

A quantitative approach to determine the taxonomic identity and ontogeny of the pycnodontiform fish *Pycnodus* (Neopterygii, Actinopterygii) from the Eocene of Bolca Lagerstätte, Italy

John Joseph Cawley Corresp., 1, Giuseppe Marrama 1, Giorgio Carnevale 2, Jürgen Kriwet 1

Corresponding Author: John Joseph Cawley Email address: john.cawley@univie.ac.at

Background. The pycnodontiform fish *Pycnodus* is one of the representatives of the highly diverse actinopterygian fish fauna from the early Eocene Bolca Lagerstätte, representing one of the youngest and thus last occurrences of the extinct neopterygian clade Pycnodontiformes. This genus has historically been used as a wastebasket taxon in regards to poorly known pycnodontiform fossils and authors have argued over the specific status of the Bolca Lagerstätte *Pycnodus* in terms of how many species are contained within the genus with some arguing for multiple species and others suggesting lumping all Bolca specimens together into one species.

Methods. Here, we use a quantitative approach performing biometric and geometric morphometric analyses on 39 specimens of *Pycnodus* in order to determine if the morphological variability within the sample might be related to inter- or intraspecific variation.

Results. The analyses revealed that the variations of body shape, morphometric and meristic characters are continuous and cannot be used to distinguish different morphotypes. On the contrary, our results show a remarkable link between shape and size, related to ontogeny.

Discussion. Differences in body shape of small (juvenile) and large (adult) individuals is probably related to different microhabitats occupation on the Bolca reef with juveniles sheltering within crevices on the reef and adults being more powerful swimmers that swim above the coral. There is no evidence of nocturnal feeding in this pycnodont as previously hypothesized. Taxonomically, we suggest that the Bolca *Pycnodus* should be referred to strictly as *Pycnodus* apodus as this was the name given to the holotype. Additionally, an overview of species assigned to *Pycnodus* is given.

 $^{^{}f 1}$ Department of Paleontology, University of Vienna, Vienna, Austria

² Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy

- 1 A quantitative approach to determine the taxonomic identity
- 2 and ontogeny of the pycnodontiform fish Pycnodus
- 3 (Neopterygii, Actinopterygii) from the Eocene of Bolca
- 4 Lagerstätte, Italy
- 5 JOHN JOSEPH CAWLEY^{1*}, GIUSEPPE MARRAMÀ¹, GIORGIO CARNEVALE² &
- 6 JÜRGEN KRIWET¹
- 7 Department of Paleontology, University of Vienna, Geozentrum, Althanstrasse 14, Vienna, Austria.
- 8 ² Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, Turin, Italy

1011 Corresponding Author:12 John Joseph Cawley

13 Althanstr. 14, Vienna, 1090, Austria

14 Email address: john.cawley@univie.ac.at

16

15

9

17 18

-19

20

21

22

23

24

2526

27

28

29

30

PeerJ

31	ABSTRACT
32	
33	Background. The pycnodontiform fish <i>Pycnodus</i> is one of the representatives of the highly
34	diverse actinopterygian fish fauna from the early Eocene Bolca Lagerstätte, representing one of
35	the youngest and thus last occurrences of the extinct neopterygian clade Pycnodontiformes. This
36	genus has historically been used as a wastebasket taxon in regards to poorly known
37	pycnodontiform fossils and authors have argued over the specific status of the Bolca Lagerstätte
38	Pycnodus in terms of how many species are contained within the genus with some arguing for
39	multiple species and others suggesting lumping all Bolca specimens together into one species.
40	Methods. Here, we use a quantitative approach performing biometric and geometric
41	morphometric analyses on 39 specimens of <i>Pycnodus</i> in order to determine if the morphological
42	variability within the sample might be related to inter- or intraspecific variation.
43	Results. The analyses revealed that the variations of body shape, morphometric and meristic
44	characters are continuous and cannot be used to distinguish different morphotypes. On the
45	contrary, our results show a remarkable link between shape and size, related to ontogeny.
46	Discussion. Differences in body shape of small (juvenile) and large (adult) individuals is
47	probably related to different microhabitats occupation on the Bolca reef with juveniles sheltering
48	within crevices on the reef and adults being more powerful swimmers that swim above the coral.
49	There is no evidence of nocturnal feeding in this pycnodont as previously hypothesized.
50	Taxonomically, we suggest that the Bolca Pycnodus should be referred to strictly as Pycnodus
51	apodus as this was the name given to the holotype. Additionally, an overview of species assigned
52	to <i>Pycnodus</i> is given.
53	

PeerJ reviewing PDF | (2018:02:25031:0:0:NEW 22 Feb 2018)

INTRODUCTION

- 55 Pycnodontiform fishes were a highly successful group of neopterygian fishes that colonized
- shallow marine, brackish, and freshwater habitats from the Norian to the middle Eocene and
- were a very successful group of bony fishes for ca. 170 Ma (e.g., Tintori, 1981; Longbottom,
- 1984; Poyato-Ariza et al., 1998; Kriwet 2005). They were particularly diverse during the Late
- 59 Cretaceous when they showed the highest degree of morphological diversity (Marramà et al.,
- 60 2016a; Cawley & Kriwet, 2017). Pycnodonts underwent a severe drop in their diversity and
- disparity at end of the Cretaceous, and the last representatives survived in restricted biotopes
- 62 until the Middle Eocene (Poyato-Ariza, 2005; Marramà et al., 2016a). One of the last Palaeogene
- 63 representatives is *Pycnodus apodus* (Volta 1796), represented by several complete and
- articulated skeletons from the early Eocene (late Ypresian, c. 49 Ma) (Papazzoni et al., 2014;
- 65 Marramà et al., 2016b) Bolca Koservat-Lagerstätte. This deposit yielded a huge amount of
- exquisitely preserved fishes, which are housed today in several museums and research
- 67 institutions around the world, and that are represented by more than 230 bony and cartilaginous
- 68 fish species (see e.g. Blot, 1987; Blot & Tyler, 1990; Bannikov, 2004, 2006, 2008; Bannikov &
- 69 Carnevale, 2009, 2010, 2016; Carnevale & Pietsch, 2009, 2010, 2011, 2012; Carnevale et al.,
- 70 2014, 2017; Marramà & Carnevale, 2015a, b, 2016, 2017; Marramà et al., 2017a, b).
- 71 Pycnodus apodus has had a long and complex taxonomic history (see e.g., Blot, 1987;
- 72 Poyato-Ariza & Wenz, 2002). Volta (1796) originally designated it as *Coryphaena apoda*.
- 73 Blainville (1818) subsequently redescribed the same specimens without illustrations, and erected
- 74 for them the taxon Zeus platessus. Finally, Agassiz (1833, 1839) created the genus Pycnodus for
- 75 these specimens but keeping the specific name of Blainville (1818). Heckel (1856) erected using
- 76 the same material (but probably also including other specimens) from Bolca a second species of
- 77 Pycnodus, P. gibbus, due to differential characters such as the relative length of the first caudal
- vertebral apophyses and the body depth being one and a half times that of the body length in
- 79 contrast to *P. platessus* having a body depth twice that of the length. Agassiz (1844), however,
- 80 regarded this species as a juvenile *Pycnodus platessus*. More recently, Blot (1987) examined
- 81 specimens that were labelled *P. platessus* in various institutional collections and compared their
- anatomy to that of specimens, labelled *P. gibbus* and concluded that *P. gibbus* is synonymous
- with *P. platessus* and variations recorded among specimens were due to intraspecific differences.
- However, this hypothesis has never been tested employing a robust quantitative approach.

interpret the patterns of morphospace occupation, quantifying the morphological diversification,
solve taxonomic debates, as well as to test if morphological variations are due to intra- or
interspecific variability (Wretman, Blom & Kear, 2016; Marramà & Carnevale, 2017; Marramà
et al., 2017c).
In this perspective, this paper aims to analyse if the morphological variation among
Pycnodus species of Bolca, can be related to interspecific or intraspecific (ontogenetic)
variability as hypothesized by Blot (1987). For this, we examined abundant <i>Pycnodus</i> specimens
from various museum collections which were labelled as either P. apodus, P. platessus, P.
gibbus or Pycnodus sp. to establish whether these species separate substantially from each other
in the morphospace and if morphometric and meristic data can be useful to detect significant
differences between morphotypes and thus taxa. Since the studied sample had a range of
specimens of different sizes, we investigated whether different shapes can be related to possible
ontogentic differences of <i>Pycnodus</i> representing different growth stages from juvenile to adult.
MATERIAL AND METHODS
Specimen sampling
We studied a selection of <i>Pycnodus</i> specimens from various museum collections, which were
labelled either P. apodus, P. platessus, P. gibbus or Pycnodus sp. A total of 39 Pycnodus
specimens from nine museum collections were finally used because they provided sufficient
morphological information for the aim of this study (BM; Museo dei Fossili di Bolca; BMNH,
Natural History Museum of London; BSPG, Bayerische Staatssammlung für Paläontologie und
Geologie, München, Germany; CM, Carnegie Museum, Pittsburgh, Pennsylvania; FMNH, Field
Museum of Natural History, Chicago; MGP-PD; Museo di Geologia e Paleontologia
dell'Università di Padova; MNHN, Muséum National d'Histoire Naturelle, Paris; MCSNV,
Museo Civico di Storia Naturale di Verona; NHMW; Naturhistorisches Museum Wien) (see
Supplementary material). The sample includes 17 specimens identified originally as <i>Pycnodus</i>
Supplementary materiary. The sample metudes 17 specimens identified originary as 1 yeriodus
sp., 14 specimens as <i>P. platessus</i> , six specimens as <i>P. gibbus</i> , and two specimens as <i>P. apodus</i> .

Geometric morphometric protocol

115

116	A total of 18 landmarks and 14 semi landmarks were digitized on photos taken from the studied
117	specimens in the corresponding collections using the software TPSdig (Rohlf, 2005). Landmarks
118	indicating homologous points and were selected on the basis of their possible ecological or
119	functional role following the scheme applied in some studies about shape variation in modern or
120	extinct fishes (Figure 1). The landmark coordinates were translated, rotated and scaled at unit
121	centroid size by applying a Generalized Procrustes Analysis (GPA) to minimize the variation
122	caused by size, orientation, location and rotation (Rohlf & Slice, 1990; Zelditch et al., 2004). The
123	GPA was performed using the TPSrelw software package (Rohlf, 2003) and a principal
124	component analysis (PCA) was performed on Procrustes coordinates to obtain the Relative Warp
125	(RW). Shape changes were shown along the axes using deformation grid plots.
126	Two non-parametric tests were performed to analyse the quantitative morphospace
127	occupation of our Pycnodus specimens. In order to assess the degree of overlap between
128	morphospaces, an analysis of similarities (ANOSIM, Clarke, 1993) was performed on the entire
129	dataset of standardised morphometric and meristic parameters. PERMANOVA (Anderson, 2001)
130	was used to test similarities of in-group centroid position between the different groups
131	representing a species of Pycnodus. Euclidean distances are the distance measure chosen for both
132	tests. All statistical analyses were performed in PAST 3.18 (Hammer, Harper & Ryan, 2001).
133	Since the studied specimens vary greatly in size (smallest being 4.0 cm and largest being
134	30.6 cm) we also investigated whether size could be correlated with shape change in <i>Pycnodus</i>
135	and enable us to see whether and how body shape changes throughout ontogeny. To analyse the
136	relationship between size and shape, we performed a Partial Least Square analysis (PLS) using
137	the software TPSpls (Rohlf & Corti, 2000). Alpha (level of significance) was set to 0.05.
138	
139	Biometric analyses
140	We used nine meristic counts and 19 measurements in order to capture morphological variability,
141	to test the homogeneity of the sample, and confirming its assignment to a single species.
142	Histograms were used to illustrate the continuous variation of morphometric and meristic data in
143	order to ascertain if more than one species of Pycnodus could be identified. Least squares
144	regression was used to obtain the relationship between standard length (SL) and all other
145	morphometric variables. Specimens of possible additional taxa were indicated by the presence of
146	statistical outliers from the regression line (Simon et al., 2010) and will require additional

176

scrutiny in order to truly differentiate the outlier from all other specimens. The linear regression 147 results were shown using scatterplots. Log-tranformed data were used to perform the least 148 squares regression in order to determine the degree of correlation between the standard length 149 (SL) and all other morphometric variables. 150 151 152 **RESULTS** 153 **Geometric morphometrics** 154 The relative warp analysis produced 38 RWs with the first three axes together explaining about 155 72% of the total variation. Figures 2 and 3 show that there is significant overlap between the 156 morphospaces of the *Pycnodus* taxonomic groups and the thin plate splines show the changes in 157 shape along the axes. Negative values on RW1 (56.1% explained) are related to *Pycnodus* 158 specimens with large orbits and deep bodies while positive scores identify *Pycnodus* with 159 reduced orbits and elongated bodies. Negative values of RW2 (10.4% explained) show 160 specimens having the pectoral fin with a wide base moved higher up the body alongside a long 161 162 caudal peduncle (Figure 2). Conversely, on positive scores of RW2 lie specimens with pectoral fin with a narrower base located more ventrally on the body alongside a small caudal peduncle. 163 164 The negative values of RW3 (6% explained) show the skull becoming deeper and more elongated with the dermosupraoccipital in particular reaching far back (Figure 3). Body becomes 165 166 shallower near the caudal peduncle with the cloaca shifting posteriorly, as well as the dorsal apex. Positive scores of RW3 are related to a shorter and shallower skull with the body becoming 167 deeper close to the caudal peduncle and the anterior shift in the cloaca with the body becoming 168 deeper just anterior to the cloaca. The dorsal apex shifts forward in position. 169 170 ANOSIM performed on the first three axes suggests that there is strong overlap between groups, showing they are barely distinguishable from each other (p > 0.05; see Table 1), except 171 for a single pairwise comparison between *Pycnodus* sp. and *P. platessus* (p < 0.05). The 172 PERMANOVA suggests the same trend, showing that group centroids are not significantly 173 different on each pairwise comparison (p > 0.05), except between *Pycnodus* sp. and *P. platessus* 174

(p < 0.05). Significant differences detected between Pycnodus sp. and P. platessus can be

explained with the fact that the indeterminate *Pycnodus* specimens show a wide range of

Peer| reviewing PDF | (2018:02:25031:0:0:NEW 22 Feb 2018)

morphologies, with the extreme shapes ranging from negative to positive values of all the first three axes.

The PLS performed on the entire sample (Figure 4) revealed a strong and significant correlations between size and shape (r = 0.88; p < 0.05), therefore suggesting that different shapes of the individuals are related to changes in shape of different ontogenetic stages. In fact, small-sized individuals are associated with larger orbits, deeper skull and body shape, long skull, higher position of pectoral fin and a wide, indistinct caudal peduncle that is in distant proximity to both medial fins. Larger individuals, on the other hand, have a reduced orbit, shallower skull and body depth, shorter skull, lower position of pectoral fin and narrow caudal peduncle in close proximity to both medial fins. The PLS analysis therefore suggests that the morphological variations of the orbit, body depth and caudal peduncle are strongly related to ontogeny.

Biometric analyses

Morphometrics and meristic counts for all the studied specimens are given in Table 2 and mean biometric parameters are given in Table 3. Most of the histograms based on meristic counts (Figure 5) show a normal (Gaussian) distribution with intermediate states dominating and extreme states being rare. The linear regression performed on morphometric characters (Figure 6) shows that all specimens fit within the cloud of points near the regression line and that no particular specimens of Pycnodus deviates from this line. This is confirmed by the high values of the coefficient of determination (r^2) ranging from 0.76-0.99 (Table 4) indicating a high degree of positive correlation between standard length and each morphometric character. Linear regression analysis also revealed the highly significant relationship between the standard length and all morphometric characters (p < 0.001). Neither morphometric nor meristic characters are therefore useful in determining two or more different morphologically identifiable morphotypes within Pycnodus, corroborating definitively Blot's (1987) hypothesis that only one species (P. apodus; see also below) is present in the Bolca Lagerstätte.

DISCUSSION

Intraspecific variation of *Pycnodus apodus*

208	confirming the intraspecific variation hypothesis of Blot (1987). The hypothesis by Agassiz
209	(1844) that <i>Pycnodus gibbus</i> is specifically the juvenile of <i>P. platessus</i> can be rejected as a
210	specimen referred to as P. platessus (MGP-PD 6880Z) is smaller than most of the specimens
211	assigned to P. gibbus, including all of them in our sample (see Supplementary Material). As
212	suggested by Grande and Young (2004), ontogenetic variation of morphological characters
213	actually represents a primary source of intraspecific variation; this is confirmed by our analysis,
214	specifically by the morphological changes mostly occurring along RW1 in the morphospace that
215	are related to ontogeny and the very significant results deriving from the PLS analysis. The
216	unimodal (Gaussian) distribution of most of the meristic data, displayed by the frequency
217	histograms, reveals a clear domination of intermediate values and comparably rare extremes,
218	which is typical of a homogenous population. Data show that any morphological variation is
219	continuous and the recognition of high frequency of intermediate states and low frequency of
220	extreme values makes separation of the Pycnodus sample into discrete groups impossible. This
221	suggests that all specimens studied belong to a single or taxonomic entity (see Dagys, Bucher &
222	Weitschat, 1999; Dagys, 2001; Weitschat, 2008; Marramà & Carnevale, 2015a; Sferco, López-
223	Arbarello & Báez, 2015). Furthermore, the linear regression showed a significant dependence
223 224	Arbarello & Báez, 2015). Furthermore, the linear regression showed a significant dependence between standard length and all morphometric variables, therefore suggesting that morphometric
224	between standard length and all morphometric variables, therefore suggesting that morphometric
224 225	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes.
224225226	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes. Figure 7 shows some notable differences between the juvenile and larger specimens
224225226227	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes. Figure 7 shows some notable differences between the juvenile and larger specimens including the degree of ossification, particularly in the skull and caudal fin, being smaller in
224225226227228	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes. Figure 7 shows some notable differences between the juvenile and larger specimens including the degree of ossification, particularly in the skull and caudal fin, being smaller in juvenile in comparison to adults and the notochord not being surrounded by arcocentra in
224225226227228229	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes. Figure 7 shows some notable differences between the juvenile and larger specimens including the degree of ossification, particularly in the skull and caudal fin, being smaller in juvenile in comparison to adults and the notochord not being surrounded by arcocentra in juveniles whereas it is completely enclosed in adults. Differences in meristic counts (Table 5) are
224225226227228229230	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes. Figure 7 shows some notable differences between the juvenile and larger specimens including the degree of ossification, particularly in the skull and caudal fin, being smaller in juvenile in comparison to adults and the notochord not being surrounded by arcocentra in juveniles whereas it is completely enclosed in adults. Differences in meristic counts (Table 5) are suggestive of intraspecific variation as seen in other fossil actinopterygians (Stensiö, 1935;
224225226227228229230231	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes. Figure 7 shows some notable differences between the juvenile and larger specimens including the degree of ossification, particularly in the skull and caudal fin, being smaller in juvenile in comparison to adults and the notochord not being surrounded by arcocentra in juveniles whereas it is completely enclosed in adults. Differences in meristic counts (Table 5) are suggestive of intraspecific variation as seen in other fossil actinopterygians (Stensiö, 1935; Lehman, 1952; Patterson, 1973; Su, 1973; Zhang & Zhang, 1980; Olsen, 1984; Tintori, 1990;
224 225 226 227 228 229 230 231 232	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes. Figure 7 shows some notable differences between the juvenile and larger specimens including the degree of ossification, particularly in the skull and caudal fin, being smaller in juvenile in comparison to adults and the notochord not being surrounded by arcocentra in juveniles whereas it is completely enclosed in adults. Differences in meristic counts (Table 5) are suggestive of intraspecific variation as seen in other fossil actinopterygians (Stensiö, 1935; Lehman, 1952; Patterson, 1973; Su, 1973; Zhang & Zhang, 1980; Olsen, 1984; Tintori, 1990; Bürgin, 1992; Dietze, 1999, 2000; Thies & Hauff, 2011; Xu, Shen & Zhao, 2014; Tintori et al.,
224 225 226 227 228 229 230 231 232 233	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes. Figure 7 shows some notable differences between the juvenile and larger specimens including the degree of ossification, particularly in the skull and caudal fin, being smaller in juvenile in comparison to adults and the notochord not being surrounded by arcocentra in juveniles whereas it is completely enclosed in adults. Differences in meristic counts (Table 5) are suggestive of intraspecific variation as seen in other fossil actinopterygians (Stensiö, 1935; Lehman, 1952; Patterson, 1973; Su, 1973; Zhang & Zhang, 1980; Olsen, 1984; Tintori, 1990; Bürgin, 1992; Dietze, 1999, 2000; Thies & Hauff, 2011; Xu, Shen & Zhao, 2014; Tintori et al., 2015; Wretman, Blom & Kear, 2016; Marramà et al., 2017c). The analysis of the morphological
224 225 226 227 228 229 230 231 232 233 234	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes. Figure 7 shows some notable differences between the juvenile and larger specimens including the degree of ossification, particularly in the skull and caudal fin, being smaller in juvenile in comparison to adults and the notochord not being surrounded by arcocentra in juveniles whereas it is completely enclosed in adults. Differences in meristic counts (Table 5) are suggestive of intraspecific variation as seen in other fossil actinopterygians (Stensiö, 1935; Lehman, 1952; Patterson, 1973; Su, 1973; Zhang & Zhang, 1980; Olsen, 1984; Tintori, 1990; Bürgin, 1992; Dietze, 1999, 2000; Thies & Hauff, 2011; Xu, Shen & Zhao, 2014; Tintori et al., 2015; Wretman, Blom & Kear, 2016; Marramà et al., 2017c). The analysis of the morphological variability of <i>Pycnodus</i> , one of the last representatives of a basal neopterygian lineage that has
224 225 226 227 228 229 230 231 232 233 234 235	between standard length and all morphometric variables, therefore suggesting that morphometric characters are not useful to distinguish different morphotypes. Figure 7 shows some notable differences between the juvenile and larger specimens including the degree of ossification, particularly in the skull and caudal fin, being smaller in juvenile in comparison to adults and the notochord not being surrounded by arcocentra in juveniles whereas it is completely enclosed in adults. Differences in meristic counts (Table 5) are suggestive of intraspecific variation as seen in other fossil actinopterygians (Stensiö, 1935; Lehman, 1952; Patterson, 1973; Su, 1973; Zhang & Zhang, 1980; Olsen, 1984; Tintori, 1990; Bürgin, 1992; Dietze, 1999, 2000; Thies & Hauff, 2011; Xu, Shen & Zhao, 2014; Tintori et al., 2015; Wretman, Blom & Kear, 2016; Marramà et al., 2017c). The analysis of the morphological variability of <i>Pycnodus</i> , one of the last representatives of a basal neopterygian lineage that has been around since at least the Late Triassic (Tintori, 1981; Kriwet 2001a; Poyato-Ariza, 2015;),

The results demonstrate that all *Pycnodus* species cannot be separated in a quantitative approach,

238	acipenserids (Hilton & Bemis, 1999). Therefore, the identification of different Bolca Pycnodus
239	species such as P. gibbus (Heckel, 1856), may be the result of species over-splitting and can be
240	on the contrary explained by intraspecific variation.
241	
242	Habitat use during ontogeny
243	Our morphometric results show that the morphology of the smaller individuals differ
244	significantly from that of the adults and that Pycnodus, like extant actinopterygians, would go
245	through morphological changes throughout ontogeny. Large eye size found in the smaller
246	Pycnodus specimens is usually a sign of the specimen being in a juvenile stage as can be seen in
247	many extant teleosts (Pankhurst & Montgomery, 1990). This rejects the interpretation of
248	Goatley, Bellwood & Bellwood (2010), who interpreted Pycnodus in the Monte Bolca
249	assemblage to be a nocturnal feeder based on the orbit size in relation to standard length.
250	Seemingly, these authors only used juveniles in their analysis. The deep body shape of the
251	smaller Pycnodus specimens can be interpreted as a sign that the juveniles live within the
252	branches of corals and as they get bigger they start to occupy the water column above the reef.
253	This change to a benthopelagic lifestyle also is supported by the more fusiform body and the
254	narrower caudal peduncle (Webb, 1982) seen in larger specimens. Ecologically similar extant
255	analogues to Pycnodus, the sparid species Diplodus sargus and D. puntazzo also spend their time
256	as juveniles in crevices in the rocks in shallow water 0-2 m deep and move to rocky bottoms and
257	sea grass beds when adult (Macpherson, 1998). Ontogenetically-related habitat changes also
258	occur in other coral fishes, such as labrids, in which the pectoral fins increase their aspect ratio as
259	these fishes grow in size, enabling them to increase their use of the water column while juveniles
260	stay closer to the bottom (Fulton, Bellwood & Wainwright, 2002). Since both juveniles and
261	adults of <i>Pycnodus</i> are found in the Bolca Lagerstatte, we hypothesize that unlike many modern
262	coral reef fishes, which significantly change the habitat during ontogeny (Nagelkerken et al.,
263	2002; Dorenbosch et al., 2005a, b; Adams et al., 2006; Nagelkerken, 2007; Nakamura et al.,
264	2008; Shibuno et al., 2008; Kimirei et al., 2011), there is a shift instead in microhabitat use
265	within the reef, in this case juveniles living within coral crevices to adults roaming over the coral
266	reefs.
267	
268	The taxonomic history of <i>Pycnodus</i>

The taxonomic history of Pycnodus

PeerJ

269	
270	Pycnodus has long been used as wastebasket taxon in the study of pycnodontiforms, being used
271	as a default name for many taxa even in the Mesozoic until later revisions revealed the taxa to
272	have significant morphological differences with <i>Pycnodus</i> as to be renamed as separate taxa.
273	Species of pycnodontiforms previously referred to as Pycnodus include Anomoeodus subclavatus
274	from the Maastrichtian of the Netherlands (Agassiz, 1833; Davis, 1890; Forir, 1887); other
275	species of Anomoeodus referred to as Pycnodus include A. angustus, A. muensteri, A. phaseolus,
276	A. sculptus (Agassiz, 1844) and A. distans (Coquand, 1860; Sauvage, 1880). Pycnodus liassicus
277	Egerton, 1855 from the Early Jurassic, of Barrow-on-Soar of Leicestershire, United Kingdom
278	was assigned to the genus Eomesodon by Woodward (1918) and Stemmatodus rhombus
279	(Agassiz, 1839) from the Early Cretaceous of Capo d'Orlando, close to Naples, Italy was
280	originally named Pycnodus rhombus (see Heckel, 1854). Pycnodus flabellatum Cope, 1866 from
281	the Cenomanian-Coniacian of Brazil was assigned to Nursallia flabellatum by Blot (1987). The
282	pycnodonts Pycnodus achillis Costa 1853, Pycnodus grandis Costa 1853 and Pycnodus
283	rotundatus Costa 1864 are all synonymous with Ocloedus costae (d'Erasmo, 1914, Poyato-Ariza
284	& Wenz, 2002). Poyato-Ariza (2013) revised "Pycnodus" laveirensis Veiga Ferreira 1961 from
285	the Cenomanian of Lavieras, Portugal and found that due to morphological differences in
286	characters such as absence of dermocranial fenestra, number of premaxillary teeth, contact type
287	of arcocentra and median fin morphology, it represents a member of a different genus and
288	consequently erected the new genus Sylvienodus as a replacement. An articulated specimen of
289	'Pycnodus' was found in the Campanian-Maastrichtian of Nardo, Italy, which certainly
290	represents a different pycnodont (Taverne, 1997). An extremely fragmentary specimen referred
291	to as "Pycnodus" nardoensis from Apulia (Nardo), Italy is comprised of the anterior part of the
292	body along with some posterior elements of the skull (Taverne, 1997). However, in a later study
293	Taverne (2003) studied new material of this taxon, which revealed that this species does not
294	belong to Pycnodus due to as the possession of a narrower cleithrum and peculiar morphology of
295	the contour scales. This new data led to Pseudopycnodus being erected as a new genus for the
296	Nardo material.
297	All other Mesozoic species of Pycnodus are based on isolated dentitions or teeth. The
298	earliest records of <i>Pycnodus</i> are dentitions found in the limestones from the Upper Jurassic
299	(Kimmeridgian) of Orbagnoux, France (Sauvage, 1893). Isolated teeth and an isolated vomerine

300	dentition were referred to cf. <i>Pycnodus</i> sp. (Goodwin et al., 1999) from the Mugher Mudstone
301	formation of the Tithonian. However, its identity is doubted due to the stratigraphic position and
302	could be attributed to Macromesodon (Kriwet, 2001b). Pictet, Campiche & Tribolet (1858-60)
303	described remains of the Early Cretaceous fish assemblages from Switzerland where three
304	species of Macromesodon (M. couloni from the Hauterivian and Barremian, M. cylindricus from
305	the Valanginian, Barremian, and Aptian and M. obliqus from the Albian) were all originally
306	referred to as Pycnodus. Isolated dentitions belonging to 'Pycnodus' heterotypus and 'Pycnodus'
307	quadratifer were reported from the Hauterivian of the Paris basin (Cornuel, 1883, 1886). Several
308	isolated teeth derived from the Cenomanian strata of the Chalk Group of southern England were
309	attributed to <i>Pycnodus scrobiculatus</i> Reuss 1845 whose systematic affinity is still uncertain.
310	Other teeth belonging to <i>P. scrobiculatus</i> were reported from the Turonian of northern Germany.
311	Roemer (1841) described isolated remains belonging to Pycnodus harlebeni from the Late
312	Cretaceous of Hilsconglomerat of Ostenvald, Germany. Another possible Portuguese
313	representative of <i>Pycnodus</i> is reported from the Turonian of Bacarena, ' <i>Pycnodus</i> ' sp. aff. 'P.'
314	gigas Jonet 1964. However, the identification of the Portuguese specimens as Pycnodus are
315	uncertain and the material most likely pertains to a differentpycnodont taxon (Kriwet, 2001b).
316	Isolated dentitions of what were claimed to be <i>Pycnodus scrobiculatus</i> , <i>P. rostratus</i> and <i>P.</i>
317	semilunaris from the Turonian of Czechoslovakia (Reuss, 1845) should be regarded as
318	indeterminable pycnodontids due to the lack of characters useful to determine their affinities
319	(Kriwet, 2001b). Isolated teeth attributed to "Pycnodus" lametae were reported from the
320	Maastrichtian Lameta Formation of Dongargaon, India (Woodward, 1908).
321	Pycnodus is the most dominant taxon of the Palaeogene pycnodont faunas being widely
322	distributed in shallow water contexts worldwide. The earliest record of Pycnodus in the
323	Palaeogene is represented by <i>Pycnodus praecursor</i> from the Danian of Angola (Dartevelle &
324	Casier, 1949) and P. sp. cf. P. praecursor from the Thanetian of Niger (Cappetta, 1972).
325	Pycnodus toliapicus was reported from the Thanetian of Togo, Thanetian of Nigeria and the
326	upper Palaeocene of Niger (White, 1934; Kogbe & Wozny, 1979; Longbottom, 1984). Several
327	remains of isolated dentitions and teeth from the Eocene have been attributed to Pycnodus. These
328	include Pycnodus bicresta from the northwestern Himalayan region, India (Prasad & Singh,
329	1991); Pycnodus bowerbanki from the Ypresian, England, middle Eocene of Mali and Ypresian
330	of Algeria (Longbottom, 1984; Savornin, 1915); Pycnodus sp. cf. P. toliapicus from the Eocene

331	of Katar at the Persian Gulf (Casier, 1971); Pycnodus toliapicus from the Ypresian and Lutetian
332	of England and Lutetian of the Paris basin and Belgium (Savornin, 1915; Casier, 1950; Taverne
333	& Nolf, 1978); Pycnodus mokattamensis from the Lutetian of Egypt (Priem, 1897); P.
334	mokattamensis occurs alongside Pycnodus legrandi, Pycnodus lemellefensis, Pycnodus
335	thamallulensis, Pycnodus vasseuri and Pycnodus pellei from the Ypresian of Algeria (Savornin,
336	1915); Pycnodus pachyrhinus Grey-Egerton 1877 from the Ypresian of Kent, England; Pycnodus
337	funkianus Geinitz 1883 from the Ypresian of Brunswick, Germany; Pycnodus munieri Priem
338	1902 and Pycnodus savini Priem 1902 from the Ypresian, France and a rather diverse
339	assemblage from the middle Eocene of Mali which includes Pycnodus jonesae, P. maliensis, P.
340	munieri, P. variablis and P. zeaformis (Longbottom, 1984).
341	A nearly complete specimen of P. lametae with crushed skull and missing caudal fins
342	was reported from the freshwater Maastrichtian of Bhatali, India close to the Dongargaon area
343	(Mohabey & Udhoji, 1996). However, the assignment of the name Pycnodus to this fish is
344	dubious, since it has an operculum and lacks the post-parietal process typical of the
345	Pycnodontidae (pers. obs.). A more complete specimen of Pycnodus was found from the
346	Palaeocene rocks of Palenque, Mexico (Alvarado-Ortega et al., 2015), its only difference with
347	the Eocene specimens from Bolca being a greater number of ventral and post-cloacal ridge
348	scales, less dorsal- and anal-fin pterygiophores and a large or regular-sized posteriormost neural
349	spine. However, due to the inadequacy of the available sample, it is not possible to determine the
350	actual differences between the Palaeocene material from Mexico and that from the Eocene of
351	Bolca, and for this reason this taxon is referred to as <i>Pycnodus</i> sp.
352	In this perspective, most species referred to Pycnodus are not valid (all Jurassic and
353	Cretaceous Pycnodus specimens being other taxa) and with the majority of Palaeogene Pycnodus
354	being represented by isolated dentitions and teeth it seems that the only definitive articulated
355	skeletal remains attributed to the genus <i>Pycnodus</i> are the Bolca specimens and <i>Pycnodus</i> sp.
356	from south-eastern Mexico (Alvarado-Ortega et al., 2015).
357	
358	
359	CONCLUSIONS
360	The quantitative approach here performed confirms the findings of Blot (1987) that the various
361	Pycnodus species (P. apodus, P. platessus, P. gibbus) from the Eocene Bolca Konservat-

362	Lagerstätte actually belong to a single species. Due to the holotype of <i>Pycnodus</i> being given the
363	specific name of apoda, all known specimens of Pycnodus from Bolca should be referred to as
364	Pycnodus apodus. Most of the morphological variation can be explained by the close association
365	between morphology and ontogeny with juveniles and adults occupying different parts of the
366	morphospace. The morphological differences between juveniles and adults may be due to
367	occupation of different habitats with juveniles sheltering within nooks and crannies on the reef
368	and adults being better adapted to a benthopelagic lifestyle of swimming over the reef and going
369	to the benthos to feed. Future studies should look at other problematic pycnodontiform taxa such
370	as the widely distributed <i>Gyrodus</i> from the Middle Jurassic to the Early Cretaceous (Kriwet &
371	Schmitz, 2005) to investigate if the intraspecific variation might explain the supposed diversity
372	of species this genus contains.
373	
374	
375	ACKNOWLEDGMENTS
376	
377	We would like to thank M. Cerato (BM), Z. Johanson and E. Bernard (NHML), O. Rauhut
378	(BSPG), A. Henrici (CM), L. Grande and W. Simpson (FMNH), M. Fornasiero (MGP-PD), A.
379	Pradel and G. Clément (MNHN), A. Vaccari and R. Zorzin (MCSNV), and U. Göhlich (NHMW)
380	for access to specimens and support while studying these specimens at the museum.
381	
382	
383	
384	REFERENCES
385	
386	Adams AJ, Dahlgren CP, Kellison GT, Kendall MS, Layman CA, Ley JA, Nagelkerken I, Serafy
387	JE. 2006. Nursery function of tropical back-reef systems. Marine Ecology Progress Series
388	318:287-301. DOI: www.jstor.org/stable/24870766.
389	
390	Agassiz L. 1833. Synoptische Übersicht der fossilen Ganoiden. Neues Jahrbuch für
391	Mineralogie, Geologie und Paläontologie 1833: 470-481.
392	

Agassiz L. 1833-1844. Recherches sur les Poissons fossiles. Volume 2. Petitpierre: Neuchâtel. 393 394 Alvarado-Ortega J, Cuevas-García M, del Pilar Melgarejo-Damián M, Cantalice KM, Alaniz-395 Galvan A, Solano-Templos G, and Than-Marchese BA. 2015. Paleocene fishes from Palenque, 396 Chiapas, southeastern Mexico. Palaeontologia Electronica 18:1-22. DOI: 397 https://doi.org/10.26879/536 398 399 400 Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32-46. DOI: 10.1111/j.1442-9993.2001.01070.pp.x 401 402 Bannikov AF. 2004. Fishes from the Eocene of Bolca, northern Italy, previously classified with 403 404 the Chaetodontidae (Perciformes). Studie Ricerche sui Giacimenti Terziari di Bolca 10: 55-74. 405 406 Bannikov AF. 2006. Fishes from the Eocene of Bolca, northern Italy, previously classified in the Sparidae, Serranidae and Haemulidae (Perciformes). Geodiversitas 28:249-275. DOI: 1280-9659 407 408 Bannikov AF. 2008. Revision of the atheriniform fish genera *Rhamphognathus* Agassiz and 409 410 Mesogaster Agassiz (Teleostei) from the Eocene of Bolca, northern Italy. Studie Ricerche sui Giacimenti Terziari di Bolca 9:65-76. 411 412 Bannikov AF, Carnevale G. 2009. A new percoid fish from the Eocene of Monte Bolca, Italy: 413 Hendrixella grandei gen. & sp. nov. Swiss Journal of Geosciences 102:481-488. DOI: 414 https://doi.org/10.1007/s00015-009-1331-3. 415 416 417 Bannikov AF, Carnevale G. 2010. Bellwoodilabrus landinii, a new genus and species of labrid fish (Teleostei: Perciformes) from the Eocene of Monte Bolca. *Geodiversitas* 32:201-220. DOI: 418 https://doi.org/10.5252/g2010n2a2. 419 420 Bannikov AF, Carnevale G. 2016. Carlomonnius quasigobius gen. et sp. nov.: the first gobioid 421 fish from the Eocene of Monte Bolca, Italy. Bulletin of Geosciences 91:13-22. DOI: 422 10.3140/bull.geosci.1577. 423

124	
125	Blainville HD. 1818. Sur les ichthyolithes ou les poissons fossiles. Nouveau Dictionnaire
126	d'Histoire Naturelle, Deterville, Paris 27:310-95.
127	
128	Blot, J. 1987. — L'ordre des Pycnodontiformes. Studi e Ricerche sui Giacimenti Terziari di
129	Bolca V. L'ordre des Pycnodontiformes. Museo civico di storia Naturale: Verona
430	
431	Blot J, Tyler JC. 1990. New genera and species of fossil surgeon fishes and their relatives
132	(Acanthuroidei, Teleostei) from the Eocene of Monte Bolca, Italy, with application of the Blot
433	formula to both fossil and Recent forms. Studie Ricerche sui Giacimenti Terziari di Bolca 6:13-
134	92.
435	
136	Bürgin T. 1992. Basal ray-finned fishes (Osteichthyes; Actinopterygii) from the Middle Triassic
137	of Monte San Giorgio (Canton Tessin, Switzerland). Schweizerische Paläontolologische
138	Abhandlungen 114:1-164.
139	
140	Cappetta H. 1972. Les poissons Crétacés et Tertiaires du bassin des Iullemmeden (République du
141	Niger). Palaeovertebrata 5:179-251.
142	
143	Carnevale G, Pietsch TW. 2009. An Eocene frogfish from Monte Bolca, Italy: the earliest
144	skeletal record for the family. Palaeontology 52:745-752. DOI: 10.1111/j.1475-
145	4983.2009.00874.x.
146	
147	Carnevale G, Pietsch TW. 2010. Eocene handfishes from Monte Bolca, with description of a new
148	genus and species, and a phylogeny of the family Brachionichthyidae (Teleostei: Lophiiformes).
149	Zoological Journal of the Linnean Society 160:621-647. DOI: https://doi.org/10.1111/j.1096-
450	<u>3642.2009.00623.x</u> .
451	
152	Carnevale G, Pietsch TW. 2011. Batfishes from the Eocene of Monte Bolca. <i>Geological</i>
453	Magazine 148:461-472. DOI: https://doi.org/10.1017/S0016756810000907
154	

Carnevale G, Pietsch TW. 2012. †Caruso, a new genus of anglerfishes from the Eocene of 455 Monte Bolca, Italy, with a comparative osteology and phylogeny of the teleost family Lophiidae. 456 Journal of Systematic Palaeontology 10:47-72. DOI: 457 https://doi.org/10.1080/14772019.2011.565083. 458 459 Carnevale G, Bannikov AF, Marramà G, Tyler JC, Zorzin R. 2014. The Pesciara-Monte Postale 460 Fossil-Lagerstätte: 2. Fishes and other vertebrates. Rendiconti della Società Paleontologica 461 Italiana 4:37-63. 462 463 Carnevale G, Johnson GD, Marramà G, Bannikov AF. 2017. A reappraisal of the Eocene 464 priacanthid fish *Pristigenys substriata* (De Blainville, 1818) from Monte Bolca, Italy. *Journal of* 465 Paleontology 91: 554-565. DOI: https://doi.org/10.1017/jpa.2017.19 466 467 468 Casier E. 1950. Contributions à l'étude des poissons fossiles de la Belgique. VIII. Les Pristidés éocènes. Bulletin du Musée Royal d'Histoire Naturelle de Belgique 25:1-52. 469 470 Casier, E. 1971. Sur un material ichthyologique des "Midra (and Saila) shales" du Qatar (Golfe 471 472 Persique). Bulletin de l'Institut royal des Sciences naturelles de Belgique 47:1-9. 473 474 Cawley JJ, Kriwet J. 2017. A new pycnodont fish, Scalacurvichthys naishi gen. et sp. nov., from the Late Cretaceous of Israel. *Journal of Systematic Palaeontology* 1-15. DOI: 475

478 479

476

477

Cope ED. 1886. A contribution to the vertebrate palaeontology of Brazil. *Proceedings of the*

Clarke KR. 1993. Non-parametric multivariate analysis of changes in community structure.

481 American Philosophical Society 23:1-21. www.jstor.org/stable/982910.

Austral Ecology 18:117-143. DOI: 10.1111/j.1442-9993.1993.tb00438.x.

482

- Coquand H. 1860. Synopsis des animaux et des végétaux fossiles observés dans les formations
- 484 secondaires de la Charente, de la Charente-Inférieure et de la Dordogne. Barlatier-Feissat et
- 485 Demonchy: Marseille.

https://doi.org/10.1080/14772019.2017.1330772.

186	
187	Cornuel J. 1883. Nouvelle note sur des Pycnodontes portlandiens et néocomiens de l'est du
488	bassin de Paris, et sur des dents binaires de plusieurs d'entre eux. Bulletin de la Société
189	géologique de France 11:18-27.
190	
491	Cornuel, MJ. 1886. Liste des fossiles du terrain crétacé inférieur de la Haute-Marne. Bulletin de
192	la Société géologique de France 14:312-323.
193	
194	Costa OG. 1853. Paleontologia del regno di Napoli. Atti della Accademia Pontaniana 1: 1-380.
195	
196	Costa OG. 1864. Paleontologia del regno di Napoli, III. Atti Accademia
197	Pontaniana 8: 1-198.
198	
199	Dagys AS. 2001. The ammonoid family Arctohungaritidae from the Boreal Lower-Middle
500	Anisian (Triassic) of Arctic Asia. Revue de Paléobiologie 20:543-641.
501	
502	Dagys AS, Bucher H, Weitschat W. 1999. Intraspecific variation of Parasibirites kolymensis
503	Bychkov (Ammonoidea) from the Lower Triassic (Spathian) of Arctic Asia. Mitteilungen aus
504	dem Geologisch-Paläontologischen der Institut Universität Hamburg 83:163-178.
505	
506	Dartevelle E, Casier, E. 1949. Les poissons fossiles du Bas-Congo et des régions voisines
507	(deuxième partie). Annales du Musée du Congo Belge 3: 201-256.
508	
509	Davis JW. 1890. On the fossil fish of the Cretaceous formations of Scandinavia. Transactions of
510	the Royal Dublin Society 4:363-434.
511	
512	Dietze K. 1999. Paramblypterus duvernoyi (Actinopterygii): skull morphology and intra-specific
513	variation, and its implications for the systematics of paramblypterid fishes. Journal of Vertebrate
514	Paleontology 19:247-262. DOI: https://doi.org/10.1080/02724634.1999.10011139 .

Dietze K. 2000. A revision of paramblypterid and amblypterid actinopterygians from Upper 515 Carboniferous - Lower Permian lacustrine deposits of central Europe. Palaeontology 43: 927-516 966. DOI: 10.1111/1475-4983.00156. 517 518 Dorenbosch M, Grol MGG, Christianen MJA, Nagelkerken I, van der Velde G. 2005a. Indo-519 Pacific seagrass beds and mangroves contribute to fish density coral and diversity on adjacent 520 reefs. Marine Ecology Progress Series 302:63-76. www.jstor.org/stable/24869791. 521 522 Dorenbosch M, Grol MGG, Nagelkerken I, van der Velde G. 2005b. Distribution of coral reef 523 fishes along a coral reef-seagrass gradient: edge effects and habitat segregation. Marine Ecology 524 Progress Series 299:277-288. http://www.jstor.org/stable/24869721. 525 526 d'Erasmo G. 1914. La fauna e l'età dei calcari a ittioliti di Pietraroia (Prov. Di Benevento). 527 Palaeontographica Italica 20:29-86. 528 529 530 Egerton P. 1855. British Organic Remains, Decade VIII. Pycnodus liassicus. Memoirs of the Geological Survey of the United Kingdom: 1-3 531 532 533 Forir H. 1887. Contributions à l'étude du système Crétacé de la Belgique. 1: Sur quelques 534 poissons et crustacés nouveaux ou mal connus. Annales de la Société géologique de Belgique 14:25-56. 535 536 Fulton C, Bellwood D, Wainwright, P. 2001. The relationship between swimming ability and 537 538 habitat use in wrasses (Labridae). Marine Biology 139:25-33. DOI: 539 https://doi.org/10.1007/s002270100565. 540 Geinitz, HB. 1883. Ueber neue Funde in den Phosphatlagern von Helmstedt, Büddenstedt und 541 Schleweke. Abhandlungen der Gesellschaft Ibis 5:37-46. 542 543 Goatley HR, Bellwood DR, Bellwood O. 2010. Fishes on coral reefs: changing roles over the 544 past 240 million years. *Paleobiology* 36: 415-427. DOI: https://doi.org/10.1666/09035.1. 545

PeerJ

546	
547	Goodwin, M.B, Clemens, WA, Hutchinson JH, Wood CB, Zavada MS, Kemp A, Duffin C,
548	Schaff CR. 1999. Mesozoic continental vertebrates with associated palynostratigraphic datas
549	from the northwestern Ethiopian platform. Journal of Vertebrate Paleontology 19: 728-741.
550	DOI: https://doi.org/10.1080/02724634.1999.10011185.
551	
552	Grande T, Young B. 2004. The ontogeny and homology of the Weberian apparatus in the
553	zebrafish Danio rerio (Ostariophysi: Cypriniformes). Zoological Journal of the Linnean
554	Society 140:241-254.DOI: https://doi.org/10.1111/j.1096-3642.2003.00097.x.
555	
556	Grey-Egerton P. 1877. On some new pycnodonts. Geological Magazine 4:49-55. DOI:
557	https://doi.org/10.1017/S0016756800148563.
558	
559	Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for
560	education and data analysis. Palaeontologia Electronica 4:1-9.
561	
562	Heckel J. 1854. Über den Bau und die Eintheilung der Pycnodonten, nebst kurzer Beschreibung
563	einiger neuen Arten derselben. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften,
564	Mathematisch-Naturwissenschafliche Klasse 12: 433-464.
565	
566	Heckel J. 1856. Beiträge zur Kenntnis der fossilen Fische erreichs. Denkschriften der
567	kaiserlischen Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Classe
568	11:187-274.
569	
570	Hilton EJ, Bemis WE. 1999. Skeletal variation in shortnose sturgeon (Acipenser brevirostrum)
571	from the Connecticut River: Implications for comparative osteological studies of fossil and living
572	fishes. In: Arratia G, Schultze HP. eds. Mesozoic Fishes 2-Systematics and Fossil Record.
573	Munich: Verlag Dr. F. Pfeil, 69-94.
574	Jain SL. 1985. Variability of dermal bones and other parameters in the skull of <i>Amia calva</i> .
575	Zoological Journal of the Linnean Society 84:385-395. DOI: https://doi.org/10.1111/j.1096-
576	3642.1985.tb01805.x.

577	
578	Jonet S. 1964. Contribution à la connaissance de la faune ichthyologique crétacée. II-Élements
579	de la faune turonnienne. Boletim da Sociedade Geológica de Portugal 15:157-174.
580	
581	Kimirei IA, Nagelkerken I, Griffioen B, Wagner C, Mgaya YD. 2011. Ontogenetic habitat use by
582	mangrove/seagrass-associated coral reef fishes shows flexibility in time and space. Estuarine,
583	Coastal and Shelf Science 92:47-58. DOI: https://doi.org/10.1016/j.ecss.2010.12.016.
584	
585	Kogbe CA, Wozny E. 1979. Upper Maastrichtian and Paleocene macrofauna from the
586	Iullemmeden Basin (West Afrika) and their paleobiogeographic distribution. Annals of the
587	Geology Survey of Egypt 9: 184-218.
588	
589	Kriwet J. 2001a. Palaeobiogeography of pycnodontiform fishes (Actinopterygii, Neopterygii).
590	Seminario de Paleontología de Zaragoza 5 1:121-130.
591	
592	Kriwet J. 2001b. A comprehensive study of pycnodont fishes (Neopterygii, Pycnodontiformes):
593	Morphology, Taxonomy, Functional Morphology, Phylogeny, and Palaeobiogeography. D. Phil
594	thesis, Humboldt University.
595	
596	Kriwet J. 2005. A comprehensive study of the skull and dentition of pycnodont fishes
597	(Neopterygii, Pycnodontiformes). Zitteliana 45:135-188
598	
599	Kriwet J, Schmitz L. 2005. New insight into the distribution and palaeobiology of the pycnodont
500	fish Gyrodus. Acta Palaeontologica Polonica 50:49-56.
501	
502	Lehman JP. 1952. Etude complémentaire des poissons de l'Eotrias de Madagascar. Kungliga
503	Svenska Vetenskaps Akademiens Handlingar 4:1-201.
504	
505	Longbottom AE. 1984. New Tertiary pycnodonts from the Tilemsi valley, Republic of Mali.
506	Bulletin of the British Museum of Natural History 38:1-26.
507	

Macpherson E. 1998. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. 608 Journal of Experimental Marine Biology and Ecology 220:127-150. DOI: 609 https://doi.org/10.1016/S0022-0981(97)00086-5. 610 611 Marramà G, Carnevale G. 2015a. The Eocene sardine †Bolcaichthys catopygopterus 612 (Woodward, 1901) from Bolca, Italy: osteology, taxonomy and paleobiology. *Journal of* 613 Vertebrate Paleontology 35:6, e1014490, DOI: 10.1080/02724634.2015.1014490 614 615 Marramà G, Carnevale G. 2015b. Eocene round herring from Monte Bolca, Italy. Acta 616 Palaeontologica Polonica 60:701-710. DOI: https://doi.org/10.4202/app.00057.2014. 617 618 619 Marramà G, Carnevale G. 2016. An Eocene anchovy from Monte Bolca, Italy: The earliest known record for the family Engraulidae. Geological Magazine 153:84-94. DOI: 620 https://doi.org/10.1017/S0016756815000278. 621 622 623 Marramà G, Carnevale G. 2017. Morphology, relationships, and paleobiology of the Eocene barracudina †*Holosteus esocinus* (Aulopiformes, Paralepididae) from Monte Bolca, Italy. 624 625 Zoological Journal of the Linnean Society 181:209-228. DOI: https://doi.org/10.1093/zoolinnean/zlw029. 626 627 Marramà G, Villier B, Dalla Vecchia FM, Carnevale G. 2016a. A new species of 628 Gladiopycnodus (Coccodontoidea, Pycnodontomorpha) from the Cretaceous of Lebanon 629 provides new insights about the morphological diversification of pycnodont fishes through time. 630 631 Cretaceous Research 61:34-43. DOI: https://doi.org/10.1016/j.cretres.2015.12.022. Marramà G, Bannikov AF, Tyler JC, Zorzin R, Carnevale G. 2016b. Controlled excavations in 632 the Eocene Pesciara and Monte Postale deposits reveal new details about the paleoecology and 633 634 taphonomy of the fish assemblages of Bolca Konservat-Lagerstätte, Italy. *Palaeogeography*, Palaeoclimatology, Palaeoecology 454:228-245. DOI: 635 http://dx.doi.org/10.1016/j.palaeo.2016.04.021. 636 637

638	Marramà G, Claeson KM, Carnevale G, Kriwet J. 2017a. Revision of Eocene electric rays
639	(Torpediniformes, Batomorphii) from the Bolca Konservat-Lagerstätte, Italy, reveals the first
640	fossil embryo in situ in batoids and provides new insights into the origin of trophic novelties in
641	coral reef fishes. Journal of Systematic Palaeontology DOI:10.1080/14772019.2017.1371257
642	
643	Marramà G, Engelbrecht A, Carnevale G, Kriwet J. 2017b. Eocene sand tiger sharks
644	(Lamniformes, Odontaspididae) from the Bolca Konservat-Lagerstätte, Italy: Palaeobiology,
645	palaeobiogeography and evolutionary significance. Historical Biology DOI:
646	10.1080/08912963.2017.1341503
647	
648	Marramà G, Lombardo C, Tintori A, Carnevale G. 2017c. Redescription of 'Perleidus'
649	(Osteichthyes, Actinopterygii) from the Early Triassic of northwestern Madagascar. Rivista
650	Italiana di Paleontologia e Stratigrafia 123:219-242. DOI: https://doi.org/10.13130/2039-
651	<u>4942/8328</u> .
652	
653	Mohabey DM, Udhoji SG. 1996. Pycnodus lametae (Pycnodontidae), a holostean fish from
654	freshwater Upper Cretaceous Lameta Formation of Maharashtra. Journal of the Geological
655	Society of India 47:593-598. http://www.geosocindia.org/index.php/jgsi/article/view/68397.
656	
657	Nagelkerken I. 2007. Are non-estuarine mangroves connected to coral reefs through fish
658	migration? Bulletin of Marine Science 80:595-607.
659	
660	Nagelkerken I, Roberts CM, van der Velde G, Dorenbosch M, van Riel MC, Cocheret de la
661	Moriniere E, Nienhuis PH. 2002. How important are mangroves and seagrass beds for coral-reef
662	fish? The nursery hypothesis tested on an island scale. Marine Ecology Progress Series 244:299-
663	305. DOI: doi:10.3354/meps244299.
664	
665	Nakamura Y, Horinouchi M, Shibuno T, Tanaka Y, MiyajimaT, Koike I, Kurokura H, Sano M.
666	2008. Evidence of ontogenetic migration from mangroves to coral reefs by black-tail snapper
667	Lutjanus fulvus: stable isotope approach. Marine Ecology Progress Series 355:257-66. DOI:
668	https://doi.org/10.3354/meps07234.

PeerJ

669	
670	Olsen PE. 1984. The skull and pectoral girdle of the parasemionotid fish Watsonulus
671	eugnathoides from the Early Triassic Sakamena Group of Madagascar, with comments on the
672	relationships of the holostean fishes. Journal of Vertebrate Paleontology 4: 481-499. DOI:
673	https://doi.org/10.1080/02724634.1984.10012024.
674	
675	Pankhurst NW, Montgomery JC. 1990. Ontogeny of vision in the Antarctic fish Pagothenia
676	borchgrevinki (Nototheniidae). Polar biology 10:419-422. DOI:
677	https://doi.org/10.1007/BF00233689.
678	
679	Papazzoni CA, Carnevale G, Fornaciari E, Giusberti, L, Trevisani, E. 2014. The Pesciara-Monte
680	Postale Fossil-Lagerstätte: 1. Biostratigraphy, sedimentology and depositional model. The Bolca
681	Fossil-Lagerstätte: A Window into the Eocene World: Rendiconti della Società Paleontologica
682	Italiana, 4:29-36.
683	
684	Patterson C. 1973. Interrelationships of holosteans. In: Greenwood PH, Miles RS, Patterson C.
685	eds. Interrelationships of Fishes. Academic Press: London, 233-305.
686	
687	Pictet FJ, Campiche G, Tribolet G de. 1858-60. Description des fossiles du terrain Crétacé des
688	environs de Sainte-Croix. Première Partie. Genève: J. Kessmann & H. Georg.
689	
690	Poyato-Ariza FJ. 2005. Pycnodont fishes: morphologic variation, ecomorphologic plasticity, and
691	a new interpretation of their evolutionary history. Bulletin of the Kitakyushu Museum of Natural
692	History and Human History 3:169-184.
693	
694	Poyato-Ariza FJ. 2013. Sylvienodus, a new replacement genus for the Cretaceous
695	pycnodontiform fish "Pycnodus" laveirensis. Comptes Rendus Palevol 12:91-100. DOI:
696	https://doi.org/10.1016/j.crpv.2013.01.001.
697	

- 698 Poyato-Ariza FJ. 2015. Studies on pychodont fishes (I): Evaluation of their phylogenetic position
- among actinopterygians. Rivista Italiana di Paleontologia e Stratigrafia. 121:329-343. DOI:
- 700 http://dx.doi.org/10.13130/2039-4942/6521.
- 701 Poyato-Ariza FJ, Wenz S. 2002. A new insight into pycnodontiform fishes. *Geodiversitas*
- 702 24:139-248. http://sciencepress.mnhn.fr/en/periodiques/geodiversitas/24/1/un-nouveau-regard-
- 703 sur-les-poissons-pycnodontiformes

- Poyato-Ariza, FJ, Talbot, MR, Fregenal-MartInez, MA, Melendez, N, Wenz, S. 1998. First
- isotopic and multidisciplinary evidence for nonmarine coelacanths and pycnodontiform fishes:
- 707 palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology. 144:
- 708 65-84. DOI: https://doi.org/10.1016/S0031-0182(98)00085-6.

709

- Prasad GVR, Singh V. 1991. Microvertebrates from the Infiatrappean Beds of Rangareddi
- 711 District, Andhra Pradesh and their biostratigraphic significance. *Bulletin of the Indian*
- 712 *Geologists' Association* 24:1-20.

713

- Priem F. 1897. Sur les poissons de l'Éocène du Mont Mokattam (Égypte). Bulletin de la Société
- 715 géologique de France, (Serie 3) 25:212-227.

716

- 717 Priem F. 1902. Sur des pycnodontes tertiaires du departement de l'Aude. Bulletin de la Société
- 718 géologique de France, (Serie 4) 10:44-49.

719

- 720 Reuss A. 1845. Die Versteinerungen der bohmischen Kreideformationen. Stuttgart:
- 721 Schweitzerbart.

722

- Roemer FA. 1841. Die Versteinerungen des norddeutschen Kreidegebirges. Hannover:
- 724 Hahn'sche Hofbuchhandlung.

725

- Rohlf FJ. 2003. TpsRelw, relative warps analysis, version 1.36. State University of New York at
- 727 Stony Brook: Department of Ecology and Evolution. http://life.bio.sunysb.edu/morph/

728

- Rohlf FJ. 2005. TpsDig, Digitize Landmarks and Outlines, version 2.05. State University of New 729 York at Stony Brook: Department of Ecology and Evolution. 730 731 Rohlf FJ, Slice DE. 1990. Extensions of the Procrustes method for the optimal superimposition 732 of landmarks. Systematic Biology 39:40-59. DOI: https://doi.org/10.2307/2992207. 733 734 Rohlf FJ, Corti M. 2000. Use of two-block partial least-squares to study covariation in shape. 735 Systematic Biology 49:740-753. DOI: https://doi.org/10.1080/106351500750049806. 736 Sauvage HE. 1880. Synopsis des poissons et des reptiles des terrains jurassiques de Boulogne-737 738 sur-Mer. Bulletin de la Société géologique de France, (Serie 3) 8:524547. 739 740 Sauvage HE. 1893. Note sur quelques poissons du calcaire bitumineux d'Orbagnoux (Ain). Bulletin de la Société d'Histoire naturelle d' Autun 6:1-17. 741 742 Savornin MJ. 1915. Les pycnodontes eocenes de i'Algerie. Comptes Rendus, Association 743 Française pour l'Avancement de Science 43:368-377. 744 745 Sferco E, López-Arbarello A, Báez AM. 2015. Anatomical description and taxonomy of 746 †Luisiella feruglioi (Bordas), new combination, a freshwater teleost (Actinopterygii, Teleostei) 747 from the Upper Jurassic of Patagonia. *Journal of Vertebrate Paleontology* 35:3, e924958, DOI: 748 10.1080/02724634.2014.924958 749 750 Shibuno T, Nakamura Y, Horinouchi M, Sano M. 2008. Habitat use patterns of fishes across the 751 mangrove-seagrass-coral reef seascape at Ishigaki Island, southern Japan. Ichthyological 752 Research 55:218–37. DOI: https://doi.org/10.1007/s10228-007-0022-1. 753 754
- 755 Simon KD, Bakar Y, Temple SE, Mazlan AG. 2010. Morphometric and meristic variation in two
- congeneric archer fishes *Toxotes chatareus* (Hamilton 1822) and *Toxotes jaculatrix* (Pallas 1767)
- 757 inhabiting Malaysian coastal waters. *Journal of Zhejiang University Science B* 11:871-879. DOI:
- 758 https://doi.org/10.1631/jzus.B1000054.

- 759 Stensiö E. 1935. *Sinamia zdanskyi*, a new amiid from the Lower Cretaceous of Shantung, China.
- 760 Paleontologia Sinica, Series C 3:1-148.

- 762 Su DT. 1973. A new Sinamia (S. huananensis, sp. nov.) from
- the Upper Jurassic of Southern Anhui. *Vertebrata PalAsiatica* 11:149-153.

764

- 765 Taverne L. 1997. Les poissons crétacés de Nardo 5° Pycnodus nardoensis sp. nov. et
- considérations sur l'ostéologie du genre *Pycnodus* (Actinopterygii, Halecostomi,
- 767 Pycnodontiformes). Bolletino del Museo civico di Storia naturale di Verona 21:437-454.

768

- 769 Taverne L. 2003. Les poissons crétacés de Nardò. 15. Etude complémentaire de *Pseudopycnodus*
- nardoensis (Taverne, 1997) nov. gen.(Actinopterygii, Halecostomi, Pycnodontiformes).
- 771 Bollettino del Museo Civico di Storia Naturale di Verona, Geologia Paleontologia Preistoria
- 772 27:15-28.

773

- 774 Taverne L, Nolf D. 1978. Troisième note sur les poissons des Sables de Lede (Eocène belge): les
- 775 fossiles autres que les otolithes. *Bulletin de la Société Belge de Géologie* 87:125–152.

776

- 777 Thies D, Hauff RB. 2011. A new species of *Dapedium* Leach, 1822 (Actinopterygii,
- Neopterygii, Semionotiformes) from the Early Jurassic of South Germany. *Palaeodiversity*
- 779 4:185-221.

780

- 781 Tintori A. 1981. Two new pycnodonts (Pisces, Actinopterygii) from the Upper Triassic of
- 782 Lombardy (N. Italy). Rivista Italiana di Palaeontologia e stratigrafia 86:795-824.

783

- 784 Tintori A. 1990. The actinopterygian fish *Prohalecites* from the Triassic of Northern Italy.
- 785 *Palaeontology* 33:155-174.

786

- 787 Tintori A, Zuoyu S, Peigang N, Lombardo C, Dayong J, Motani R. 2015. Oldest stem Teleostei
- 788 from the Late Ladinian (Middle Triassic) of Southern China. Rivista Italiana di Paleontologia e
- 789 Stratigrafia 121:285-296. DOI: https://doi.org/10.13130/2039-4942/6519.

790	
791	Veiga Ferreira O. 1961. Fauna ictyologica do Cretacico de Portugal. Communicações dos
792	Serviços Geológicos de Portugal 45: 249-278.
793	
794	Volta GS. 1796. Ittiolitologia Veronese del Museo Bozziano ora annesso a quello del Conte
795	Giovambattista Gazola e di altri gabinetti di fossili Veronesi con la versione latina. Verona:
796	Stamperia Giuliari.
797	
798	Webb PW. 1982. Locomotor patterns in the evolution of actinopterygian fishes. American
799	Zoologist 22:329-342. DOI: https://doi.org/10.1093/icb/22.2.329.
300	
301	Weitschat W. 2008. Intraspecific variation of Svalbardiceras spitzbergensis (Frebold) from the
302	Early Triassic (Spathian) of Spitsbergen. Polar Research 27:292-297. DOI: 10.1111/j.1751-
303	8369.2008.00041.x.
304	
305	White EI. 1934. Fossil fishes from Sokoto province. Bulletin of the Geological Survey of Nigeria
306	14:1-78.
307	
308	Woodward AS 1908. On some fish-remains from the Lameta beds at Dangargaon, Central
309	Provinces. Palaeontologia Indica 3:1-6.
310	
311	Woodward AS. 1918. The fossil fishes of the English Wealden and Purbeck Formations. Part 2.
312	Monographs of the Palaeontographical Society 70:49-104.
313	
314	Wretman L, Blom H, Kear BP. 2016. Resolution of the Early Jurassic actinopterygian fish
315	Pachycormus and a dispersal hypothesis for Pachycormiformes. Journal of Vertebrate
316	Paleontology 36:5, e1206022, DOI:10.1080/02724634.2016.1206022.
317	
318	Xu GH, Shen CC, Zhao LJ. 2014. Pteronisculus nielseni sp. nov., a new stem-actinopteran fish
319	from the Middle Triassic of Luoping, Yunnan Province, China. Vertebrata PalAsiatica 52:364-
320	380.

821	
822	Zelditch M, Swiderski D, Sheets, DH, Fink, W. 2004. Geometric Morphometrics for Biologists:
823	A primer. Waltham: Elsevier Academic Press.
824	
825	Zhang MM, Zhang H. 1980. Discovery of Ikechaoamia from South China. Vertebrata
826	PalAsiatica 18:89-93.
827	
828	
829	Figure captions
830	
831	Figure 1: Landmarks represented by black circles, which were used on <i>Pycnodus</i> for the
832	geometric morphometric analysis. These are 1) tip of premaxilla; 2) ventralmost margin of orbit;
833	3) posteriormost margin of orbit; 4) anteriormost margin of orbit; 5) dorsalmost margin of orbit;
834	6) first dorsal pterygiophore; 7) last dorsal pterygiophore; 8) tip of dorsal lobe of caudal fin; 9)
835	medial convex margin of caudal fin; 10) tip of ventral lobe of caudal fin; 11) final anal
836	pterygiophore; 12) first anal pterygiophore; 13) posterior cloacal scale; 14) anterior cloacal scale;
837	15) joint between quadrate and prearticular; 16) ventral most concave margin of cleithrum
838	accommodating pectoral fin; 17) dorsal most concave margin of cleithrum accommodating
839	pectoral fin; 18) Point of contact between neurocranium and vertebral column. The
840	semilandmarks are reperesented by small white circles and are split into two sets; the first set
841	consists of seven semilandmarks between the tip of the dermosupraoccipital and the base of the
842	first principal caudal fin ray; the second set has an additional seven semilandmarks between the
843	base of the ventral most principal caudal fin ray and the antero-ventral corner of the cleithrum.
844	Illustration of <i>Pycnodus</i> is modified from Blot (1987).
845	
846	Figure 2: Morphospace of $Pycnodus$ on the first two RW axes together accounting for about 66%
847	of the overall shape variation. Deformation grids illustrate the shapes lying at extreme values
848	along each axis.
849	

350	Figure 3: Morphospace of <i>Pycnodus</i> showing RW 1 on the x-axis and RW 3 on y-axis the latter
351	accounting for 6% of the overall shape variation. Deformation grids illustrate the shapes lying at
352	extreme values along each axis.
353	
354	Figure 4: PLS analysis showing a correlation of morphology with ontogeny. Smallest, medium
355	sized and largest specimens are used to represent the juvenile, small adult and large adult stages
356	respectively. Significance of this correlation is shown by the r and p-values. Smallest specimen
357	is 4.02 cm, medium sized specimen is 10.6 cm, largest specimen is 30.6 cm.
358	
359	Figure 5: Histograms showing the distributions of meristic characters of <i>Pycnodus</i> . The x-axis
360	represents the number of elements and the y-axis the relative frequency. Anatomical
361	abbreviations: Anal-fin pterygiophores AFP, Anal-fin rays AFR, Caudal-fin rays CFR, Dorsal-
362	fin pterygiophores DFP, Dorsal-fin rays DFR, Pectoral-fin rays PEC, Pelvic-fin rays PEL, Rib
363	pairs RIB, Scale bars SCL, Vertebrae VER.
364	
365	Figure 6: Scatterplots and regression lines with 95% confidence bands of the relationships
366	between each morphometric character and the standard length of Pycnodus. Anatomical
367	abbreviations: Anal-fin base AFB, Caudal peduncle depth CPD, Caudal peduncle length CPL,
368	Caudal-fin span CFS, Dorsal-fin base DFB, Head depth HD, Head length HL, Lower jaw length
369	JL, Maximum body depth MBD, Orbit diameter OD, Pectoral-fin base PFB, Postorbital length
370	POSTO, Preanal distance PANA, Predorsal distance PDOR, Preorbital length PREO, Prepectoral
371	distance PPEC, Prepelvic distance PPEL.
372	
373	Figure 7: Ontogenetic series of <i>Pycnodus</i> . (a) juvenile 4.02 cm (MCSNV T.309). (b) small adult
374	13.25 cm (BSPG AS I 1208). (c) large adult 30.61 cm (BSPG AS I 1209). Scale bar for (a) and
375	(b) equals 1 cm and is 10 cm for (c).
376	
377	Table captions
378	
379	Table 1: ANOSIM and PERMANOVA results.
380	

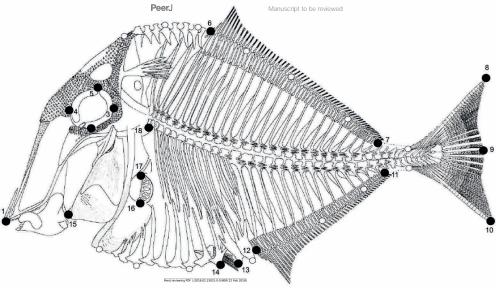

881	Table 2: Measurements as percentage of SL (mean values in parentheses) for <i>Pycnodus</i> . Range
882	of measurements are represented by the 25th and 75th percentile in order to exclude outliers.
883	
884	Table 3: Mean morphometric and meristic data for the examined specimens of <i>Pycnodus</i> .
885	
886	Table 4: Relationships between morphometric characters and standard length using least squares
887	regression for <i>Pycnodus</i> .
888	
889	Table 5: Meristic counts of <i>Pycnodus</i> .

Figure 1(on next page)

Landmarks represented by black circles, which were used on *Pycnodus* for the geometric morphometric analysis.

These are 1) tip of premaxilla; 2) ventralmost margin of orbit; 3) posteriormost margin of orbit; 4) anteriormost margin of orbit; 5) dorsalmost margin of orbit; 6) first dorsal pterygiophore; 7) last dorsal pterygiophore; 8) tip of dorsal lobe of caudal fin; 9) medial convex margin of caudal fin; 10) tip of ventral lobe of caudal fin; 11) final anal pterygiophore; 12) first anal pterygiophore; 13) posterior cloacal scale; 14) anterior cloacal scale; 15) joint between quadrate and prearticular; 16) ventral most concave margin of cleithrum accommodating pectoral fin; 17) dorsal most concave margin of cleithrum accommodating pectoral fin; 18) Point of contact between neurocranium and vertebral column. The semilandmarks are represented by small white circles and are split into two sets; the first set consists of seven semilandmarks between the tip of the dermosupraoccipital and the base of the first principal caudal fin ray; the second set has an additional seven semilandmarks between the base of the ventral most principal caudal fin ray and the antero-ventral corner of the cleithrum. Illustration of *Pycnodus* is modified from Blot (1987).

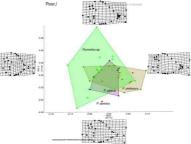


Figure 2(on next page)

Morphospace of *Pycnodus* on the first two RW axes.

The first two RW axes together accounting for about 66% of the overall shape variation.

Deformation grids illustrate the shapes lying at extreme values along each axis.

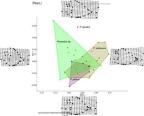


Figure 3(on next page)

Morphospace of *Pycnodus* showing RW 1 on the x-axis and RW 3 on y-axis.

RW3 accounts for 6% of the overall shape variation. Deformation grids illustrate the shapes lying at extreme values along each axis.

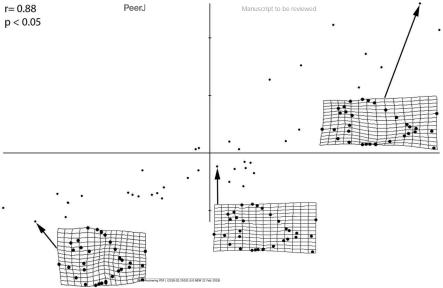
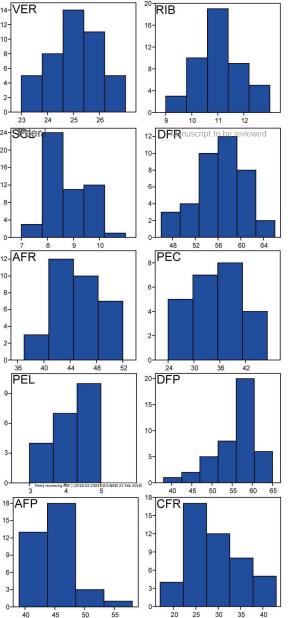


Figure 4(on next page)

PLS analysis showing a correlation of morphology with ontogeny.

Smallest, medium sized and largest specimens are used to represent the juvenile, small adult and large adult stages respectively. Significance of this correlation is shown by the r and p-values. Smallest specimen is 4.02 cm, medium sized specimen is 10.6 cm, largest specimen is 30.6 cm.

Figure 5(on next page)


Histograms showing the distributions of meristic characters of *Pycnodus*.

The x-axis represents the number of elements and the y-axis the relative frequency.

Anatomical abbreviations: Anal fin pterygiophores AFP, Anal fin rays AFR, Caudal fin rays

CFR, Dorsal fin pterygiophores DFP, Dorsal fin rays DFR, Pectoral fin rays PEC, Pelvic fin rays

PEL, Rib pairs RIB, Scale bars SCL, Vertebrae VER.

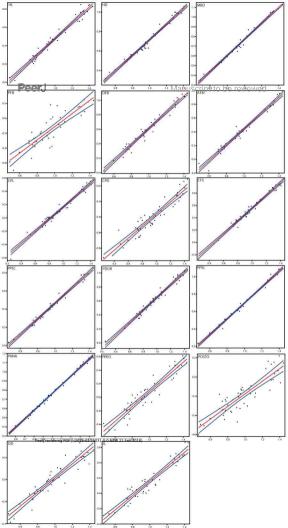


Figure 6(on next page)

Scatterplots and regression lines with 95% confidence bands of the relationships between each morphometric character and the standard length of *Pycnodus*.

Anatomical abbreviations: Anal fin base AFB, Caudal peduncle depth CPD, Caudal peduncle length CPL, Caudal fin span CFS, Dorsal fin base DFB, Head depth HD, Head length HL, Lower jaw length JL, Maximum body depth MBD, Orbit diameter OD, Pectoral fin base PFB, Postorbital length POSTO, Preanal distance PANA, Predorsal distance PDOR, Preorbital length PREO, Prepectoral distance PPEC, Prepelvic distance PPEL.

Figure 7(on next page)

Ontogenetic series of *Pycnodus*.

(a) Juvenile 4.02 cm (MCSNV T.309). (b) small adult 13.25 cm (BSPG AS I 1208). (c) large adult 30.61 cm (BSPG AS I 1209). Scale bar for (a) and (b) equals 1 cm and is 10 cm for (c).

Table 1(on next page)

ANOSIM and PERMANOVA results.

PERMANOVA	P. apodus	P.	gibbu	S	P. platessus	5 F	Pycnodus sp).
P. apodus		0	0.322	28	0.567	1	0.15	86
P. gibbus	0.322	8		0	0.253	8	0.28	76
P. platessus	0.567	1	0.253	38		0	0.00	48
Pycnodus sp.	0.158	6	0.287	76	0.004	8		0
F-value	2.8	3						
P-v a lu e	0.0	3						
ANOSIM	P. apodus	P. g	ib b u s	P.	platessus	Ру	cnodus sp.	
P. apodus	0	C	.3583		0.7879		0.1717	
P. gibbus	0.3583		0		0.3411		0.4755	
P. platessus	0.7879	С	.3411		0		0.0389	
Pycnodus sp.	0.1717	C	.4755		0.0389		0	
R-value	0.10							
P-v a lu e	0.06							

Table 2(on next page)

Measurements as percentage of SL (mean values in parentheses) for *Pycnodus*.

Range of measurements are represented by the 25th and 75th percentile in order to exclude outliers.

1 2 3

Meristic Character	Measurements as % of SL)
Vertebrae	24-26 (25)
Rib pairs	10-12 (11)
Scale bars	8-10 (9)
Dorsal fin rays	54-60 (56)
Anal fin rays	42-47,75 (45)
Pectoral fin rays	30,25-39,75 (35)
Dorsal fin pterygiophores	52,75-60 (56)
Anal fin pterygiophores	41-47 (45)
Caudalfh rays	25-33,5 (30)

Table 3(on next page)

Mean morphometric and meristic data for the examined specimens of *Pycnodus*.

1						
Morphometric/meristic data	Min	Max	Mean	Median	Variance	Standard deviation
Standard length	1.8	27.7	10.9	8.8	47.6	6.9
Head length	1.1	7.1	3.3	2.8	2.9	1.7
Head depth	2.0	11.6	5.6	4.4	7.7	2.8
Maximum body depth	2.1	13.4	5.8	4.9	8.4	2.9
Pectoral f in base	0.2	1.8	0.8	0.7	0.2	0.4
Dorsal fin base	1.1	12.5	4.9	3.7	10.5	3.2
Analfin base	0.7	9.6	3.4	2.5	5.6	2.4
Caudal peduncle depth	0.1	1.2	0.5	0.4	0.1	0.3
Caudal peduncle length	0.2	3.7	1.6	1.3	0.8	0.9
Caudal fin span	0.5	10.7	4.1	3.0	6.9	2.6
Prepectoral distance	1.1	7.2	3.1	2.8	2.5	1.6
Predorsal distance	1.1	11.0	5.0	4.2	7.6	2.8
Prepelvic distance	1.7	12.4	5.3	4.3	8.9	3.0
Preanal distance	2.2	14.2	6.6	5.4	12.8	3.6
Preorbital distance	0.3	4.1	1.4	1.1	1.0	1.0
Postorbital length	0.3	1.7	0.7	0.6	0.1	0.3
Orbit diam eter	0.4	2.2	1.1	1.0	0.2	0.4
Lower Jaw	0.5	4.6	1.7	1.3	1.1	1.0
Vertebrae	23	27	25.1	25	1.4	1.2
Rib pairs	9	13	11.1	11	1.1	1.1
Scale bars	7	11	8.7	8	0.9	1.0
Dorsal fin rays	46	66	56.4	56.0	18.2	4.3
Analfin rays	37	52	45.0	45.0	14.5	3.8
Pectoral fin rays	24	47	35.2	35.5	43.9	6.6
Pelvic fin rays	3	5	4.3	4.0	0.6	0.8
Dorsal fin pterygiophores	38	65	55.8	57.0	30.5	5.5
Anal fin pterygiophores	39	58	44.8	45.0	16.3	4.0
Caudal fin rays	17	43	29.2	28.5	38.4	6.2

Table 4(on next page)

Relationships between morphometric characters and standard length using least squares regression for *Pycnodus*.

PeerJ

1

Slope (a)	Intercept (b)	Coef tient of determination (r²)	95% C	lon a	95% C	I on b
0.86	-0.38	0.97	0.80	0.90	-0.42	-0.33
0.80	-0.09	0.98	0.77	0.83	-0.11	-0.06
0.83	-0.06	0.99	0.81	0.85	-0.08	-0.04
0.89	-1.00	0.76	0.77	0.99	-1.11	-0.88
1.12	-0.51	0.97	1.07	1.17	-0.56	-0.46
1.16	-0.71	0.97	1.09	1.22	-0.78	-0.64
0.77	-1.13	0.89	0.68	0.87	-1.23	-1.05
0.91	-0.75	0.97	0.85	0.97	-0.81	-0.69
1.04	-0.49	0.98	1.00	1.09	-0.54	-0.45
0.87	-0.40	0.98	0.83	0.90	-0.43	-0.36
0.91	-0.26	0.98	0.86	0.95	-0.30	-0.21
0.92	-0.22	0.99	0.89	0.94	-0.24	-0.19
0.93	-0.17	0.99	0.91	0.95	-0.19	-0.14
1.09	-1.01	0.89	0.99	1.20	-1.12	-0.90
0.66	-0.83	0.78	0.56	0.76	-0.93	-0.74
0.64	-0.63	0.89	0.57	0.71	-0.69	-0.56
0.94	-0.78	0.92	0.87	1.02	-0.86	-0.70
	0.86 0.80 0.83 0.89 1.12 1.16 0.77 0.91 1.04 0.87 0.91 0.92 0.93 1.09 0.66 0.64	0.86 -0.38 0.80 -0.09 0.83 -0.06 0.89 -1.00 1.12 -0.51 1.16 -0.71 0.77 -1.13 0.91 -0.75 1.04 -0.49 0.87 -0.40 0.91 -0.26 0.92 -0.22 0.93 -0.17 1.09 -1.01 0.66 -0.83 0.64 -0.63	0.86 -0.38 0.97 0.80 -0.09 0.98 0.83 -0.06 0.99 0.89 -1.00 0.76 1.12 -0.51 0.97 1.16 -0.71 0.97 0.77 -1.13 0.89 0.91 -0.75 0.97 1.04 -0.49 0.98 0.87 -0.40 0.98 0.91 -0.26 0.98 0.92 -0.22 0.99 0.93 -0.17 0.99 1.09 -1.01 0.89 0.66 -0.83 0.78 0.64 -0.63 0.89	0.86 -0.38 0.97 0.80 0.80 -0.09 0.98 0.77 0.83 -0.06 0.99 0.81 0.89 -1.00 0.76 0.77 1.12 -0.51 0.97 1.07 1.16 -0.71 0.97 1.09 0.77 -1.13 0.89 0.68 0.91 -0.75 0.97 0.85 1.04 -0.49 0.98 1.00 0.87 -0.40 0.98 0.83 0.91 -0.26 0.98 0.86 0.92 -0.22 0.99 0.89 0.93 -0.17 0.99 0.91 1.09 -1.01 0.89 0.99 0.66 -0.83 0.78 0.56 0.64 -0.63 0.89 0.57	0.86 -0.38 0.97 0.80 0.90 0.80 -0.09 0.98 0.77 0.83 0.83 -0.06 0.99 0.81 0.85 0.89 -1.00 0.76 0.77 0.99 1.12 -0.51 0.97 1.07 1.17 1.16 -0.71 0.97 1.09 1.22 0.77 -1.13 0.89 0.68 0.87 0.91 -0.75 0.97 0.85 0.97 1.04 -0.49 0.98 1.00 1.09 0.87 -0.40 0.98 0.83 0.90 0.91 -0.26 0.98 0.86 0.95 0.92 -0.22 0.99 0.89 0.94 0.93 -0.17 0.99 0.91 0.95 1.09 -1.01 0.89 0.99 1.20 0.66 -0.83 0.78 0.56 0.76 0.64 -0.63 0.89 0.57 0.71	0.86 -0.38 0.97 0.80 0.90 -0.42 0.80 -0.09 0.98 0.77 0.83 -0.11 0.83 -0.06 0.99 0.81 0.85 -0.08 0.89 -1.00 0.76 0.77 0.99 -1.11 1.12 -0.51 0.97 1.07 1.17 -0.56 1.16 -0.71 0.97 1.09 1.22 -0.78 0.77 -1.13 0.89 0.68 0.87 -1.23 0.91 -0.75 0.97 0.85 0.97 -0.81 1.04 -0.49 0.98 1.00 1.09 -0.54 0.87 -0.40 0.98 0.83 0.90 -0.43 0.91 -0.26 0.98 0.86 0.95 -0.30 0.92 -0.22 0.99 0.89 0.94 -0.24 0.93 -0.17 0.99 0.91 0.95 -0.19 1.09 -1.01 0.89 0.99 1.20 -1.12 0.66 -0.83

2

Table 5(on next page)

Meristic counts of *Pycnodus*.

1											
Species	Specimen number	No. of vertebrae Rib	pairs	No. of scale bars I	orsalfin rays An	alfin ravs T	Pectoral fin rays F	Pelvic fin ravs	Dorsal fin pterygiophores	Anal fin ptervelophores	Caudal fin rays
Pycnodus sp.	Coll Baja Pesciara 4 (T.998)	26	13		56	44	17?		56	43	30
Pycnodus sp.	Coll Baja Pesciara 5 (T.999)	24?	-	9	5.5	43	16?	,	58	41	
Pycnodus sp.	I.G.23695	20	6	-	17	7		,	?	?	15
Pycnodus sp.	I.G.135608	26	9	. 8	58	46		4	59	58	
Pycnodus sp.	I.G.135609	25	10	-	59	44	2.4	5	59	41	
Pycnodus sp.	I.G.135664	26	12		49	37	7?		46	37	
Pycnodus sp.	II D 167	27	11		51	47	33?		52	46	
Pycnodus sp.	II D 168	30?		9	54	44		5	55	40	25
Pycnodus sp.	II D 170	28?	\rightarrow	7	59	51		5	60	47	
Pycnodus sp.	II D 170	27	11		56	42		5	53	39	
Pycnodus sp. Pycnodus sp.	II D 171	30	11		60	42		4	62	50	
Pycnodus sp.	T.309	27	11	8?	, ,		2 2	, 7	29	n	34
· · · · · · · · · · · · · · · · · · ·		27	11	8 7	f f 54	43	5	4		42	
Pycnodus sp.	sp 1 (I.G.23???)			-				4			
Pycnodus sp.	sp 2 (I.G.186666)	2 2	10		46	39	<u>'</u>	-	50	42	
Pycnodus sp.	sp 3 (I.G.186667)	2 2	11	10?	- !		? !	?	43	33	27
Pycnodus sp.	sp 4 (I.G.24497)	2.7	11				? !	?	38	26	
Pycnodus sp.	sp 5	24	10		54	41		?	51	40	30
Pycnodus sp.	sp 6 (I.G.135680)	?	9	11?	· /		22?	?	?	?	?
Pycnodus sp.	sp 7 (I.G.37581)	2.8	12		?		? ?	?	44		2 3
Pycnodus sp.	12058		13		60 ?		39	3	57	39	
Pycnodus sp.	12059			9	52?		29?		53		29
Pycnodus sp.	12808		12		?		29?		50	40	
Pycnodus sp.	12809		14		5 6	42	23	2		4 4	
Pycnodus sp.	26968		12	- 1	/	43	29	16		40	
Pycnodus sp.	26969		11		5.5	46	27?		58	44	
	BSPG AS I 1208	23	9	8	5 3	42	37	4	56	4 4	4 2
Pycnodus platessus	BSPG AS I 1209	2 4	12		60	47		?	58	48	
, ,	BMNH P.1633	28	11		59	47	31	5		45	
Pycnodus platessus	BMNH 38000	31	10		66 ?		?	5		48	
Pycnodus platessus	BMNH P.7459	2.5	10		63	45	36	5	59	51	3 4
Pycnodus platessus	1853.XXVII.i.a/b	23	10		61 54	46	47	5	? 54	47	
Pycnodus platessus	1855.VI.75 A.III.a.S.48	27	11		5.6	4 2		2	54	40	
Pycnodus platessus Pycnodus platessus	A.III.a.5.48 CM 4479	20	11		30	45	; i	5		2	20
Pycnodus platessus	CM 4479	26	12		3		5 7	, ,	52	41	2
Pycnodus platessus	6880Z	27	13				24?	r >	48	30	
Pycnodus platessus	8867C	25	11	- 1	56?		2 7	·	57	46	
Pycnodus platessus	8868C	23	13		54	49	18?	>	60	46	
	BMNH P.1632/P.3760	29	11		49?		14	3		32	
Pycnodus gibbus	BMNH P.11992	2.7	11		55?	\longrightarrow	?	3	60	46	
Pycnodus gibbus	BMNH P.17025	26	10	12	52	41	30?	?	49	39	
Pycnodus gibbus	BMNH P.44519	30	12	8	61	50	3.5	3	63	44	
Pycnodus gibbus	BMNH P.44520	27	10	9	62	39		?	60	37	
Pycnodus gibbus	BMNH P.4386	?	12	10 ?	?		46	5	32	?	43
Pycnodus gibbus	CM 4480	25 ?		8	60	49	45	4	61	50	
Pycnodus gibbus	CM 4480.1	29	11		59	48		?	60	48	
Pycnodus gibbus	CM 4481	25	11		59	46		4		46	
	PF 3234	2 4	13		54?		38	5		?	2.5
Pycnodus gibbus	7433C	2.5	11	9 ?	?		?	4	5 2	37	
Pycnodus apodus	Bol 94/95	27	11	8	62	5 2	22?		59	45	
, ,	Bol 126/127	26	11		52?		40	5	?	?	3 3
Pycnodus apodus	Bol 130/131	29	10				? ?	? _	?	?	?
Pycnodus apodus	Bol 134/135	2.5	11	10	59	5 2	?	7	61	48	37