus scrobiculatus</i> Reuss 1845 whose systematic affinity is still uncertain.
144	Other teeth belonging to <i>P. scrobiculatus</i> were reported from the Turonian of northern Germany.
145	Roemer (1841) described isolated remains belonging to Pycnodus harlebeni from the Late

Cretaceous of Hilsconglomerat of Ostenvald, Germany. Another possible Portuguese 146 representative of *Pycnodus* is reported from the Turonian of Bacarena, '*Pycnodus*' sp. aff. 'P.' 147 gigas Jonet 1964. However, the identification of the Portuguese specimens as Pycnodus are 148 uncertain and the material most likely pertains to a different pycnodont taxon (Kriwet, 2001b). 149 Isolated dentitions of what were claimed to be *Pycnodus scrobiculatus*, *P. rostratus* and *P.* 150 semilunaris from the Turonian of Czechoslovakia (Reuss, 1845) should be regarded as 151 indeterminable pycnodontids due to the lack of characters useful to determine their affinities 152 (Kriwet, 2001b). Isolated teeth attributed to "Pycnodus" lametae were reported from the 153 Maastrichtian Lameta Formation of Dongargaon, India (Woodward, 1908). Infratrappean and 154 intertrappean beds of Late Cretaceous and early Palaeocene age respectively, contains "P". 155 lametae alongside Pycnodus sp. in Asifibad, India (Prasad & Sahni, 1987). 156 Pycnodus is the most dominant taxon of the Palaeogene pycnodont assemblages being 157 widely distributed in shallow water contexts worldwide. The earliest record of *Pycnodus* in the 158 Palaeogene is represented by *Pycnodus praecursor* from the Danian of Angola (Dartevelle & 159 Casier, 1949) and P. sp. cf. P. praecursor from the Thanetian of Niger (Cappetta, 1972). 160 161 Pycnodus toliapicus was reported from the Thanetian of Togo, Thanetian of Nigeria and the upper Palaeocene of Niger (White, 1934; Kogbe & Wozny, 1979; Longbottom, 1984). Several 162 remains of isolated dentitions and teeth from the Eocene have been attributed to Pycnodus. These 163 include Pvcnodus bicresta from the northwestern Himalayan region, India (Kumar & Loyal, 164 165 1987; Prasad & Singh, 1991); Pycnodus bowerbanki from the Ypresian, England, middle Eocene of Mali and Ypresian of Algeria (Longbottom, 1984; Savornin, 1915); Pycnodus sp. cf. P. 166 toliapicus from the Eocene of Katar at the Persian Gulf (Casier, 1971); Pycnodus toliapicus from 167 the Ypresian and Lutetian of England and Lutetian of the Paris basin and Belgium (Savornin, 168 169 1915; Casier, 1950; Taverne & Nolf, 1978); Pycnodus mokattamensis from the Lutetian of Egypt (Priem, 1897); P. mokattamensis occurs alongside Pycnodus legrandi, Pycnodus lemellefensis, 170 Pycnodus thamallulensis, Pycnodus vasseuri and Pycnodus pellei from the Ypresian of Algeria 171 (Sayornin, 1915); Pycnodus pachyrhinus Grey-Egerton 1877 from the Ypresian of Kent, 172 England; Pycnodus funkianus Geinitz 1883 from the Ypresian of Brunswick, Germany; 173 Pycnodus munieri Priem 1902 and Pycnodus savini Priem 1902 from the Ypresian, France and a 174 rather diverse assemblage from the middle Eocene of Mali which includes *Pycnodus jonesae*, *P.* 175 maliensis, P. munieri, P. variablis and P. zeaformis (Longbottom, 1984). 176

177	A nearly complete specimen of <i>P. lametae</i> with crushed skull and missing caudal fin was
178	reported from the freshwater Maastrichtian of Bhatali, India close to the Dongargaon area
179	(Mohabey & Udhoji, 1996). However, the assignment of the name Pycnodus to this fish is
180	dubious, since it lacks the post-parietal process typical of the Pycnodontidae (pers. comm, JJC,
181	2018). A more complete specimen of <i>Pycnodus</i> was found in the Palaeocene rocks of Palenque,
182	Mexico (Alvarado-Ortega et al., 2015), which solely differs from the Eocene specimens from
183	Bolca by having a greater number of ventral and post-cloacal ridge scales, less dorsal- and anal-
184	fin pterygiophores and a large or regular-sized posteriormost neural spine. However, due to the
185	inadequacy of the available sample, it is not possible to determine the actual differences between
186	the Palaeocene material from Mexico and that from the Eocene of Bolca, and for this reason this
187	taxon is referred to as <i>Pycnodus</i> sp.
188	
189	
190	
191	MATERIAL AND METHODS
192	Specimen sampling
193	We studied a selection of Pycnodus specimens from various museum collections, which were
194	labelled either P. apodus, P. platessus, P. gibbus or Pycnodus sp. A total of 52 Pycnodus
195	specimens from nine museum collections were used to obtain biometric information with 39
196	specimens from that sample being used for the geometric morphometric analysis as their higher
197	quality preservation provided sufficient morphological information for the aim of this study
198	(BM; Museo dei Fossili di Bolca; NHMUK, Natural History Museum of London; SNSB-BSPG,
199	Staatliche Naturwissenshaftliche Sammlungen Bayerns-Bayerische Staatssammlung für
200	Paläontologie und Geologie, München, Germany; CM, Carnegie Museum, Pittsburgh,
201	Pennsylvania; FMNH, Field Museum of Natural History, Chicago; MGP-PD; Museo di Geologia
202	e Paleontologia dell'Università di Padova; MNHN, Muséum National d'Histoire Naturelle, Paris;
203	MCSNV, Museo Civico di Storia Naturale di Verona; NHMW; Naturhistorisches Museum
204	Wien) (see Supplementary material). For this analysis, the sample includes 17 specimens
205	identified originally as <i>Pycnodus</i> sp., 14 specimens as <i>P. platessus</i> , six specimens as <i>P. gibbus</i> ,

206

and two specimens as P. apodus.

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

α	1 4 •	4 1
Caeometric	morphometric	nratacal
Geometric	moi phometric	protocor

A total of 18 landmarks and 14 semi landmarks were digitized on photos taken from the studied specimens in the corresponding collections using the software TPSdig (Rohlf, 2005). Landmarks indicating homologous points were selected on the basis of their possible ecological or functional role following the scheme applied in some studies (Claverie & Wainwright, 2014; Tuset et al., 2014; Clarke, Lloyd & Friedman, 2016; Marramà, Garbelli & Carnevale, 2016a, b; Marramà et al., 2016a; Marramà & Carnevale, 2017) about shape variation in modern or extinct fishes (Figure 1). he traits used match 12 out of 17 of the landmarks that was used for 57 species of Pycnodontiformes by Marramà et al (2016a). Additional traits used here are the anterior and posterior margins of the cloaca to see if they shift significantly between morphotypes; using four landmarks around the orbit instead of one in the centre to capture more precisely the variability surrounding the orbit; not using the insertion of the pelvic fin as this character was rarely preserved in our specimens; the posterior tip of the supraoccipital being used as a semilandmark instead of a landmark to function as a fixed anchor for the other semilandmarks; the use of two landmarks for the cleithrum to capture variability in position and size of the pectoral fin instead of using just the one landmark for the insertion of the first pectoral fin ray due to the poor preservation of the pectoral fins in many specimens in contrast to the concave notch in the cleithrum.

The landmark coordinates were translated, rotated and scaled at unit centroid size by applying a Generalized Procrustes Analysis (GPA) to minimize the variation caused by size, orientation, location and rotation (Rohlf & Slice, 1990; Zelditch et al., 2004). The GPA was performed using the TPSrelw software package (Rohlf, 2003) and a principal component analysis (PCA) was performed on Procrustes coordinates to obtain the Relative Warp (RW). Shape changes were shown along the axes using deformation grid plots. Missing values are replaced using the algorithm "Mean value imputation" (Hammer, Harper & Ryan, 2001).

Two non-parametric tests were performed to analyse the quantitative morphospace occupation of our *Pycnodus* specimens. In order to assess the degree of overlap between morphospaces, an analysis of similarities (ANOSIM, Clarke, 1993) was performed on the entire dataset of standardised morphometric and meristic parameters. PERMANOVA (Anderson, 2001) was used to test similarities of in-group centroid position between the different groups

representing a species of *Pycnodus*. Euclidean distances are the distance measure chosen for both tests. All statistical analyses were performed in PAST 3.18 (Hammer, Harper & Ryan, 2001).

Since the studied specimens vary greatly in size (smallest being 4.0 cm and largest being 30.6 cm) we also investigated whether size could be correlated with shape change in *Pycnodus* and enable us to see whether and how body shape changes throughout ontogeny. To analyse the relationship between size and shape, we performed a Partial Least Square analysis (PLS) using the software TPSpls (Rohlf & Corti, 2000). Alpha (level of significance) was set to 0.05.

Biometric analyses

We used ten meristic counts (Number of vertebrae, ribs, scale bars, paired fin rays, median fin rays, median fin pterygiophores and caudal fin rays) and 19 measurements in order to capture morphological variability, to test the homogeneity of the sample, and confirming its assignment to a single morphotype. Histograms were used to illustrate the variation of morphometric and meristic data in order to ascertain if more than one morphotype of *Pycnodus* could be identified. Least squares regression was used to obtain the relationship between standard length (SL) and all other morphometric variables. Specimens of possible additional taxa were indicated by the presence of statistical outliers from the regression line (Simon et al., 2010) and will require additional scrutiny in order to truly differentiate the outlier from all other specimens. The linear regression results were shown using scatterplots. Log-transformed data were used to perform the least squares regression in order to determine the degree of correlation between the standard length (SL) and all other morphometric variables.

RESULTS

Geometric morphometrics

The relative warp analysis produced 38 RWs with the first three axes together explaining about 72% of the total variation. Figures 2 and 3 show that there is significant overlap between the morphospaces of the *Pycnodus* taxonomic groups and the thin plate splines show the changes in shape along the axes. Negative values on RW1 (56.1% explained) are related to *Pycnodus* specimens with large orbits and deep bodies while positive scores identify *Pycnodus* with reduced orbits and elongated bodies. Negative values of RW2 (10.4% explained) show

specimens having the pectoral fin with a wide base moved higher up the body alongside a long caudal peduncle (Figure 2). Conversely, on positive scores of RW2 lie specimens with pectoral fin with a narrower base located more ventrally on the body alongside a small caudal peduncle. The negative values of RW3 (6% explained) show the skull becoming deeper and more elongated with the dermosupraoccipital in particular reaching far back (Figure 3). Body becomes shallower near the caudal peduncle with the cloaca shifting posteriorly, as well as the dorsal apex. Positive scores of RW3 are related to a shorter and shallower skull with the body becoming deeper close to the caudal peduncle and the anterior shift in the cloaca with the body becoming deeper just anterior to the cloaca. The dorsal apex shifts forward in position.

ANOSIM performed on the first three axes suggests that there is strong overlap between groups, showing they are barely distinguishable from each other (r-value is 0.10 and p > 0.05; see Table 1), except for a single pairwise comparison between *Pycnodus* sp. and *P. platessus* (p < 0.05). The PERMANOVA suggests the same trend (Table 2), showing that group centroids are not significantly different on each pairwise comparison (f-value is 2.83), except between *Pycnodus* sp. and *P. platessus* (p < 0.05) which lends significance to the overall p-value (< 0.05). Significant differences detected between *Pycnodus* sp. and *P. platessus* can be explained with the fact that the indeterminate *Pycnodus* specimens show a wide range of morphologies, with the extreme shapes ranging from negative to positive values of all the first three axes.

The PLS performed on the entire sample (Figure 4) revealed a strong and significant correlations between size and shape (r = 0.88; p < 0.05), therefore suggesting that different shapes of the individuals are related to changes in shape of different ontogenetic stages. In fact, small-sized individuals are associated with larger orbits, deeper skull and body shape, long skull, higher position of pectoral fin and a wide, indistinct caudal peduncle that is in distant proximity to both medial fins. Larger individuals, on the other hand, have a reduced orbit, shallower skull and body depth, shorter skull, lower position of pectoral fin and narrow caudal peduncle in close proximity to both medial fins. The PLS analysis therefore suggests that the morphological variations of the orbit, body depth and caudal peduncle are strongly related to ontogeny.

Biometric analyses

Morphometrics and meristic counts for all the studied specimens are given in Table 3 and Table
4 respectively and mean biometric parameters are given in Table 5. Most of the histograms based

300	on meristic counts (Figure 5) do not show a normal (Gaussian) distribution due to the small
301	sample size being unable to detect significant high frequency of mean values that might have
302	suggested a Gaussian curve, with intermediate states dominating and extreme states being rare.
303	The linear regression performed on morphometric characters (Figure 6) shows that all specimens
304	fit within the cloud of points near the regression line and that no particular specimens of
305	Pycnodus deviates from this line. Variation in meristic values and the few outliers in partial least
306	square regression analyses have been interpreted here as measurement errors due to incomplete
307	preservation of some structures due to taphonomy or incomplete mineralization in juvenile
308	individuals. The high values of the coefficient of determination (r²) ranging from 0.76-0.99
309	(Table 6) indicate a high degree of positive correlation between standard length and each
310	morphometric character. Linear regression analysis also revealed the highly significant
311	relationship between the standard length and all morphometric characters (p \leq 0.001). Neither
312	morphometric nor meristic characters are therefore useful in determining two or more different
313	morphologically identifiable specieswithin Pycnodus, strongly supporting Blot's (1987)
314	hypothesis that only one species (P. apodus; see also below) is present in the Bolca Lagerstätte.

DISCUSSION

Intraspecific variation of *Pycnodus apodus*

319	The results demonstrate that all <i>Pycnodus</i> species cannot be separated morphologically using the
320	morphometric traits used herein in a quantitative approach, supporting the intraspecific variation
321	hypothesis of Blot (1987). Pycnodus gibbus is a problematic taxon to identify due to Heckel
322	(1856) not mentioning exactly which specimen he used to designaate the specific name for P .
323	gibbus. Blot (1987) mentions that Heckel worked on specimens from the NHMW in order to
324	erect P. gibbus. However, such specimens could not be found and so the holotype still remains
325	unknown. However, Heckel (1856; plate 8) does illustrate a specimen of Pycnodus gibbus and it
326	conforms with what we have found to be the juvenile morphotype in our sample lending
327	credence to the hypothesis by Agassiz (1844) that the specimens he studied were specifically the
328	juvenile of P. platessus. One of the characters separating P. gibbus from P. platessus (Heckel,
329	1856; plate 8, figure 4) is the number of interdigitations between vertebrae (P. gibbus: two; P.
330	platessus: three-four). However, a survey of the vertebral column of all our specimens reveals

two to be the predominant number of interdigitations, including specimens labelled *P. platessus* and *P. apodus*. Apart from specimens where the degree of preservation was insufficient to do a count, only one specimen (MGP-PD 8868C) has three interdigitations which we ascertain to be due to intraspecific variation. Blot (1987; table 6) also did not see any difference in the number of interdigitations between *P. gibbus and P. platessus*.

As suggested by Grande and Young (2004), ontogenetic variation of morphological characters actually represents a primary source of intraspecific variation; this is confirmed by our analysis, specifically by the morphological changes mostly occurring along RW1 in the morphospace that are related to ontogeny and the very significant results deriving from the PLS analysis. The unimodal (Gaussian) distribution cannot be seen in most of the meristic data, as revealed by the Kernel density estimator on the frequency histograms (Figure 5), due to the fact that the sample is too small to detect high frequency of mean values. However, a few meristic characters reveal a domination of intermediate values and comparably rare extremes, which is typical of a homogenous population. Furthermore, the linear regression showed a significant dependence between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different taxa. Meristic and morphometric data seem to show that all specimens studied belong to a single taxonomic entity (see Dagys, Bucher & Weitschat, 1999; Dagys, 2001; Weitschat, 2008; Marramà & Carnevale, 2015a; Sferco, López-Arbarello & Báez, 2015).

Figure 7 shows some notable differences between the juvenile and larger specimens including the degree of ossification, particularly in the skull and caudal fin, being reduced in juvenile in comparison to adults and the notochord not being surrounded by arcocentra in juveniles whereas it is completely enclosed in adults. The so-called gibbosity that Heckel (1856) used to distinguish *P. gibbus* from *P. platessus* is formed by the angle of the anterior profile and the axis of the body. This angle decreases in larger specimens of *Pycnodus* from 70° to 55° (Blot, 1987) due to the skull roof moving posteriorly during growth revealing that this character does not denote a species but a growth stage within a single species. The high vertebrae length/body depth ratio said to be another indicator of *P. gibbus* is something that also decreases during growth. When Blot plotted all *Pycnodus* specimens onto a growth curve (Blot, 1987; figure 32) *Pycnodus gibbus* fitted into the curve neatly on the lower end of the growth curve.

Differences in meristic counts (Table 7) are suggestive of intraspecific variation as seen 361 in other fossil actinopterygians such as Sinamiidae from the Late Jurassic (Su. 1973; Zhang & 362 Zhang, 1980) and Early Cretaceous (Stensiö, 1935); Palaeosconiformes from the Triassic 363 (Lehman, 1952); Parasemionotidae from the Early Triassic (Olsen, 1984) Teleosteomorpha from 364 the Middle to Late Triassic (Tintori, 1990); Bobasatraniiformes from the Middle Triassic 365 (Bürgin, 1992) Paramblypteidae from the Early Permian (Dietze, 1999, 2000) Dapediidae from 366 the Early Jurassic (Thies & Hauff, 2011); stem Actinopteri from the Middle Triassic (Xu, Shen 367 & Zhao, 2014); stem Teleostei from the Middle Triassic (Tintori et al., 2015); Pachycormiformes 368 from the Early Jurassic (Wretman, Blom & Kear, 2016); and the incertae sedis Teffichthys from 369 the Early Triassic Marramà et al., 2017c). The analysis of the morphological variability of 370 Pycnodus, one of the last representatives of a basal neopterygian lineage that has been around 371 372 since at least the Late Triassic (Tintori, 1981; Kriwet 2001a; Poyato-Ariza, 2015), indicates that pycnodontiforms also produce substantial intraspecific variation similar to living representatives 373 of other ancient actinopterygian lineages such as amiids (Jain, 1985) and acipenserids (Hilton & 374 Bemis, 1999). Therefore, the identification of different Bolca *Pvcnodus* species such as *P. gibbus* 375 376 (Heckel, 1856), may be the result of species over-splitting and can be on the contrary explained by intraspecific variation in meristic counts and ontogeny. 377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

Habitat use during ontogeny

Our morphometric results show that the morphology of the smaller individuals differ significantly from that of the adults and that *Pycnodus*, like extant actinopterygians, would go through morphological changes throughout ontogeny. Large eye size found in the smaller *Pycnodus* specimens is usually a sign of the specimen being in a juvenile stage as can be seen in many extant teleosts (Pankhurst & Montgomery, 1990). Large eye size in pycnodonts has been related to behavioural flexibility and possible nocturnal behaviour (Goatley, Bellwood & Bellwood, 2010). This could also apply for the Bolca *Pycnodus* although the individuals with the largest eyes (juveniles) are not believed to be more nocturnal as larger eye size in smaller fishes is a natural consequence of ontogeny. The deep body shape of the smaller *Pycnodus* specimens can be interpreted as a sign that the juveniles live within the branches of corals and as they get bigger they start to occupy the water column above the reef. This change to a benthopelagic lifestyle also is supported by the more fusiform body and the narrower caudal peduncle (Webb,

392	1982) seen in larger specimens. Ecologically similar extant analogues to <i>Pycnodus</i> , fishes of the
393	genus Lethrinus undergo ontogenetic changes in head shape as they grow in size but their body
394	depth in relation to length does not change drastically during growth (Wilson, 1998). The sparid
395	species Diplodus sargus and D. puntazzo also spend their time as juveniles in crevices in the
396	rocks in shallow water 0-2 m deep and move to rocky bottoms and sea grass beds when adult
397	(Macpherson, 1998). However, their ontogenetic trajectory differs from <i>Pycnodus</i> as they are
398	more elongate as juveniles and body depth increases with age. Juvenile carangids also have a
399	deeper body than that seen in adults (Leis et al., 2005) and are found within lagoonal patch
400	reefs(Wetherbee et al., 2004) only moving out of this habitat when larger than 40 cm and
401	becoming more pelagic in their habitat preferences (Kuiter, 1993; Myers, 1999). Eurasian perch
402	(Perca fluviatilis) go through three different feeding modes during their life span;
403	zooplanktivory, benthic macroinvertebrate feeding and piscivory. The middle stage, benthic
404	feeding results in them shifting to the littoral zone where they have a deeper body and longer fins
405	which aid in maneuverability whereas piscivores and zooplanktivores have a similar body type
406	due to both life stages living in the pelagic realm (Hjelm, Persson & Christensen, 2000).
407	Ontogenetically-related habitat changes also occur in other coral fishes, such as labrids, in which
408	the pectoral fins increase their aspect ratio as these fishes grow in size, enabling them to increase
409	their use of the water column while juveniles stay closer to the bottom (Fulton, Bellwood &
410	Wainwright, 2002). Since both juveniles and adults of Pycnodus are found in the Bolca
411	Lagerstätte, we hypothesize that unlike many modern coral reef fishes, which significantly
412	change the habitat during ontogeny (Nagelkerken et al., 2002; Dorenbosch et al., 2005a, b;
413	Adams et al., 2006; Nagelkerken, 2007; Nakamura et al., 2008; Shibuno et al., 2008; Kimirei et
414	al., 2011), there is a shift instead in microhabitat use within the reef, in this case juveniles living
415	within coral crevices to adults roaming over the coral reefs.
416	
417	
418	CONCLUSIONS
419	The quantitative approach here performed supports the hypothesis of Blot (1987) that the various
420	Pycnodus nominal species (P. apodus, P. platessus, P. gibbus) from the Eocene Bolca
421	Konservat-Lagerstätte actually belong to a single species. Due to the holotype of <i>Pycnodus</i> being

given the specific name of apoda, all known specimens of Pycnodus from Bolca should be

423	referred to as <i>Pycnodus apodus</i> . Most of the morphological variation can be explained by the
424	close correlation between morphometric changes and ontogeny, with juveniles and adults
425	occupying different parts of the morphospace. The morphometric differences between juveniles
426	and adults may be due to occupation of different habitats with juveniles sheltering among cover
427	and adults being better adapted to a roaming lifestyle swimming over the benthos to feed The
428	complex taxonomic history shows that most species typically referred to as Pycnodus are
429	different taxa altogether e.g. not valid (all Jurassic and Cretaceous Pycnodus specimens being
430	other taxa) and with the majority of Palaeogene Pycnodus being represented by isolated dentition
431	it seems that the only definitive articulated skeletal remains attributed to the genus <i>Pycnodus</i> are
432	Pycnodus apodus from the Bolca Lagerstätte and Pycnodus sp. from south-eastern Mexico
433	(Alvarado-Ortega et al., 2015). Future studies should analyse other problematic pycnodontiform
434	taxa such as the widely distributed Gyrodus from the Middle Jurassic to the Early Cretaceous
435	(Kriwet & Schmitz, 2005) to investigate if intraspecific variation might partially explain the
436	supposed diversity of species this genus contains.
437	
438	
439	ACKNOWLEDGMENTS
440	
441	We would like to thank M. Cerato (BM), Z. Johanson and E. Bernard (NHML), O. Rauhut
442	(BSPG), A. Henrici (CM), L. Grande and W. Simpson (FMNH), M. Fornasiero (MGP-PD), A.
443	Pradel and G. Clément (MNHN), A. Vaccari and R. Zorzin (MCSNV), and U. Göhlich (NHMW)
444	for access to specimens and support while studying these specimens at the museum. We also are
445	grateful to the helpful comments by the reviewers for improving the standard of this paper.
446	
447	
448	REFERENCES
449	
450	Adams AJ, Dahlgren CP, Kellison GT, Kendall MS, Layman CA, Ley JA, Nagelkerken I, Serafy
451	JE. 2006. Nursery function of tropical back-reef systems. Marine Ecology Progress Series
452	318:287-301. DOI: www.jstor.org/stable/24870766.
453	

- Agassiz L. 1833. Synoptische Übersicht der fossilen Ganoiden. Neues Jahrbuch für 454 Mineralogie, Geologie und Paläontologie 1833: 470-481. 455 456 Agassiz L. 1833-1844. Recherches sur les Poissons fossiles. Volume 2. Petitpierre: Neuchâtel. 457 458 Alvarado-Ortega J, Cuevas-García M, del Pilar Melgarejo-Damián M, Cantalice KM, Alaniz-459 Galvan A, Solano-Templos G, and Than-Marchese BA. 2015. Paleocene fishes from Palenque, 460 461 Chiapas, southeastern Mexico. *Palaeontologia Electronica* 18:1-22. DOI: https://doi.org/10.26879/536. 462 463 Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral 464 465 Ecology 26:32-46. DOI: 10.1111/j.1442-9993.2001.01070.pp.x. 466 467 Bannikov AF. 2004. Fishes from the Eocene of Bolca, northern Italy, previously classified with the Chaetodontidae (Perciformes). Studie Ricerche sui Giacimenti Terziari di Bolca 10: 55-74. 468 469 Bannikov AF. 2006. Fishes from the Eocene of Bolca, northern Italy, previously classified in the 470 471 Sparidae, Serranidae and Haemulidae (Perciformes). Geodiversitas 28:249-275. DOI: 1280-9659. 472 473 Bannikov AF. 2008. Revision of the atheriniform fish genera Rhamphognathus Agassiz and 474 Mesogaster Agassiz (Teleostei) from the Eocene of Bolca, northern Italy. Studie Ricerche sui 475 Giacimenti Terziari di Bolca 9:65-76. 476 477 478 Bannikov AF, Carnevale G. 2009. A new percoid fish from the Eocene of Monte Bolca, Italy: Hendrixella grandei gen. & sp. nov. Swiss Journal of Geosciences 102:481-488. DOI: 479 https://doi.org/10.1007/s00015-009-1331-3. 480 481 Bannikov AF, Carnevale G. 2010. Bellwoodilabrus landinii, a new genus and species of labrid 482
- fish (Teleostei: Perciformes) from the Eocene of Monte Bolca. *Geodiversitas* 32:201-220. DOI: https://doi.org/10.5252/g2010n2a2.

PeerJ

485	
486	Bannikov AF, Carnevale G. 2016. Carlomonnius quasigobius gen. et sp. nov.: the first gobioid
487	fish from the Eocene of Monte Bolca, Italy. Bulletin of Geosciences 91:13-22. DOI:
488	10.3140/bull.geosci.1577.
489	
490	Blainville HD. 1818. Sur les ichthyolithes ou les poissons fossiles. Nouveau Dictionnaire
491	d'Histoire Naturelle, Deterville, Paris 27:310-95.
492	
493	Blot, J. 1987. L'ordre des Pycnodontiformes. Studi e Ricerche sui Giacimenti Terziari di Bolca
494	V. L'ordre des Pycnodontiformes. Museo civico di storia Naturale: Verona
495	
496	Blot J, Tyler JC. 1990. New genera and species of fossil surgeon fishes and their relatives
497	(Acanthuroidei, Teleostei) from the Eocene of Monte Bolca, Italy, with application of the Blot
498	formula to both fossil and Recent forms. Studie Ricerche sui Giacimenti Terziari di Bolca 6:13-
499	92.
500	
501	Bürgin T. 1992. Basal ray-finned fishes (Osteichthyes; Actinopterygii) from the Middle Triassic
502	of Monte San Giorgio (Canton Tessin, Switzerland). Schweizerische Paläontolologische
503	Abhandlungen 114:1-164.
504	
505	Cappetta H. 1972. Les poissons Crétacés et Tertiaires du bassin des Iullemmeden (République du
506	Niger). Palaeovertebrata 5:179-251.
507	
508	Carnevale G, Pietsch TW. 2009. An Eocene frogfish from Monte Bolca, Italy: the earliest
509	skeletal record for the family. Palaeontology 52:745-752. DOI: 10.1111/j.1475-
510	4983.2009.00874.x.
511	
512	Carnevale G, Pietsch TW. 2010. Eocene handfishes from Monte Bolca, with description of a new
513	genus and species, and a phylogeny of the family Brachionichthyidae (Teleostei: Lophiiformes).
514	Zoological Journal of the Linnean Society 160:621-647. DOI: https://doi.org/10.1111/j.1096-
515	<u>3642.2009.00623.x</u> .

516	
517	Carnevale G, Pietsch TW. 2011. Batfishes from the Eocene of Monte Bolca. Geological
518	Magazine 148:461-472. DOI: https://doi.org/10.1017/S0016756810000907.
519	
520	Carnevale G, Pietsch TW. 2012. †Caruso, a new genus of anglerfishes from the Eocene of
521	Monte Bolca, Italy, with a comparative osteology and phylogeny of the teleost family Lophiidae
522	Journal of Systematic Palaeontology 10:47-72. DOI:
523	https://doi.org/10.1080/14772019.2011.565083.
524	
525	Carnevale G, Bannikov AF, Marramà G, Tyler JC, Zorzin R. 2014. The Pesciara-Monte Postale
526	Fossil-Lagerstätte: 2. Fishes and other vertebrates. Rendiconti della Società Paleontologica
527	Italiana 4:37-63.
528	
529	Carnevale G, Johnson GD, Marramà G, Bannikov AF. 2017. A reappraisal of the Eocene
530	priacanthid fish Pristigenys substriata (De Blainville, 1818) from Monte Bolca, Italy. Journal of
531	Paleontology 91: 554-565. DOI: https://doi.org/10.1017/jpa.2017.19.
532	
533	Casier E. 1950. Contributions à l'étude des poissons fossiles de la Belgique. VIII. Les Pristidés
534	éocènes. Bulletin du Musée Royal d'Histoire Naturelle de Belgique 25:1-52.
535	
536	Casier, E. 1971. Sur un material ichthyologique des "Midra (and Saila) shales" du Qatar (Golfe
537	Persique). Bulletin de l'Institut royal des Sciences naturelles de Belgique 47:1-9.
538	
539	Cawley JJ, Kriwet J. 2017. A new pycnodont fish, Scalacurvichthys naishi gen. et sp. nov., from
540	the Late Cretaceous of Israel. Journal of Systematic Palaeontology 1-15. DOI:
541	https://doi.org/10.1080/14772019.2017.1330772.
542	
543	Clarke KR. 1993. Non-parametric multivariate analysis of changes in community structure.
544	Austral Ecology 18:117-143. DOI: 10.1111/j.1442-9993.1993.tb00438.x.
EVE	

Clarke, JT, Lloyd GT, Friedman M. 2016. Little evidence for enhanced phenotypic evolution in 546 early teleosts relative to their living fossil sister group. Proceedings of the National Academy of 547 Sciences 113:11531-11536. DOI: https://doi.org/10.1073/pnas.1607237113. 548 549 Claverie T, Wainwright PC. 2014. A Morphospace for Reef Fishes: Elongation Is the Dominant 550 Axis of Body Shape Evolution. *PLoS ONE* 9: e112732. DOI: 551 https://doi.org/10.1371/journal.pone.0112732. 552 553 Cope ED. 1886. A contribution to the vertebrate palaeontology of Brazil. *Proceedings of the* 554 American Philosophical Society 23:1-21. www.jstor.org/stable/982910. 555 556 557 Coquand H. 1860. Synopsis des animaux et des végétaux fossiles observés dans les formations secondaires de la Charente, de la Charente-Inférieure et de la Dordogne. Barlatier-Feissat et 558 Demonchy: Marseille. 559 560 561 Cornuel J. 1883. Nouvelle note sur des Pycnodontes portlandiens et néocomiens de l'est du bassin de Paris, et sur des dents binaires de plusieurs d'entre eux. Bulletin de la Société 562 563 géologique de France 11:18-27. 564 565 Cornuel, MJ. 1886. Liste des fossiles du terrain crétacé inférieur de la Haute-Marne. Bulletin de la Société géologique de France 14:312-323. 566 567 Costa OG. 1853. Paleontologia del regno di Napoli. Atti della Accademia Pontaniana 1: 1-380. 568 569 570 Costa OG. 1864. Paleontologia del regno di Napoli, III. Atti Accademia Pontaniana 8: 1-198. 571 572 Dagys AS. 2001. The ammonoid family Arctohungaritidae from the Boreal Lower-Middle 573 574 Anisian (Triassic) of Arctic Asia. Revue de Paléobiologie 20:543-641. 575

Dagys AS, Bucher H, Weitschat W. 1999. Intraspecific variation of *Parasibirites kolymensis* 576 Bychkov (Ammonoidea) from the Lower Triassic (Spathian) of Arctic Asia. Mitteilungen aus 577 dem Geologisch-Paläontologischen der Institut Universität Hamburg 83:163-178. 578 579 Dartevelle E, Casier, E. 1949. Les poissons fossiles du Bas-Congo et des régions voisines 580 (deuxième partie). Annales du Musée du Congo Belge 3: 201-256. 581 582 Davis JW. 1890. On the fossil fish of the Cretaceous formations of Scandinavia. Transactions of 583 the Royal Dublin Society 4:363-434. 584 585 Dietze K. 1999. Paramblypterus duvernoyi (Actinopterygii): skull morphology and intra-specific 586 587 variation, and its implications for the systematics of paramblypterid fishes. Journal of Vertebrate Paleontology 19:247-262. DOI: https://doi.org/10.1080/02724634.1999.10011139. 588 589 Dietze K. 2000. A revision of paramblypterid and amblypterid actinopterygians from Upper 590 Carboniferous - Lower Permian lacustrine deposits of central Europe. Palaeontology 43: 927-591 966. DOI: 10.1111/1475-4983.00156. 592 593 594 Dorenbosch M, Grol MGG, Christianen MJA, Nagelkerken I, van der Velde G. 2005a. Indo-595 Pacific seagrass beds and mangroves contribute to fish density coral and diversity on adjacent reefs. Marine Ecology Progress Series 302:63-76. www.jstor.org/stable/24869791. 596 597 Dorenbosch M, Grol MGG, Nagelkerken I, van der Velde G. 2005b. Distribution of coral reef 598 599 fishes along a coral reef-seagrass gradient: edge effects and habitat segregation. Marine Ecology Progress Series 299:277-288. http://www.jstor.org/stable/24869721. 600 601 d'Erasmo G. 1914. La fauna e l'età dei calcari a ittioliti di Pietraroia (Prov. Di Benevento). 602 Palaeontographica Italica 20:29-86. 603 604 Egerton P. 1855. British Organic Remains, Decade VIII. Pycnodus liassicus. Memoirs of the 605 *Geological Survey of the United Kingdom* :1-3. 606

607	
608	Forir H. 1887. Contributions à l'étude du système Crétacé de la Belgique. 1: Sur quelques
609	poissons et crustacés nouveaux ou mal connus. Annales de la Société géologique de Belgique
610	14:25-56.
611	
612	Fulton C, Bellwood D, Wainwright, P. 2001. The relationship between swimming ability and
613	habitat use in wrasses (Labridae). Marine Biology 139:25-33. DOI:
614	https://doi.org/10.1007/s002270100565.
615	
616	Geinitz, HB. 1883. Ueber neue Funde in den Phosphatlagern von Helmstedt, Büddenstedt und
617	Schleweke. Abhandlungen der Gesellschaft Isis 5:37-46.
618	
619	Goatley HR, Bellwood DR, Bellwood O. 2010. Fishes on coral reefs: changing roles over the
620	past 240 million years. <i>Paleobiology</i> 36: 415-427. DOI: https://doi.org/10.1666/09035.1 .
621	
622	Goodwin, M.B, Clemens, WA, Hutchinson JH, Wood CB, Zavada MS, Kemp A, Duffin C,
623	Schaff CR. 1999. Mesozoic continental vertebrates with associated palynostratigraphic datas
624	from the northwestern Ethiopian platform. <i>Journal of Vertebrate Paleontology</i> 19: 728-741.
625	DOI: https://doi.org/10.1080/02724634.1999.10011185 .
626	
627	Grande T, Young B. 2004. The ontogeny and homology of the Weberian apparatus in the
628	zebrafish Danio rerio (Ostariophysi: Cypriniformes). Zoological Journal of the Linnean
629	Society 140:241-254.DOI: https://doi.org/10.1111/j.1096-3642.2003.00097.x.
630	
631	Grey-Egerton P. 1877. On some new pycnodonts. <i>Geological Magazine</i> 4:49-55. DOI:
632	https://doi.org/10.1017/S0016756800148563.
633	
634	Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for
635	education and data analysis. <i>Palaeontologia Electronica</i> 4:1-9.
636	

Heckel J. 1854. Über den Bau und die Eintheilung der Pycnodonten, nebst kurzer Beschreibung 637 einiger neuen Arten derselben. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, 638 *Mathematisch-Naturwissenschafliche Klasse* 12: 433-464. 639 640 Heckel J. 1856. Beiträge zur Kenntnis der fossilen Fische erreichs. Denkschriften der 641 kaiserlischen Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Classe 642 11:187-274. 643 644 Hilton EJ, Bemis WE. 1999. Skeletal variation in shortnose sturgeon (*Acipenser brevirostrum*) 645 from the Connecticut River: Implications for comparative osteological studies of fossil and living 646 fishes. In: Arratia G, Schultze HP. eds. Mesozoic Fishes 2-Systematics and Fossil Record. 647 648 Munich: Verlag Dr. F. Pfeil, 69-94. 649 Hjelm J, Persson L, Christensen B. 2000. Growth, morphological variation and ontogenetic niche 650 shifts in perch (*Perca fluviatilis*) in relation to resource availability. *Oecologia* 122:190-199. 651 DOI: https://doi.org/10.1007/PL00008846. 652 653 Jain SL. 1985. Variability of dermal bones and other parameters in the skull of *Amia calva*. 654 Zoological Journal of the Linnean Society 84:385-395. DOI: https://doi.org/10.1111/j.1096-655 656 3642.1985.tb01805.x. 657 Jonet S. 1964. Contribution à la connaissance de la faune ichthyologique crétacée. II-Élements 658 de la faune turonnienne. Boletim da Sociedade Geológica de Portugal 15:157-174. 659 660 Kimirei IA, Nagelkerken I, Griffioen B, Wagner C, Mgaya YD. 2011. Ontogenetic habitat use by 661 mangrove/seagrass-associated coral reef fishes shows flexibility in time and space. Estuarine, 662 Coastal and Shelf Science 92:47-58. DOI: https://doi.org/10.1016/j.ecss.2010.12.016. 663 664 Kogbe CA, Wozny E. 1979. Upper Maastrichtian and Paleocene macrofauna from the 665 Iullemmeden Basin (West Afrika) and their paleobiogeographic distribution. Annals of the 666 Geology Survey of Egypt 9: 184-218. 667

800	
569	Kriwet J. 2001a. Palaeobiogeography of pycnodontiform fishes (Actinopterygii, Neopterygii).
570	Seminario de Paleontología de Zaragoza 5 1:121-130.
571	
572	Kriwet J. 2001b. A comprehensive study of pycnodont fishes (Neopterygii, Pycnodontiformes):
573	Morphology, Taxonomy, Functional Morphology, Phylogeny, and Palaeobiogeography. D. Phil
674	thesis, Humboldt University.
575	
576	Kriwet J. 2005. A comprehensive study of the skull and dentition of pycnodont fishes
577	(Neopterygii, Pycnodontiformes). Zitteliana 45:135-188.
578	
579	Kriwet J, Schmitz L. 2005. New insight into the distribution and palaeobiology of the pycnodont
580	fish Gyrodus. Acta Palaeontologica Polonica 50:49-56.
581	
582	Kuiter RH. 1993. Coastal fishes of south-eastern Australia. Crawford House: Bathurst, New
583	South Wales, Australia.
584	
585	Kumar K, Loyal RS. 1987. Eocene ichthyofauna from the Subathu Formation, northwestern
586	Himalaya, India. Journal of the Palaeontological Society of India 32:60-84.
587	
588	Lehman JP. 1952. Etude complémentaire des poissons de l'Eotrias de Madagascar. Kungliga
589	Svenska Vetenskaps Akademiens Handlingar 4:1-201.
590	
591	Leis JM, Hay AC, Clark DL, Chen, IS, Shao KT. 2006. Behavioral ontogeny in larvae and early
592	juveniles of the giant trevally (Caranx ignobilis) (Pisces: Carangidae). Fishery Bulletin 104: 401-
593	414.
594	
595	Longbottom AE. 1984. New Tertiary pycnodonts from the Tilemsi valley, Republic of Mali.
596	Bulletin of the British Museum of Natural History 38:1-26.
597	

- Macpherson E. 1998. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. 698 Journal of Experimental Marine Biology and Ecology 220:127-150. DOI: 699 https://doi.org/10.1016/S0022-0981(97)00086-5. 700 701 Marramà G, Carnevale G. 2015a. The Eocene sardine †Bolcaichthys catopygopterus 702 (Woodward, 1901) from Bolca, Italy: osteology, taxonomy and paleobiology. *Journal of* 703 Vertebrate Paleontology 35:6, e1014490, DOI: 10.1080/02724634.2015.1014490. 704 705 Marramà G, Carnevale G. 2015b. Eocene round herring from Monte Bolca, Italy. Acta 706 Palaeontologica Polonica 60:701-710. DOI: https://doi.org/10.4202/app.00057.2014. 707 708 709 Marramà G, Carnevale G. 2016. An Eocene anchovy from Monte Bolca, Italy: The earliest known record for the family Engraulidae. Geological Magazine 153:84-94. DOI: 710 https://doi.org/10.1017/S0016756815000278. 711 712 713 Marramà G, Carnevale G. 2017. Morphology, relationships, and paleobiology of the Eocene barracudina †*Holosteus esocinus* (Aulopiformes, Paralepididae) from Monte Bolca, Italy. 714 715 Zoological Journal of the Linnean Society 181:209-228. DOI: https://doi.org/10.1093/zoolinnean/zlw029. 716 717 Marramà G, Garbelli C, Carnevale G. 2016a. A morphospace for the Eocene fish assemblage of 718 Bolca, Italy: a window into the diversification and ecological rise to dominance of modern 719 tropical marine fishes. Bollettino della Società Paleontologica Italiana 55: 11-21. DOI: 720 721 10.4435/BSPI.2016.02. 722 723 Marramà G, Garbelli C, Carnevale G. 2016b. A clade-level morphospace for the Eocene fishes of Bolca: patterns and relationships with modern tropical marine fish assemblages. *Bollettino* 724 725 della Società Paleontologica Italiana 55: 139-156. DOI: 10.4435/BSPI.2016.13. 726
- 727 Marramà G, Villier B, Dalla Vecchia FM, Carnevale G. 2016a. A new species of
- Gladiopycnodus (Coccodontoidea, Pycnodontomorpha) from the Cretaceous of Lebanon 728

provides new insights about the morphological diversification of pycnodont fishes through time.

Cretaceous Research 61:34-43. DOI: https://doi.org/10.1016/j.cretres.2015.12.022.

731

- 732 Marramà G, Bannikov AF, Tyler JC, Zorzin R, Carnevale G. 2016b. Controlled excavations in
- 733 the Eocene Pesciara and Monte Postale deposits reveal new details about the paleoecology and
- taphonomy of the fish assemblages of Bolca Konservat-Lagerstätte, Italy. *Palaeogeography*,
- *Palaeoclimatology, Palaeoecology* 454:228-245. DOI:
- 736 http://dx.doi.org/10.1016/j.palaeo.2016.04.021.

737

- 738 Marramà G, Claeson KM, Carnevale G, Kriwet J. 2017a. Revision of Eocene electric rays
- 739 (Torpediniformes, Batomorphii) from the Bolca Konservat-Lagerstätte, Italy, reveals the first
- 740 fossil embryo in situ in batoids and provides new insights into the origin of trophic novelties in
- coral reef fishes. *Journal of Systematic Palaeontology* DOI:10.1080/14772019.2017.1371257.

742

- Marramà G, Engelbrecht A, Carnevale G, Kriwet J. 2017b. Eocene sand tiger sharks
- 744 (Lamniformes, Odontaspididae) from the Bolca Konservat-Lagerstätte, Italy: Palaeobiology,
- palaeobiogeography and evolutionary significance. *Historical Biology* DOI:
- 746 10.1080/08912963.2017.1341503.

747

- 748 Marramà G, Lombardo C, Tintori A, Carnevale G. 2017c. Redescription of 'Perleidus'
- 749 (Osteichthyes, Actinopterygii) from the Early Triassic of northwestern Madagascar. *Rivista*
- 750 Italiana di Paleontologia e Stratigrafia 123:219-242. DOI: https://doi.org/10.13130/2039-
- 751 4942/8328.

752

- 753 Mohabey DM, Udhoji SG. 1996. *Pycnodus lametae* (Pycnodontidae), a holostean fish from
- 754 freshwater Upper Cretaceous Lameta Formation of Maharashtra. *Journal of the Geological*
- 755 Society of India 47:593-598. http://www.geosocindia.org/index.php/jgsi/article/view/68397.

756

- 757 Myers RF. 1999. Mirconesian reef fishes. A comprehensive guide to the coral reef fishes of
- 758 Micronesia. Coral Graphics: Guam, USA.

759

- Nagelkerken I. 2007. Are non-estuarine mangroves connected to coral reefs through fish
- 761 migration? *Bulletin of Marine Science* 80:595-607.

- Nagelkerken I, Roberts CM, van der Velde G, Dorenbosch M, van Riel MC, Cocheret de la
- Moriniere E, Nienhuis PH. 2002. How important are mangroves and seagrass beds for coral-reef
- 765 fish? The nursery hypothesis tested on an island scale. Marine Ecology Progress Series 244:299-
- 766 305. DOI: doi:10.3354/meps244299.

767

- Nakamura Y, Horinouchi M, Shibuno T, Tanaka Y, MiyajimaT, Koike I, Kurokura H, Sano M.
- 769 2008. Evidence of ontogenetic migration from mangroves to coral reefs by black-tail snapper
- 770 Lutjanus fulvus: stable isotope approach. Marine Ecology Progress Series 355:257-66. DOI:
- 771 https://doi.org/10.3354/meps07234.

772

- Olsen PE. 1984. The skull and pectoral girdle of the parasemionotid fish *Watsonulus*
- 774 eugnathoides from the Early Triassic Sakamena Group of Madagascar, with comments on the
- relationships of the holostean fishes. *Journal of Vertebrate Paleontology* 4: 481-499. DOI:
- 776 https://doi.org/10.1080/02724634.1984.10012024.

777

- Pankhurst NW, Montgomery JC. 1990. Ontogeny of vision in the Antarctic fish *Pagothenia*
- 779 borchgrevinki (Nototheniidae). Polar biology 10:419-422. DOI:
- 780 https://doi.org/10.1007/BF00233689.

781

- 782 Papazzoni CA, Carnevale G, Fornaciari E, Giusberti, L, Trevisani, E. 2014. The Pesciara-Monte
- 783 Postale Fossil-Lagerstätte: 1. Biostratigraphy, sedimentology and depositional model. *The Bolca*
- 784 Fossil-Lagerstätte: A Window into the Eocene World: Rendiconti della Società Paleontologica
- 785 *Italiana*, 4:29-36.

786

- Patterson C. 1973. Interrelationships of holosteans. In: Greenwood PH, Miles RS, Patterson C.
- eds. *Interrelationships of Fishes*. Academic Press: London, 233-305.

789

Pictet FJ, Campiche G, Tribolet G de. 1858-60. Description des fossiles du terrain Crétacé des 790 environs de Sainte-Croix. Première Partie. Genève: J. Kessmann & H. Georg. 791 792 Poyato-Ariza FJ. 2005. Pycnodont fishes: morphologic variation, ecomorphologic plasticity, and 793 a new interpretation of their evolutionary history. Bulletin of the Kitakyushu Museum of Natural 794 History and Human History 3:169-184. 795 796 797 Poyato-Ariza FJ. 2013. Sylvienodus, a new replacement genus for the Cretaceous pycnodontiform fish "Pycnodus" laveirensis. Comptes Rendus Palevol 12:91-100. DOI: 798 https://doi.org/10.1016/j.crpv.2013.01.001. 799 800 801 Poyato-Ariza FJ. 2015. Studies on pycnodont fishes (I): Evaluation of their phylogenetic position among actinopterygians. Rivista Italiana di Paleontologia e Stratigrafia. 121:329-343. DOI: 802 http://dx.doi.org/10.13130/2039-4942/6521. 803 804 Povato-Ariza FJ, Wenz S. 2002. A new insight into pycnodontiform fishes. Geodiversitas 805 24:139-248. http://sciencepress.mnhn.fr/en/periodiques/geodiversitas/24/1/un-nouveau-regard-806 sur-les-poissons-pycnodontiformes 807 808 809 Poyato-Ariza, FJ, Talbot, MR, Fregenal-MartInez, MA, Melendez, N, Wenz, S. 1998. First isotopic and multidisciplinary evidence for nonmarine coelacanths and pycnodontiform fishes: 810 palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology. 144: 811 65-84. DOI: https://doi.org/10.1016/S0031-0182(98)00085-6. 812 813 Prasad, GVR, Sahni, A. 1987. Coastal-plain microvertebrate assemblage from the terminal 814 815 Cretaceous of Asifabad, Peninsular India. Journal of the Palaeontological Society of India 32:5-19. 816 817 Prasad GVR, Singh V. 1991. Microvertebrates from the Infiatrappean Beds of Rangareddi 818 District, Andhra Pradesh and their biostratigraphic significance. Bulletin of the Indian 819 820 *Geologists' Association* 24:1-20.

821	
822	Priem F. 1897. Sur les poissons de l'Éocène du Mont Mokattam (Égypte). Bulletin de la Société
823	géologique de France, (Serie 3) 25:212-227.
824	
825	Priem F. 1902. Sur des pycnodontes tertiaires du departement de l'Aude. Bulletin de la Société
826	géologique de France, (Serie 4) 10:44-49.
827	
828	Reuss A. 1845. Die Versteinerungen der bohmischen Kreideformationen. Stuttgart:
829	Schweitzerbart.
830	
831	Roemer FA. 1841. Die Versteinerungen des norddeutschen Kreidegebirges. Hannover:
832	Hahn'sche Hofbuchhandlung.
833	
834	Rohlf FJ. 2003. TpsRelw, relative warps analysis, version 1.36. State University of New York at
835	Stony Brook: Department of Ecology and Evolution. http://life.bio.sunysb.edu/morph/
836	
837	Rohlf FJ. 2005. TpsDig, Digitize Landmarks and Outlines, version 2.05. State University of New
838	York at Stony Brook: Department of Ecology and Evolution.
839	
840	Rohlf FJ, Slice DE. 1990. Extensions of the Procrustes method for the optimal superimposition
841	of landmarks. Systematic Biology 39:40-59. DOI: https://doi.org/10.2307/2992207.
842	
843	Rohlf FJ, Corti M. 2000. Use of two-block partial least-squares to study covariation in shape.
844	Systematic Biology 49:740-753. DOI: https://doi.org/10.1080/106351500750049806 .
845	
846	Sauvage HE. 1880. Synopsis des poissons et des reptiles des terrains jurassiques de Boulogne-
847	sur-Mer. Bulletin de la Société géologique de France, (Serie 3) 8:524-547.
848	
849	Sauvage HE. 1893. Note sur quelques poissons du calcaire bitumineux d'Orbagnoux (Ain).
850	Bulletin de la Société d'Histoire naturelle d' Autun 6:1-17.
0 - 1	

- Savornin MJ. 1915. Les pycnodontes eocenes de i'Algerie. Comptes Rendus, Association 852 Française pour l'Avancement de Science 43:368-377. 853 854 Sferco E, López-Arbarello A, Báez AM. 2015. Anatomical description and taxonomy of 855 †Luisiella feruglioi (Bordas), new combination, a freshwater teleost (Actinopterygii, Teleostei) 856 from the Upper Jurassic of Patagonia. Journal of Vertebrate Paleontology 35:3, e924958, DOI: 857 10.1080/02724634.2014.924958. 858 859 Shibuno T, Nakamura Y, Horinouchi M, Sano M. 2008. Habitat use patterns of fishes across the 860 mangrove-seagrass-coral reef seascape at Ishigaki Island, southern Japan. Ichthyological 861 Research 55:218–37. DOI: https://doi.org/10.1007/s10228-007-0022-1. 862 863 Simon KD, Bakar Y, Temple SE, Mazlan AG. 2010. Morphometric and meristic variation in two 864 congeneric archer fishes *Toxotes chatareus* (Hamilton 1822) and *Toxotes jaculatrix* (Pallas 1767) 865 inhabiting Malaysian coastal waters. Journal of Zhejiang University Science B 11:871-879. DOI: 866 867 https://doi.org/10.1631/jzus.B1000054. 868 869 Stensiö E. 1935. Sinamia zdanskyi, a new amiid from the Lower Cretaceous of Shantung, China. Paleontologia Sinica, Series C 3:1-148. 870 871 Su DT. 1973. A new Sinamia (S. huananensis, sp. nov.) from 872 the Upper Jurassic of Southern Anhui. Vertebrata PalAsiatica 11:149-153. 873 874
- 875 Taverne L. 1997. Les poissons crétacés de Nardo 5° *Pycnodus nardoensis* sp. nov. et
- 876 considérations sur l'ostéologie du genre *Pycnodus* (Actinopterygii, Halecostomi,
- 877 Pycnodontiformes). Bolletino del Museo civico di Storia naturale di Verona 21:437-454.

- 879 Taverne L. 2003. Les poissons crétacés de Nardò. 15. Etude complémentaire de *Pseudopycnodus*
- 880 nardoensis (Taverne, 1997) nov. gen.(Actinopterygii, Halecostomi, Pycnodontiformes).
- 881 Bollettino del Museo Civico di Storia Naturale di Verona, Geologia Paleontologia Preistoria
- 882 27:15-28.

883	
884	Taverne L, Nolf D. 1978. Troisième note sur les poissons des Sables de Lede (Eocène belge): les
885	fossiles autres que les otolithes. Bulletin de la Société Belge de Géologie 87:125-152.
886	
887	Thies D, Hauff RB. 2011. A new species of Dapedium Leach, 1822 (Actinopterygii,
888	Neopterygii, Semionotiformes) from the Early Jurassic of South Germany. Palaeodiversity
889	4:185-221.
890	
891	Tintori A. 1981. Two new pycnodonts (Pisces, Actinopterygii) from the Upper Triassic of
892	Lombardy (N. Italy). Rivista Italiana di Palaeontologia e stratigrafia 86:795-824.
893	
894	Tintori A. 1990. The actinopterygian fish <i>Prohalecites</i> from the Triassic of Northern Italy.
895	Palaeontology 33:155-174.
896	
897	Tintori A, Zuoyu S, Peigang N, Lombardo C, Dayong J, Motani R. 2015. Oldest stem Teleostei
898	from the Late Ladinian (Middle Triassic) of Southern China. Rivista Italiana di Paleontologia e
899	Stratigrafia 121:285-296. DOI: https://doi.org/10.13130/2039-4942/6519.
900	
901	Tuset, VM, Farré M, Lombarte A, Bordes F, Wienerroither R, Olivar P. 2014. A comparative
902	study of morphospace occupation of mesopelagic fish assemblages from the Canary Islands
903	(North-eastern Atlantic). Ichthyological research 61:152-158. DOI:
904	https://doi.org/10.1007/s10228-014-0390-2.
905	
906	Veiga Ferreira O. 1961. Fauna ictyologica do Cretacico de Portugal. Communicações dos
907	Serviços Geológicos de Portugal 45: 249-278.
908	
909	Volta GS. 1796. Ittiolitologia Veronese del Museo Bozziano ora annesso a quello del Conte
910	Giovambattista Gazola e di altri gabinetti di fossili Veronesi con la versione latina. Verona:
911	Stamperia Giuliari.
912	

Webb PW. 1982. Locomotor patterns in the evolution of actinopterygian fishes. *American* 913 Zoologist 22:329-342. DOI: https://doi.org/10.1093/icb/22.2.329. 914 915 Weitschat W. 2008. Intraspecific variation of Svalbardiceras spitzbergensis (Frebold) from the 916 Early Triassic (Spathian) of Spitsbergen. Polar Research 27:292-297. DOI: 10.1111/j.1751-917 8369.2008.00041.x. 918 919 920 Wetherbee BM, Holland KN, Meyer CG, Lowe CG. 2004. Use of a marine reserve in Kaneohe Bay, Hawaii by the giant trevally, Caranx ignobilis. Fisheries Research 67: 253-263. DOI: 921 https://doi.org/10.1016/j.fishres.2003.11.004. 922 923 924 White EI. 1934. Fossil fishes from Sokoto province. Bulletin of the Geological Survey of Nigeria 14:1-78. 925 926 Wilson GG. 1998. A description of the early juvenile colour patterns of eleven Lethrinus species 927 928 (Pisces: Lethrinidae) from the Great Barrier Reef, Australia. Records of the Australian Museum 50:55-83. DOI:10.3853/j.0067-1975.50.1998.1274. 929 930 931 Woodward AS 1908. On some fish-remains from the Lameta beds at Dangargaon, Central 932 Provinces. Palaeontologia Indica 3:1-6. 933 Woodward AS. 1918. The fossil fishes of the English Wealden and Purbeck Formations. Part 2. 934 Monographs of the Palaeontographical Society 70:49-104. 935 936 937 Wretman L, Blom H, Kear BP. 2016. Resolution of the Early Jurassic actinopterygian fish Pachycormus and a dispersal hypothesis for Pachycormiformes. Journal of Vertebrate 938 Paleontology 36:5, e1206022, DOI:10.1080/02724634.2016.1206022. 939 940 Xu GH, Shen CC, Zhao LJ. 2014. Pteronisculus nielseni sp. nov., a new stem-actinopteran fish 941 from the Middle Triassic of Luoping, Yunnan Province, China. Vertebrata PalAsiatica 52:364-942 380. 943

PeerJ

944	
945	Zelditch M, Swiderski D, Sheets, DH, Fink, W. 2004. Geometric Morphometrics for Biologists:
946	A primer. Waltham: Elsevier Academic Press.
947	
948	Zhang MM, Zhang H. 1980. Discovery of Ikechaoamia from South China. Vertebrata
949	PalAsiatica 18:89-93.
950	
951	
952	Figure captions
953	
954	Figure 1: Landmarks represented by red circles, which were used on <i>Pycnodus</i> (MCSNV T.998)
955	for the geometric morphometric analysis. These are 1) tip of premaxilla; 2) ventralmost margin
956	of orbit; 3) posteriormost margin of orbit; 4) anteriormost margin of orbit; 5) dorsalmost margin
957	of orbit; 6) first dorsal pterygiophore; 7) last dorsal pterygiophore; 8) tip of dorsal lobe of caudal
958	fin; 9) medial convex margin of caudal fin; 10) tip of ventral lobe of caudal fin; 11) final anal
959	pterygiophore; 12) first anal pterygiophore; 13) posterior cloacal scale; 14) anterior cloacal scale;
960	15) joint between quadrate and prearticular; 16) ventral most concave margin of cleithrum
961	accommodating pectoral fin; 17) dorsal most concave margin of cleithrum accommodating
962	pectoral fin; 18) Point of contact between neurocranium and vertebral column. The
963 964	semilandmarks are reperesented by small white circles and are split into two sets; the first set consists of seven semilandmarks between the tip of the dermosupraoccipital and the base of the
965	first principal caudal fin ray; the second set has an additional seven semilandmarks between the
966	base of the ventral most principal caudal fin ray and the antero-ventral corner of the cleithrum.
967	Photo credit: Jürgen Kriwet.
968	č
969	Figure 2: Morphospace of <i>Pycnodus</i> on the first two RW axes together accounting for about 66%
970	of the overall shape variation. Deformation grids illustrate the shapes lying at extreme values
971	along each axis.
972	
973	Figure 3: Morphospace of <i>Pycnodus</i> showing RW 1 on the x-axis and RW 3 on y-axis the latter
974	accounting for 6% of the overall shape variation. Deformation grids illustrate the shapes lying at
975	extreme values along each axis.
976	
977	Figure 4: PLS analysis showing a correlation of morphometric variation with size. Smallest,
978	medium sized and largest specimens are used to represent the juvenile, small adult and large
979	adult stages respectively. Significance of this correlation is shown by the r and p-values.
980	Smallest specimen is 4.02 cm, medium sized specimen is 10.6 cm, largest specimen is 30.6 cm.
981	

Figure 5: Histograms showing the distributions of meristic characters of *Pycnodus*. The x-axis 982 represents the number of elements and the y-axis the relative frequency. Red curved line is the 983 Kernel density estimator which measures the normality of each sample. And reveals that there is 984 a non-Gaussian distribution among all the samples. (A) Vertebrae. (B) Rib pairs. (C) Scale bars. 985 986 (D) Dorsal fin rays. (E) Anal fin rays. (F) Pectoral fin rays. (G) Pelvic fin rays. (H) Dorsal fin pterygiophores. (I) Anal fin pterygiophores. (J) Caudal fin rays. (K) Arcocentra interdigitations. 987 988 Figure 6: Scatterplots and regression lines with 95% confidence bands of the relationships 989 between each morphometric character and the standard length of *Pycnodus*. (A) Head length. (B) 990 Head depth. (C) Maximum body depth. (D) Pectoral fin base. (E) Dorsal fin base. (F) Anal fin 991 base. (G) Caudal peduncle length. (H) Caudal peduncle depth. (I) Caudal fin span. (J) 992 Prepectoral distance. (K) Predorsal distance. (L) Prepelvic distance. (M) Preanal distance. (N) 993 Preorbital length. (O) Postorbital length. (P) Orbit diameter. (Q) Lower jaw length. 994 995 Figure 7: Ontogenetic series of *Pycnodus*. (A) juvenile 4.02 cm (MCSNV T.309). (B) small adult 996 13.25 cm (BSPG AS I 1208). (C) large adult 30.61 cm (BSPG AS I 1209). Scale bar for all 997 specimens equals 1 cm. Photo credit: Jürgen Kriwet. 998 999 1000 **Table captions** 1001 Table 1: ANOSIM results. R-value is 0.10 and P-value is 0.06. 1002 1003 1004 Table 2: PERMANOVA results. F-value is 2.83 and P-value is 0.03. 1005 Table 3: Measurements as percentage of SL (mean values in parentheses) used for identifying 1006 Pycnodus apodus. Range of measurements are represented by the 25th and 75th percentile. 1007 1008 Table 4: Mean meristic values used for identifying *Pycnodus apodus*. Range of meristic counts 1009 are represented by the 25th and 75th percentile. 1010 1011 1012 Table 5: Mean morphometric and meristic data for the examined specimens of *Pycnodus*. 1013 Table 6: Relationships between morphometric characters and standard length using least squares 1014

10151016

regression for Pycnodus.

Table 7: Meristic counts of *Pycnodus*. Museum abbreviations are mentioned in main text.

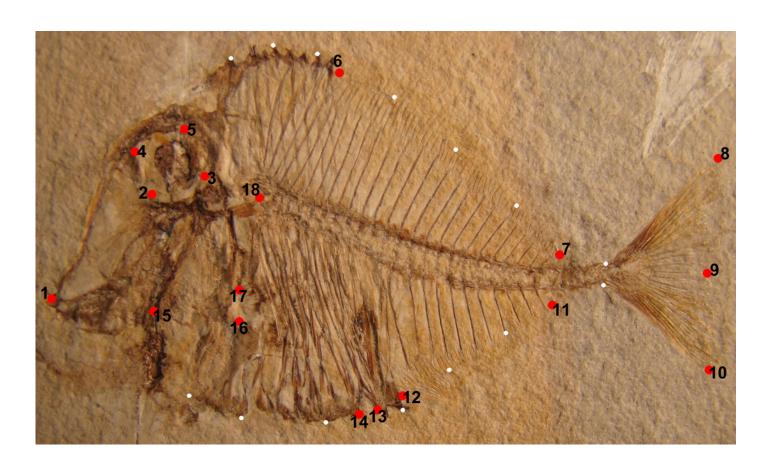
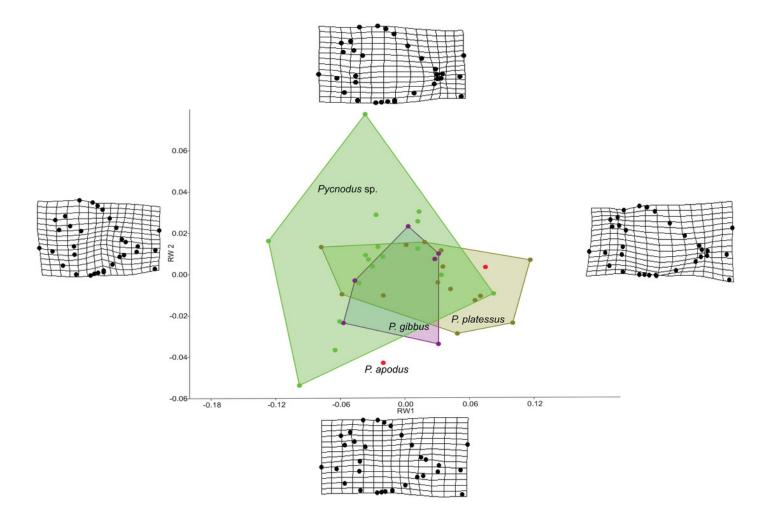


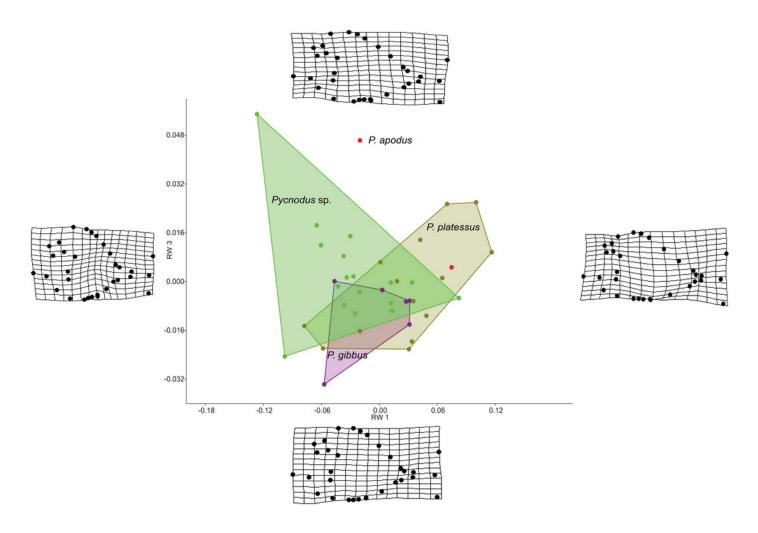
Figure 1

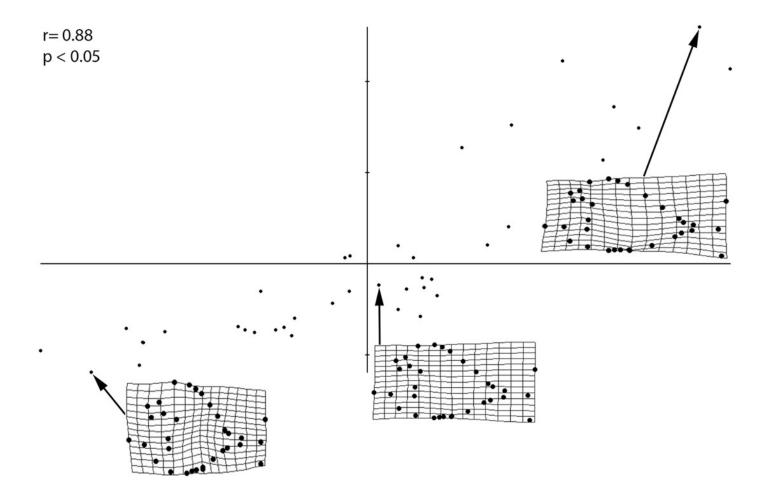
Landmarks represented by red circles, which were used on *Pycnodus* (MCSNV T.998) for the geometric morphometric analysis.

These are 1) tip of premaxilla; 2) ventralmost margin of orbit; 3) posteriormost margin of orbit; 4) anteriormost margin of orbit; 5) dorsalmost margin of orbit; 6) first dorsal pterygiophore; 7) last dorsal pterygiophore; 8) tip of dorsal lobe of caudal fin; 9) medial convex margin of caudal fin; 10) tip of ventral lobe of caudal fin; 11) final anal pterygiophore; 12) first anal pterygiophore; 13) posterior cloacal scale; 14) anterior cloacal scale; 15) joint between quadrate and prearticular; 16) ventral most concave margin of cleithrum accommodating pectoral fin; 17) dorsal most concave margin of cleithrum accommodating pectoral fin; 18) Point of contact between neurocranium and vertebral column. The semilandmarks are reperesented by small white circles and are split into two sets; the first set consists of seven semilandmarks between the tip of the dermosupraoccipital and the base of the first principal caudal fin ray; the second set has an additional seven semilandmarks between the base of the ventral most principal caudal fin ray and the anteroventral corner of the cleithrum. Photo credit: Jürgen Kriwet.



Morphospace of *Pycnodus* on the first two RW axes together accounting for about 66% of the overall shape variation.

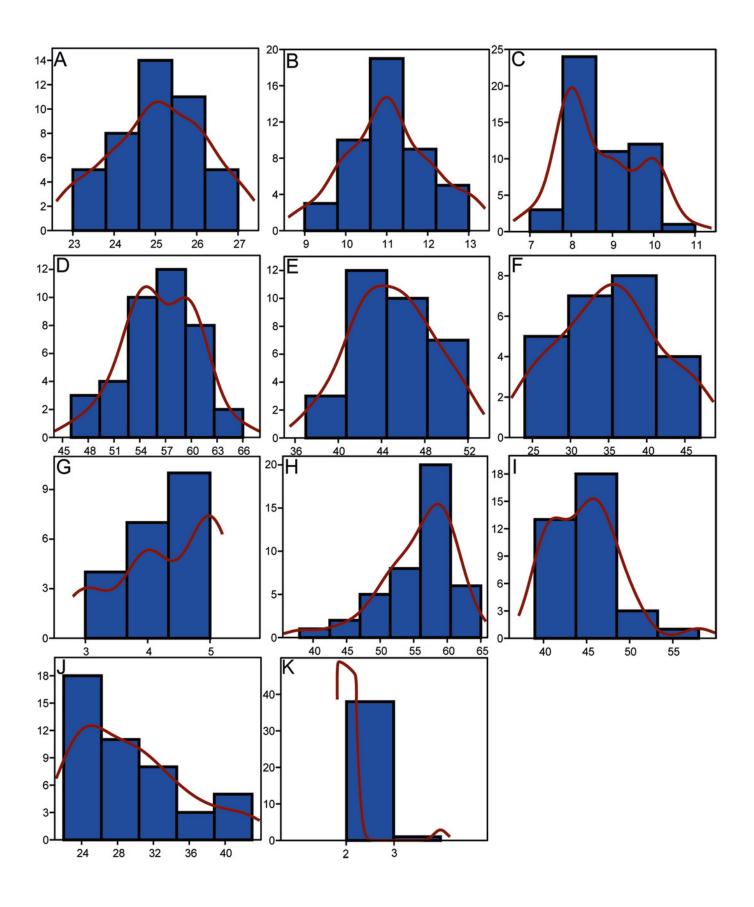

Deformation grids illustrate the shapes lying at extreme values along each axis.


Morphospace of *Pycnodus* showing RW 1 on the x-axis and RW 3 on y-axis the latter accounting for 6% of the overall shape variation.

Deformation grids illustrate the shapes lying at extreme values along each axis.

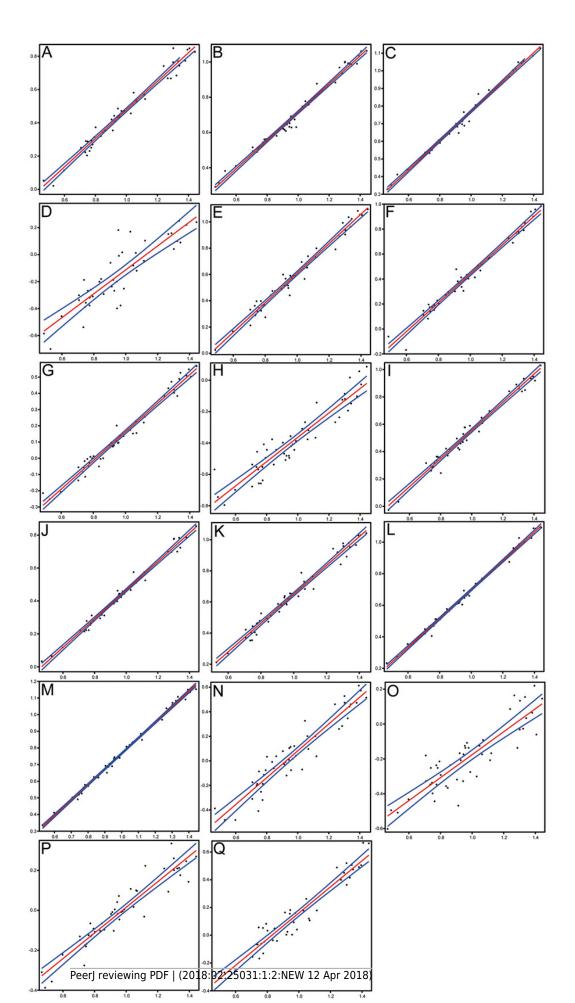
PLS analysis showing a correlation of morphometric variation with size.

Smallest, medium sized and largest specimens are used to represent the juvenile, small adult and large adult stages respectively. Significance of this correlation is shown by the r and p-values. Smallest specimen is 4.02 cm, medium sized specimen is 10.6 cm, largest specimen is 30.6 cm.



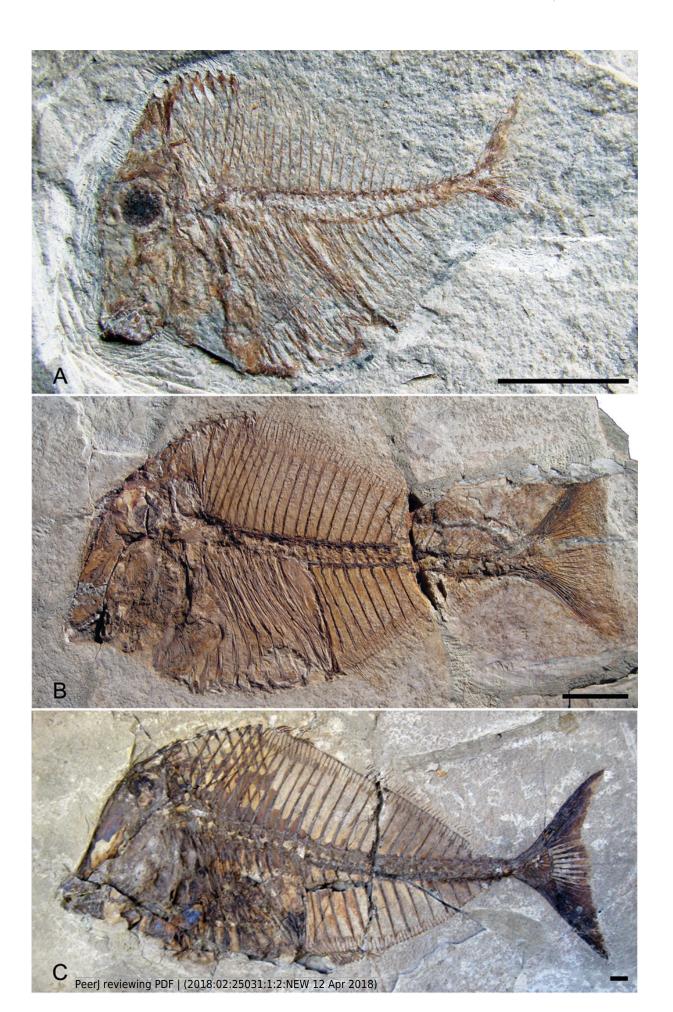
Histograms showing the distributions of meristic characters of *Pycnodus*.

The x-axis represents the number of elements and the y-axis the relative frequency. Red curved line is the Kernel density estimator which measures the normality of each sample. And reveals that there is a non-Gaussian distribution among all the samples. (A) Vertebrae. (B) Rib pairs. (C) Scale bars. (D) Dorsal fin rays. (E) Anal fin rays. (F) Pectoral fin rays. (G) Pelvic fin rays. (H) Dorsal fin pterygiophores. (I) Anal fin pterygiophores. (J) Caudal fin rays. (K) Arcocentra interdigitations.



Scatterplots and regression lines with 95% confidence bands of the relationships between each morphometric character and the standard length of *Pycnodus*.

(A) Head length. (B) Head depth. (C) Maximum body depth. (D) Pectoral fin base. (E) Dorsal fin base. (F) Anal fin base. (G) Caudal peduncle length. (H) Caudal peduncle depth. (I) Caudal fin span. (J) Prepectoral distance. (K) Predorsal distance. (L) Prepelvic distance. (M) Preanal distance. (N) Preorbital length. (O) Postorbital length. (P) Orbit diameter. (Q) Lower jaw length.



Ontogenetic series of *Pycnodus*.

(A) juvenile 4.02 cm (MCSNV T.309). (B) small adult 13.25 cm (BSPG AS I 1208). (C) large adult 30.61 cm (BSPG AS I 1209). Scale bar for all specimens equals 1 cm. Photo credit: Jürgen Kriwet.

Table 1(on next page)

ANOSIM results.

R-value is 0.10 and P-value is 0.06.

PeerJ

1

ANOSIM	P. apodus	P. gibbus	P. platessus	Pycnodus sp.
P. apodus	0	0.3583	0.7879	0.1717
P. gibbus	0.3583	0	0.3411	0.4755
P. platessus	0.7879	0.3411	0	0.0389
Pycnodus sp.	0.1717	0.4755	0.0389	0

Table 2(on next page)

PERMANOVA results.

F-value is 2.83 and P-value is 0.03.

PERMANOVA	P. apodus	P. gibbus	P. platessus	Pycnodus sp.
P. apodus	0	0.3228	0.5671	0.1586
P. gibbus	0.3228	0	0.2358	0.2876
P. platessus	0.5671	0.2358	0	0.0048
Pycnodus sp.	0.1586	0.2876	0.0048	0

Table 3(on next page)

Measurements as percentage of SL (mean values in parentheses) used for identifying *Pycnodus apodus*.

Range of measurements are represented by the 25th and 75th percentile.

Morphometric character	Measurements in % of SL
Head length	27.9-32.9 (30.4)
Head depth	48.5-57.7 (53.1)
Maximum body depth	55.6-65.1 (60.8)
Pectoral fin base	6.5-9.2 (8.1)
Dorsal fin base	37.4-44.3 (40.9)
Anal fin base	25.3-29.4 (27.8)
Caudal peduncle depth	3.8-5.1 (4.6)
Caudal peduncle length	13.6-15.7 (14.7)
Caudal fin span	32.9-38.6 (35.9)
Prepectoral distance	28.1-30.7 (29.6)
Predorsal distance	41.9-48.3 (45.2)
Prepelvic distance	48.6-52.7 (50.4)
Preanal distance	56.9-60.3 (58.6)
Preorbital distance	9.9-14.4 (12.3)
Postorbital length	5.4-8.3 (7.1)
Orbit diameter	9.3-12.5 (11.0)
Lower jaw	12.5-16.5 (14.7)

Table 4(on next page)

Mean meristic values used for identifying *Pycnodus apodus*.

Range of meristic counts are represented by the 25th and 75th percentile.

Meristic Character	Mean meristic value
Vertebrae	24-26 (25)
Rib pairs	10-12 (11)
Scale bars	8-10 (9)
Dorsal fin rays	54-60 (56)
Anal fin rays	42-48 (45)
Pectoral fin rays	30-40 (35)
Dorsal fin pterygiophores	53-60 (56)
Anal fin pterygiophores	41-41 (45)
Caudal fin rays	25-34 (30)

Table 5(on next page)

Mean morphometric and meristic data for the examined specimens of *Pycnodus*.

Morphometric/meristic data	Min	Max	Mean	Median	Variance	Standard deviation	25 th percentile	75 th percentile
Standard length	2.9	27.7	11.1	8.8	46.7	6.8	5.9	16.4
Head length	1.1	7.1	3.3	2.8	2.9	1.7	2.0	4.6
Head depth	2.0	11.6	5.6	4.4	7.7	2.8	3.5	7.8
Maximum body depth	2.1	13.4	5.8	4.9	8.4	2.9	3.8	7.4
Pectoral fin base	0.2	1.8	0.8	0.7	0.2	0.4	0.5	1.1
Dorsal fin base	1.1	12.5	4.9	3.7	10.5	3.2	2.4	6.3
Anal fin base	0.7	9.6	3.4	2.5	5.6	2.4	1.6	5.0
Caudal peduncle depth	0.2	1.2	0.5	0.4	0.1	0.3	0.3	0.6
Caudal peduncle length	0.6	3.7	1.6	1.3	0.8	0.9	1.0	2.4
Caudal fin span	0.9	10.7	4.1	3.0	6.7	2.6	2.2	6.9
Prepectoral distance	1.1	7.2	3.1	2.8	2.5	1.6	1.9	4.0
Predorsal distance	1.6	11.0	5.0	4.2	7.4	2.7	2.9	7.6
Prepelvic distance	1.7	12.4	5.3	4.3	8.9	3.0	3.2	6.4
Preanal distance	2.2	14.2	6.6	5.4	12.8	3.6	3.7	9.3
Preorbital distance	0.3	4.1	1.4	1.1	1.0	1.0	0.8	1.9
Postorbital length	0.3	1.7	0.7	0.6	0.1	0.3	0.5	0.8
Orbit diameter	0.4	2.2	1.1	1.0	0.2	0.4	0.8	1.3
Lower jaw	0.5	4.6	1.7	1.3	1.1	1.0	0.9	2.4
Vertebrae	23	27	25.1	25	1.4	1.2	24	26
Rib pairs	9	13	11.1	11	1.1	1.1	10	12
Scale bars	7	11	8.7	8	0-9	1.0	8	10
Dorsal fin rays	46	66	56.4	56	18.2	4.3	54	60
Anal fin rays	37	52	45.0	45	14.5	3.8	42	47.8
Pectoral fin rays	24	47	35.2	35.5	43.9	6.6	30.3	39.8
Pelvic fin rays	3	5	4.3	4	0.6	0.8	4	5
Dorsal fin pterygiophores	38	65	55.8	57	30.5	5.5	52.8	60
Anal fin pterygiophores	39	58	44.8	45	16.3	4.0	41	47
Caudal fin rays	22	43	29.5	29	35.8	6.0	24.5	33.5
Arcocentra interdigitations	2	3	2	2	0	0.2	2	2

Table 6(on next page)

Relationships between morphometric characters and standard length using least squares regression for *Pycnodus*.

Variable character log (y)	Slope (a)	Intercept (b)	Coefficient of determination (r ²)	95% C	I on a	95% CI on b		
Head length	0.86	-0.38	0.97	0.80	0.90	-0.42	-0.33	
Head depth	0.80	-0.09	0.98	0.77	0.83	-0.11	-0.06	
Maximum body depth	0.83	-0.06	0.99	0.81	0.85	-0.08	-0.04	
Pectoral fin base	0.89	-1.00	0.76	0.77	0.99	-1.11	-0.88	
Dorsal fin base	1.12	-0.51	0.97	1.07	1.17	-0.56	-0.46	
Anal fin base	1.16	-0.71	0.97	1.09	1.22	-0.78	-0.64	
Caudal peduncle depth	0.77	-1.13	0.89	0.68	0.87	-1.23	-1.05	
Caudal peduncle length	0.91	-0.75	0.97	0.85	0.97	-0.81	-0.69	
Caudal fin span	1.04	-0.49	0.98	1.00	1.09	-0.54	-0.45	
Prepectoral distance	0.87	-0.40	0.98	0.83	0.90	-0.43	-0.36	
Predorsal distance	0.91	-0.26	0.98	0.86	0.95	-0.30	-0.21	
Prepelvic distance	0.92	-0.22	0.99	0.89	0.94	-0.24	-0.19	
Preanal distance	0.93	-0.17	0.99	0.91	0.95	-0.19	-0.14	
Preorbital distance	1.09	-1.01	0.89	0.99	1.20	-1.12	-0.90	
Postorbital length	0.66	-0.83	0.78	0.56	0.76	-0.93	-0.74	
Orbit diameter	0.64	-0.63	0.89	0.57	0.71	-0.69	-0.56	
Lower jaw	0.94	-0.78	0.92	0.87	1.02	-0.86	-0.70	

Table 7(on next page)

Meristic counts of *Pycnodus*.

Museum abbreviations are mentioned in main text.

Species name on museum	Specimen no.	No. of vertebrae	Rib pairs	No. of scale bars	Dorsal fin rays	Anal fin rays	Pectoral fin rays	Pelvic fin rays	Dorsal fin pterygiophores	Anal fin pterygiophores	Caudal fin rays	Arcocentra interdigitations	Museum
Pycnodus sp.	12058	26	13	8	60	?	39	?	57	?	32	2	MGP-PD
Pycnodus sp.	12059	25	?	9	52	?	44	?	53	?	29	2	MGP-PD
Pycnodus sp.	12808	24	12	8	?	?	44	?	?	40	26	2	MGP-PD
Pycnodus sp.	12809	25	?	8	56	42	28	?	56	44	30	2	MGP-PD
Pycnodus sp.	26968	?	12	8	?	43	33	?	?	40	?	2	MGP-PD
Pycnodus sp.	26969	25	11	10	55	46	25	?	58	44	30	2	MGP-PD
Pycnodus platessus	1853.XXVI.i.a/b	25	10	9	61	46	47	5	?	47	?	2	NHMW
Pycnodus platessus	1855.VI.75	23	10	8	54	42	38	3	54	40	24	2	NHMW
Pycnodus platessus	6880Z	25	13	10	?	?	36	?	48	?	22	2	MGP-PD
Pycnodus gibbus	7433C	25	11	9	?	?	?	4	52	?	25	2	MGP-PD
Pycnodus platessus	8867C	26	11	8	56	?	?	?	57	46	23	?	MGP-PD
Pycnodus platessus	8868C	?	13	7	54	49	?	?	60	46	25	3	MGP-PD
Pycnodus platessus	A.III.a.S.48	24	11	8	56	45	?	?	59	46	28	2	NHMW
Pycnodus platessus	BMNH 38000	26	10	8	66	?	?	5	65	48	24	?	BMNH
Pycnodus gibbus	BMNH P.11992	27	11	10	55	?	?	3	60	46	26	2	BMNH
Pycnodus gibbus	BMNH P.1632/P.3760	27	11	11	49	?	?	3	53	?	31	2	BMNH
Pycnodus platessus	BMNH P.1633	25	11	9	59	47	31	5	62	45	29	2	BMNH
Pycnodus gibbus	BMNH P.17025	24	10	10	52	41	30	?	49	39	27	2	BMNH
Pycnodus gibbus	BMNH P.4386	?	12	10	?	?	46	5	?	?	43	2	BMNH
Pycnodus gibbus	BMNH P.44519	26	12	8	61	50	35	3	63	44	36	2	BMNH
Pycnodus gibbus	BMNH P.44520	26	10	9	62	39	?	?	60	?	37	2	BMNH
Pycnodus platessus	BMNH P.7459	?	10	8	63	45	36	5	59	51	34	2	BMNH
Pycnodus apodus	Bol 126/127	26	11	10	52	?	40	5	?	?	33	2	MNHN
Pycnodus apodus	Bol 130/131	?	10	9	?	?	?	?	?	?	?	2	MNHN
Pycnodus apodus	Bol 134/135	25	11	10	59	52	?	5	61	48	37	?	MNHN
Pycnodus apodus	Bol 94/95	26	11	8	62	52	?	?	59	45	43	2	MNHN
Pycnodus platessus	BSPG AS I 1208	24	9	8	53	42	40	4	56	44	42	2	BSPG
Pycnodus platessus	BSPG AS I 1209	26	12	8	60	47	?	?	58	48	22	2	BSPG
Pycnodus platessus	CM 4479	?	12	8	?	?	?	5	?	?	?	?	CM
Pycnodus platessus	CM 4479a	?	12	8	?	?	?	?	52	41	?	?	СМ
Pycnodus gibbus	CM 4480	24	?	8	60	49	45	4	61	50	34	2	CM

Pycnodus gibbus	CM 4480.1	26	11	7	59	48	?	?	60	48	39	2	СМ
Pycnodus gibbus	CM 4481	24	11	8	59	46	35	4	58	46	40	2	СМ
Pycnodus sp.	Coll Baja Pesciara 4 (T.998)	25	13	8	56	44	28	?	56	43	30	2	MCSNV
Pycnodus sp.	Coll Baja Pesciara 5 (T.999)	23	?	9	55	43	25	?	58	41	24	2	MCSNV
Pycnodus sp.	I.G.135608	23	9	8	58	46	?	4	59	58	31	2	MCSNV
Pycnodus sp.	I.G.135609	23	10	10	59	44	24	5	59	41	?	2	MCSNV
Pycnodus sp.	I.G.135664	26	12	8	49	37	?	?	46	?	30	?	MCSNV
Pycnodus sp.	II D 167	27	11	8	51	47	33	?	51	46	25	2	MCSNV
Pycnodus sp.	II D 168	25	?	9	54	44	?	?	55	40	25	2	MCSNV
Pycnodus sp.	II D 170	27	?	7	59	51	?	?	60	47	28	2	MCSNV
Pycnodus sp.	II D 171	27	11	8	56	42	?	?	53	41	24	2	MCSNV
Pycnodus sp.	II D 180	25	11	9	60	49	32	4	62	50	33	?	MCSNV
Pycnodus gibbus	PF 3234	25	13	10	54	?	38	5	56	?	25	2	FMNH
Pycnodus sp.	(I.G.23???)	25	11	9	54	43	?	4	55	42	23	?	MCSNV
Pycnodus sp.	(I.G.186666)	26	10	10	46	39	?	?	50	42	23	2	MCSNV
Pycnodus sp.	(I.G.186667)	25	11	10	?	?	?	?	43	?	27	2	MCSNV
Pycnodus sp.	(I.G.24497)	24	11	9	?	?	?	?	38	?	22	?	MCSNV
Pycnodus sp.	unknown	23	10	8	54	41	?	?	51	40	30	?	MCSNV
Pycnodus sp.	(I.G.135680)	?	9	10	?	?	?	?	?	?	?	?	MCSNV
Pycnodus sp.	I.G.37581	?	12	?	?	?	?	?	?	?	23	?	MCSNV
Pycnodus sp.	T.309	24	11	8	?	?	?	?	?	?	34	?	MCSNV