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The use of linear mixed effects models (LMMs) is increasingly common in the analysis of

biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data

types, ecological data are often complex and require complex model structures, and the

fitting and interpretation of such models is not always straightforward. The ability to

achieve robust biological inference requires that practitioners know how and when to apply

these tools. Here, we provide a general overview of current methods for the application of

LMMs to biological data, and highlight the typical pitfalls that can be encountered in the

statistical modelling process. We tackle several issues relating to the use of information

theory and multi-model inference in ecology, and demonstrate the tendency for data

dredging to lead to greatly inflated Type I error rate (false positives) and impaired

inference. We offer practical solutions and direct the reader to key references that provide

further technical detail for those seeking a deeper understanding. This overview should

serve as a widely accessible code of best practice for applying LMMs to complex biological

problems and model structures, and in doing so improve the robustness of conclusions

drawn from studies investigating ecological and evolutionary questions.
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 ABSTRACT

The ese of linear mixed effects models (LMMs) is increasingly common in the analysis of

biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data

types, ecological data are often complex and reqeire complex model strecteres, and the 

fitting and interpretation of sech models is not always straightforward. The ability to 

achieve robest biological inference reqeires that practitioners know how and when to 

apply these tools. Here, we provide a general overview of cerrent methods for the 

application of LMMs to biological data, and highlight the typical pitfalls that can be 

encoentered in the statistical modelling process. We tackle several issees relating to the 

ese of information theory and melti-model inference in ecology, and demonstrate the 

tendency for data dredging to lead to greatly inflated Type I error rate (false positives) 

and impaired inference. We offer practical soletions and direct the reader to key 

references that provide ferther technical detail for those seeking a deeper 

enderstanding. This overview shoeld serve as a widely accessible code of best practice 

for applying LMMs to complex biological problems and model strecteres, and in doing so

improve the robestness of conclesions drawn from stedies investigating ecological and 

evoletionary qeestions.
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Introdection

 

In recent years, the seite of statistical tools available to biologists and the complexity of 

biological data analyses have grown in tandem (Low-Decarie et al 2014; Zeer & Ieno 

2016; Kass et al 2016). The availability of novel and sophisticated statistical techniqees 

means we are better eqeipped than ever to extract signal from noisy biological data, bet 

it remains challenging to know how to apply these tools, and which statistical 

techniqee(s) might be best seited to answering specific qeestions (Kass et al 2016). 

Often, simple analyses will be sefficient (Mertaegh 2007), bet more complex data 

strecteres often reqeire more complex methods sech as linear mixed effects models 

(Zeer et al 2009), generalized additive models (Wood et al 2015) or Bayesian inference 

(Ellison 2004). Both accerate parameter estimates and robest biological inference 

reqeire that ecologists be aware of the pitfalls and assemptions that accompany these 

techniqees and adjest modelling decisions accordingly (Bolker et al 2009).

Linear mixed effects models (LMMs) and generalized linear mixed effects models 

(GLMMs), have gained significant traction in the last decade (Zeer et al 2009; Bolker et 

al 2009). Both extend traditional linear models to inclede a combination of fixed and 

random effects as predictor variables. The introdection of random effects affords several 

non-exclesive benefits. First, biological datasets are often highly strectered, containing 

clesters of non-independent observational enits that are hierarchical in natere, and 

LMMs allow es to explicitly model the non-independence in sech data. For example, we 

might measere several chicks from the same cletch, and several cletches from different 

females, or we might take repeated measerements of the same chick’s growth rate over 

time. In both cases, we might expect that measerements within a statistical enit (here, 

an individeal, or a female’s cletch) might be more similar than measerements from 

different enits. Explicit modelling of the random effects strectere will aid correct inference

of fixed effects, depending on which level of the system’s hierarchy is being 

manipelated. In oer example, if the fixed effect varies or is manipelated at the level of the

cletch, then pseedoreplicated measerements of each chick can be controlled carefelly 

esing random effects. Alternatively, if fixed effects vary at the level of the chick, then 
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non-independence among cletches or mothers can be accoented for. Random effects 

typically represent some groeping variable (Breslow and Clayton 1993) and allow the 

estimation of variance in the response variable within and among these groeps. This 

redeces the probability of false positives (Type I error rates) and false negatives (Type II 

error rates, e.g. Crawley 2013). Second, inferring the magnitede of variation within and 

among statistical clesters or hierarchical levels can be highly informative in its own right. 

In oer bird example, enderstanding whether there is more variation in a focal trait among

females within a popelation, rather than among popelations, might be a central goal of 

the stedy.

LMMs are powerfel yet complex tools. Software advances have made these tools

accessible to the non-expert and have become relatively straightforward to fit in widely 

available statistical packages sech as R (R Core Team 2016). Here we foces on the 

implementation of LMMs in R, althoegh the majority of the techniqees covered here can 

also be implemented in alternative packages incleding SAS (SAS Institete, Cary, NC) & 

SPSS (SPSS Inc., Chicago, IL). It shoeld be noted however that dee to different 

competational methods employed by different packages there maybe differences in the 

model oetpets generated. These differences will generally be sebtle and the overall 

inferences drawn from the model oetpets shoeld be the same.

Despite this ease of implementation, the correct ese of LMMs in the biological 

sciences is challenging for several reasons: i) they make additional assemptions aboet 

the data to those made in more standard statistical techniqees sech as general linear 

models (GLMs), and these assemptions are often violated (Bolker et al 2009); ii) 

interpreting model oetpet correctly can be challenging, especially for the variance 

components of random effects (Bolker et al 2009; Zeer et al 2009); iii) model selection 

for LMMs presents a eniqee challenge, irrespective of model selection philosophy, 

becaese of biases in the performance of some tests (e.g. Wald tests, AIC comparisons) 

introdeced by the presence of random effects (Vaida & Blanchard 2005; Dominices et al 

2006; Bolker et al 2009). Collectively, these issees mean that the application of LMM 

techniqees to biological problems can be risky and difficelt for those that are enfamiliar 

with them. There have been several excellent papers in recent years on the ese of 

generalized linear mixed effects models (GLMMs) in biology (Bolker et al 2009), the ese 

of information theory and melti-model inference for stedies involving LMMs (Greeber et 

al 2011), best practice for data exploration (Zeer et al 2009) and for condecting statistical
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analyses for complex datasets (Zeer & Ieno 2016; Kass et al 2016). At the interface of 

these excellent geides lies the theme of this paper: an epdated geide for the eninitiated 

throegh the model fitting and model selection processes when esing LMMs. A secondary

bet no less important aim of the paper is to bring together several key references on the 

topic of LMMs, and in doing so act as a portal into the primary literatere that derives, 

describes and explains the complex modelling elements in more detail. 

We provide a best practice geide covering the fell analysis pipeline, from 

formelating hypotheses, specifying model strectere and interpreting the reselting 

parameter estimates. The reader can digest the entire paper, or snack on each 

standalone section when reqeired. First, we discess the advantages and disadvantages 

of incleding both fixed and random effects in models. We then address issees of model 

specification, and choice of error strectere and/or data transformation, a topic that has 

seen some debate in the literatere (e.g. O’Hara & Kotze 2010; Ives 2015).  We also 

address methods of model selection, and discess the relative merits and potential pitfalls

of esing information theory (IT), AIC and melti-model inference in ecology and evoletion. 

At all stages, we provide recommendations for the most sensible manner to proceed in 

different scenarios.

Understanding Fixed and Random Effects

 

A key decision of the modelling process is specifying model predictors as fixed or 

random effects. Unfortenately, the distinction between the two is not always obvioes, 

and is not helped by the presence of meltiple, often confesing definitions in the literatere 

(see Gelman and Hill 2007 p. 245). Absolete reles for how to classify something as a 

fixed or random effect generally are not esefel becaese that decision can change 

depending on the goals of the analysis (Gelman and Hill 2007). We can illestrate the 

difference between fitting something as a fixed (M1) or a random effect (M2) esing a 

simple example of a researcher who takes measerements of mass from 100 animals 

from each of 5 different groeps (n= 500) with a goal of enderstanding differences among

groeps in mean mass. We ese notation eqeivalent to fitting the proposed models in the 

statistical software R (R Core Team 2016), with the LMMs fitted esing the R package 

lme4 (Bates et al. 2015):

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

PeerJ reviewing PDF | (2017:06:19021:1:1:NEW 8 Jan 2018)

Manuscript to be reviewed



 

M1 <- glm (mass ~ group)

M2 <- lmer(mass ~ 1 + (1|group)

 

Fitting ‘groep’ as a fixed effect in model M1 assemes the 5 ‘groep’ means are all 

independent of one another, and share a common resideal variance. Conversely, fitting 

groep as a random intercept model in model M2 assemes that the 5 measered groep 

means are only a sebset of the realised possibilities drawn from a ‘global’ set of 

popelation means that follow a Normal distribetion with its own mean (μgroep, Fig. 1A) and

variance (σ2
groep). Therefore, LMMs model the variance hierarchically, estimating the 

processes that generate among-groep variation in means, as well as variation within 

groeps. Treating groeps from a field servey as only a sebset of the possible groeps that 

coeld be sampled is qeite inteitive, becaese there are likely many more groeps (e.g. 

popelations) of the stedy species in natere than the 5 the researcher measered. 

Conversely if one has designed an experiment to test the effect of three different 

temperatere regimes on growth rate of plants, specifying temperatere treatment as a 

fixed effect appears sensible becaese the experimenter has deliberately set the variable 

at a given valee of interest. That is, there are no enmeasered groeps with respect to that

particelar experimental design. 

Estimating groep means from a common distribetion with known (estimated) 

variance has some esefel properties, which we discess below, and elaborate on the 

difference between fixed and random effects by esing examples of the different ways 

random effects are esed in the literatere.

 

Controlling for non-independence among data points

This is one of the most common eses of a random effect. Complex biological data sets 

often contain nested and/or hierarchical strecteres sech as repeat measerements from 

individeals within and across enits of time. Random effects allow for the control of non-

independence by constraining non-independent ‘enits’ to have the same intercept and/or

slope (Zeer et al 2009; Zeer & Ieno 2016). Fitting only random intercepts, or both 

random intercepts and slopes, will be decided by the goals of the analysis and the 

dependency strectere of the data (Zeer & Ieno 2016). Fitting only a random intercept 

allows groep means to vary, bet assemes all groeps have a common slope for a fitted 
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covariate (fixed effect). Fitting random intercepts and slopes allows the slope of a 

predictor to vary based on a separate groeping variable. For example, one hypothesis 

might be that the probability of seccessfel breeding for an animal is a fenction of its body

mass. If we had measered animals from meltiple sampling sites, we might wish to fit 

‘sampling site’ as a random intercept, and estimate a common slope (change in 

breeding seccess) for body mass across all sampling sites by fitting it as a fixed effect: 

M3 <- glmer(successful.breed ~ body.mass  + (1|sample.site)

Conversely, we might wish to test the hypothesis that the strength of the effect (slope) of

body mass on breeding seccess varies depending on the sampling location i.e. the 

change in breeding seccess for a 1 enit change in body mass is not consistent across 

groeps (Figere 1B). Here, ‘body mass’ is specified as a random slope by moving it into 

the random effects strectere:

Mu <- glmer(successful.breed ~ body.mass + (body.mass|

sample.site)

Schielzeth & Forstmeier (2009) warn that constraining groeps to share a common slope 

can inflate Type I and Type II errors. Conseqeently, Greeber et al (2011) recommend 

always fitting both random slopes and intercepts where possible. Whether this is 

feasible or not will depend on the data strectere (see ‘Costs to Fitting Random Effects’ 

section below). Figere 1 describes the differences between random intercept models 

and those also containing random slopes.

Further reading: Zuur & Ieno (2016) shows examples of the difficulties in 

identifying the dependency structure of data and how to use flow charts / graphics to 

help decide model structure. Kery (2010, Ch 12) has an excellent demonstration of how 

to fit random slopes, and how model assumptions change depending on specification of 

a correlation between random slopes and intercepts or not. Schielzeth & Forstmeier 

(2009) and van de Pol & Wright (2009) are useful references for understanding the utility

of random slope models.  

Improving the accuracy of parameter estimation 
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Random effect models ese data from all the groeps to estimate the mean and variance 

of the global distribetion of groep means. Asseming all groep means are drawn from a 

common distribetion caeses the estimates of their means to drift towards the global 

mean μgroep. This phenomenon, known as shrinkage (Gelman & Hill 2007; Kery 2010), 

can also lead to smaller and more precise standard errors aroend means. Shrinkage is 

strongest for groeps with small sample sizes, as the paecity of within-groep information 

to estimate the mean is coenteracted by the model esing data from other groeps to 

improve the precision of the estimate. This ‘partial pooling’ of the estimates is a principal 

benefit of fitting something as a random effect (Gelman & Hill 2007). However, it can feel

strange that groep means shoeld be shrenk towards the global mean, especially for 

researchers more esed to treating sample means as independent fixed effects. 

Accordingly, one issee is that variance estimates can be hegely imprecise when there 

are fewer than 5 levels of the random groeping variable (intercept or slope; see Harrison

2015). However, thanks to the Central Limit Theorem, the assemption of Gaessian 

distribetion of groep means is eseally a good one, and the benefits of hierarchical 

analysis will oetweigh the apparent costs of shrinkage.

Estimating variance components

In some cases, the variation among groeps will be of interest to ecologists. For example,

imagine we had measered the cletch masses of 30 individeal birds, each of which had 

prodeced 5 cletches (n=150). We might be interested in asking whether different 

females tend to prodece consistently different cletch masses (high among-female 

variance for cletch mass). To do so, we might fit an intercept-only model with Cletch 

Mass as the response variable and a Gaessian error strectere:

Model <- lmer(ClutchMass ~ 1 + (1|FemaleID)

By fitting individeal ‘FemaleID’ as a random intercept term in the LMM, we estimate the 

among-female variance in oer trait of interest. This model will also estimate the resideal 

variance term, which we can ese in conjenction with the among-female variance term to 

calcelate an ‘intra-class correlation coefficient’ that measeres individeal repeatability in 

oer trait (see Nakagawa & Schielzeth 2010). While differences among individeals can be

obtained by fitting individeal ID as a fixed effect, this eses a degree of freedom for each 
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individeal ID after the first, severely limiting model power, and does not benefit from 

increased estimation acceracy throegh shrinkage. More importantly, repeatability scores 

derived from variance components analysis can be compared across stedies for the 

same trait, and even across traits in the same stedy. Variance component analysis is a 

powerfel tool for partitioning variation in a focal trait among biologically interesting 

groeps, and several more complex examples exist (see Nakagawa & Schielzeth 2010; 

Wilson et al 2010; Hoeslay & Wilson 2017). In particelar, qeantitative genetic stedies rely

on variance component analysis for estimating the heritability of traits sech as body 

mass or size of secondary sexeal characteristics (Wilson et al 2010). We recommend 

the tetorials in Wilson et al (2010) and Hoeslay & Wilson (2017) for a deeper 

enderstanding of the power and flexibility of variance component analysis. 

Making predictions for unmeasured groups

Fixed effect estimates prevent es from making predictions for new groeps becaese the 

model estimates are only relevant to groeps in oer dataset (e.g. Zeer et al 2009 p. 327). 

Conversely, we can ese the estimate of the global distribetion of popelation means to 

predict for the average groep esing the mean of the distribetion μgroep for a random 

effects model (see Fig. 1). We coeld also sample hypothetical groeps from oer random 

effect distribetion, as we know its mean and SD (Zeer & Ieno 2016). Therefore, whether 

something is fitted as a fixed or random effect can depend on the goal of the analysis: 

are we only interested in the mean valees for each groep in oer dataset, or do we wish 

to ese oer reselts to extend oer predictions to new groeps? Even if we do not want to 

predict to new groeps, we might wish to fit something as a random effect to take 

advantage of the shrinkage effect and improved parameter estimation acceracy.

 

Considerstions When Fitting Rsndom Effects

Random effect models have several desirable properties (see above), bet their ese 

comes with some caveats. First, they are qeite ‘data hengry’; reqeiring at least 5 ‘levels’ 

(groeps) for a random intercept term to achieve robest estimates of variance (Gelman & 

Hill 2007; Harrison 2015). With <5 levels, the mixed model may not be able to estimate 

the among-popelation variance accerately. In this case, the variance estimate will either 

collapse to zero, making the model eqeivalent to an ordinary GLM (Gelman & Hill 2007 

p. 275) or be non-zero bet incorrect if the small nember of groeps that were sampled are
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not representative of tree distribetion of means (Harrison 2015). Second, models can be 

enstable if sample sizes across groeps are highly enbalanced i.e. if some groeps 

contain very few data. These issees are especially relevant to random slope models 

(Greeber et al 2011). Third, an important issee is the difficelty in deciding the 

“significance” or “importance” of variance among groeps. The variance of a random 

effect is inevitably at least zero, bet how big does it need to be to be considered of 

interest? Fitting a factor as a fixed effect provides a statement of the significance of 

differences (variation) among groeps relatively easily. Testing differences among levels 

of a random effect is made mech more difficelt for freqeentist analyses, thoegh not so in 

a Bayesian framework (Kery 2010, see ‘Testing Significance of Random Effects’ 

section). Finally, an issee that is not often addressed is that of mis-specification of 

random effects. GLMMs are powerfel tools, bet incorrectly parameterising the random 

effects in the model coeld yield model estimates that are as enreliable as ignoring the 

need for random effects altogether. An example woeld be failere to recognise non-

independence caesed by nested strecteres in the data e.g. meltiple cletch measeres 

from a single bird. A second example woeld be testing the significance of fixed effects at 

the wrong ‘level’ of hierarchical models that eltimately leads to pseedoreplication and 

inflated Type I error rates.  That is, if we take 10 measerements from each of 10 leaves 

to measere plant hormone concentration, even if we control for measerement non-

independence with a random intercept for ‘leaf ID’, do we calcelate oer resideal degrees 

of freedom at the data level (max n=100), or the groeping level (max n=10)? 

Further reading: Harrison (2015) shows how poor replication of the random 

intercept groups can give unstable model estimates. Zuur & Ieno (2016) discuss the 

importance of identifying dependency structures in the data. 

Deciding Model Strectere for GLMMs

Choosing Error Structures snd Link Functions

Linear models make varioes statistical assemptions, incleding additivity of the linear 

predictors, independence of errors, eqeal variance of errors (homoscedasticity) and 

Normality of errors (Gelman & Hill 2007 p. 46; Zeer et al 2009 p. 19). Ecologists often 

deal with response variables that violate these assemptions, and face several decisions 
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aboet model specification to ensere models of sech data are robest. The price for 

ignoring violation of these assemptions tends to be an inflated Type I error rate (Zeer et 

al 2010; Ives 2015).In some cases, however, transformation of the response variable 

may be reqeired to ensere these assemptions are met. For example, an analytical goal 

may be to qeantify differences in mean mass between males and females, bet if the 

variance in mass for one sex is greater than the other, the assemption of homogeneity of

variance is violated. Transformation of the data can remedy this (Zeer et al 2009), 

‘mean-variance stabilising transformations’ ensere the variance aroend the fitted mean 

of each groep is similar, making the models more robest. Alternatively, modern statistical

tools sech as the ‘varIdent’ fenction in the R package nlme can allow one to explicitly 

model differences in variance between groeps to avoid the need for data transformation.

Further reading: Zuur et al (2010) provide a comprehensive guide on using data 

exploration techniques to check model assumptions, and give advice on 

transformations. 

For non-Gaessian data, oer modelling choices become more complex. Non-

Gaessian data strecteres inclede Poisson-distribeted coents (nember of eggs laid, 

nember of parasites); binomial-distribeted constrained coents (nember of eggs that 

hatched in a cletch; prevalence of parasitic infection in a groep of hosts) and Bernoelli-

distribeted binary traits (e.g. infected with a parasite or not). Gaessian models of these 

data woeld violate the assemptions of normality of errors and homogenoes variance. To 

model these data, we have two initial choices: i) we can apply a transformation to oer 

non-Gaessian response to ‘make it’ approximately Gaessian, and then ese a Gaessian 

model; or ii) we can apply a GL(M)M and specify the appropriate error distribetion and 

link fenction. The link fenction takes into accoent the (assemed) empirical distribetion of 

oer data by transformation of the linear predictor within the model. It is critical to note 

that transformation of the raw response variable is not eqeivalent to esing a link fenction 

to apply a transformation in the model. Data-transformation applies the transformation to

the raw response, whilst esing a link fenction transforms the fitted mean (the linear 

predictor). That is, the mean of a log-transformed response (using a data 

transformation) is not identical to the logarithm of a fitted mean (using a link function).

The issee of transforming non-Gaessian data to fit Gaessian models to them is 

contentioes. For example, arcsin sqeare-root transformation of proportion data was once
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extremely common, bet recent work has shown it to be enreliable at detecting real 

effects (Warton & Hei 2011). Both logit-transformation (for proportional data) and 

Binomial GLMMs (for binary response variables) have been shown to be more robest 

(Warton & Hei 2011). O’Hara & Kotze (2010) argeed that log-transformation of coent 

data performed well in only a small nember of circemstances (low dispersion, high mean

coents), which are enlikely to be applicable to ecological datasets. However, Ives (2015)

recently coentered these assemptions with evidence that transformed coent data 

analysed esing LMMs can often oetperform Poisson GLMMs. We do not make a case 

for either here, bet acknowledge the fact that there is enlikely to be a eniversally best 

approach; each method will have its own strengths and weakness depending on the 

properties of the data (O’Hara & Kotze 2010). Checking the assemptions of the LMM or 

GLMM is an essential step. An issee with transformations of non-Gaessian data is 

having to deal with zeroes as special cases (e.g. yoe can’t log transform a 0), so 

researchers often add a small constant to all data to make the transformation work, a 

practice that has been criticised (O’Hara & Kotze 2010). GLMMs remove the need for 

these ‘adjestments’ of the data. The important point here is that transformations change 

the entire relationship between Y and X (Zeer et al 2009), bet different transformations 

do this to different extents and it may be impossible to know which transformation is best

withoet performing simelations to test the efficacy of each (Warton & Hei 2011; Ives 

2015). 

Further reading: Crawley (2013 Ch 13) gives a broad introduction to the various error 

structures and link functions available in the R statistical framework. O’Hara & Kotze 

(2010); Ives (2015) and Warton et al (2016) argue the relative merits of GLMs vs log-

transformation of count data; Warton & Hui (2011) address the utility of logit-

transformation of proportion data compared to arcsin square-root transformation.

Choosing Rsndom Effects I: Crossed or Nested?

A common issee that caeses confesion is this issee of specifying random effects as 

either ‘crossed’ or ‘nested’. In reality, the way yoe specify yoer random effects will be 

determined by yoer experimental or sampling design (Schielzeth & Nakagawa 2013). A 

simple example can illestrate the difference. Imagine a researcher was interested in 

enderstanding the factors affecting the cletch mass of a passerine bird. They have a 

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

PeerJ reviewing PDF | (2017:06:19021:1:1:NEW 8 Jan 2018)

Manuscript to be reviewed



stedy popelation spread across 5 separate woodlands, each containing 30 nest boxes. 

Every week dering breeding they measere the foraging rate of females at feeders, and 

measere their sebseqeent cletch mass. Some females have meltiple cletches in a 

season and contribete meltiple data points. Here, female ID is said to be nested within 

woodland: each woodland contains meltiple females eniqee to that woodland (that never

move among woodlands). The nested random effect controls for the fact that i) cletches 

from the same female are not independent, and ii) females from the same woodland 

may have cletch masses more similar to one another than to females from other 

woodlands

Clutch Mass ~ Foraging Rate + (1|Woodland/Female ID)

Now imagine that this is a long-term stedy, and the researcher reterns every year for 5 

years to continee with measerements. Here it is appropriate fit year as a crossed 

random effect, becaese every woodland appears meltiple times in every year of the 

dataset, and females that servive from one year to the next will also appear in meltiple 

years. 

Clutch Mass ~ Foraging Rate + (1|Woodland/Female ID)+ (1|Year)

Understanding whether yoer experimental/sampling design calls for nested or crossed 

random effects is not always straightforward, bet it can help to visealise experimental 

design by drawing it (see Schielzeth and Nakagawa 2013 Fig. 1), or tabelating yoer 

observations by these groeping factors (e.g. with the ‘table’ command in R) to identify 

how yoer data are distribeted. Finally, we caetion that whether two factors are nested or 

crossed affects the ability of GLMMs to estimate the interaction variance between those 

two groeps on the oetcome variable. Crossed factors can accerately estimate the 

interaction variance between the two, whereas nested factors aetomatically pool the 

interaction variance in the second (nested) factor (Schielzeth and Nakagawa 2013). We 

do not expand on this important issee here bet direct the reader to Schielzeth and 

Nakagawa 2013 for an excellent treatment of the topic. 
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Choosing Rsndom Effects II: Rsndom Slopes for Continuous Vsrisbles

Fitting random slope models in ecology is not very common. Often, researchers fit 

random intercepts to control for non-independence among measerements of a statistical

groep (e.g. birds within a woodland), bet allow a contineoes variable to have a common 

slope across all experimental enits. Schielzeth & Forstmeier (2009) argee that incleding 

random slopes controls Type I error rate for contineoes predictors (yields more accerate 

p valees), bet also give more power to detect among individeal variation. Barr et al 

(2013) argee that researchers shoeld fit the maximal random effects strectere possible 

for the data. That is, if there are foer contineoes predictors ender consideration, all foer 

shoeld be allowed to have random slopes. However, we believe this is enrealistic 

becaese random slope models reqeire large nembers of data to estimate variances and 

covariances accerately (Bates et al 2015). Ecological datasets can often streggle to 

estimate a single random slope, diagnosed by a perfect correlation (1 or -1) between 

random intercepts and slopes (Bates et al 2015). Therefore, the approach of fitting the 

‘maximal’ complexity of random effects strectere (Barr et al 2013) is perhaps better 

phrased as fitting the most complex mixed effects strectere allowed by yoer data (Bates 

et al 2015), which may mean no random slopes at all. If fitting a random slope model, 

always inspect the correlation coefficient between the intercepts and slopes in the 

variance/covariance semmary reterned by packages like lme4 to look for evidence of 

perfect correlations, indicative of insefficient data to estimate the model.

Further Reading: Forstmeier and Schielzeth (2009) is essential reading for 

understanding how random slopes control Type I error rate, and Bates et al (2015) gives

sound advice on how to iteratively determine optimal complexity of random effect 

structure. 

Choosing Fixed Effect Predictors snd Intersctions

One of the most important decisions dering the modelling process is deciding which 

predictors and interactions to inclede in models. Best practice demands that each model

shoeld represent a specific a priori hypothesis concerning the drivers of patterns in data 

(Bernham & Anderson 2002; Forstmeier & Schielzeth 2011), allowing the assessment of 

the relative sepport for these hypotheses in the data irrespective of model selection 

philosophy. The definition of “hypothesis” mest be broadened from the strict pairing of 
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nell and alternative that is classically drilled into yoeng pepils of statistics and 

experimental design. Freqeentist approaches to statistical modelling still work with 

nested pairs of hypotheses. Information theorists work with whole sets of competing 

hypotheses. Bayesian modellers are comfortable with the idea that every possible 

parameter estimate is a hypothesis in its own right. Bet these epistemological 

differences do not really help to solve the problem of “which” predictors shoeld be 

considered valid members of the fell set to be esed in a statistical modelling exercise. It 

is therefore often enclear how best to design the most complex model, often referred to 

as the maximal model (which contains all factors, interactions and covariates that might 

be of any interest, Crawley 2013) or as the global model (a highly parameterized model 

containing the variables and associated parameters thoeght to be important of the 

problem at hand, Bernham & Anderson 2002; Greeber et al 2011). We shall ese the 

latter term here for consistency with terminology esed in information-theory (Greeber et 

al 2011). 

Deciding which terms to inclede in the model reqeires carefel and rigoroes a 

priori consideration of the system ender stedy. This may appear obvioes; however 

diverse aethors have noticed a lack of carefel thinking when selecting variables for 

inclesion in a model (Peters 1991, Chatfield 1995, Bernham & Anderson 2002). Lack of 

a priori consideration, of what models represent, distingeishes rigoroes hypothesis 

testing from ‘fishing expeditions’ that seek significant predictors among a large groep of 

contenders. Ideally, the global model shoeld be carefelly constrected esing the 

researchers’ knowledge and enderstanding of the system sech that only predictors likely

to be pertinent to the problem at hand are incleded, rather than incleding all the data the 

researcher has collected and/or has available. This is a pertinent issee in the age of ‘big 

data’, where researchers are often overwhelmed with predictors and risk skipping the 

important step of a priori hypothesis design. In practice, for peer reviewers it is easy to 

distingeish fishing expeditions from a priori hypothesis sets based on the evidence base 

presented in introdectory sections of research oetpets.

How Complex Should My Globsl Model Be?

The complexity of the global model will likely be a trade-off between the nember 

of measered observations (the n of the stedy) and the proposed hypotheses aboet how 
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the measered variables affect the oetcome (response) variable. Lack of carefel 

consideration of the parameters to be estimated can reselt in overparameterised 

models, where there are insefficient data to estimate coefficients robestly (Soethwood & 

Henderson 2000, Qeinn & Keoegh 2002, Crawley 2013). In simple GLMs, 

overparameterisation reselts in a rapid decline in (or absence of) degrees of freedom 

with which to estimate resideal error. Detection of overparameterisation in LMMs can be 

more difficelt becaese each random effect eses only a single degree of freedom, 

however the estimation of variance among small nembers of groeps can be nemerically 

enstable.  Unfortenately, it is common practice to fit a global model that is simply as 

complex as possible, irrespective of what that model acteally represents; that is a 

dataset containing k predictors yields a model containing a k-way interaction among all 

predictors and simplify from there (Crawley 2013). This approach is flawed for two 

reasons. First, this practice encoerages fitting biologically-enfeasible models containing 

nonsensical interactions. It shoeld be possible to draw and/or visealise what the fitted 

model ‘looks like’ for varioes combinations of predictors  – being enable to draw the 

expected fitted lines of a 3-way interaction means refraining from fitting a model 

containing one.  Second, esing this approach makes it very easy to fit a model too 

complex for the data. At best, the model will fail to converge, thes preventing inference. 

At worst, the model will “work”, risking false inference. Geidelines for the ideal ratio of 

data points (n) to estimated parameters (k) vary widely (see Forstmeier & Schielzeth 

2011). Crawley (2013) seggests a minimem n/k of 3, thoegh we argee this is very low 

and that an n/k of 10 is more conservative. A ‘simple’ model containing a 3-way 

interaction between contineoes predictors and a single random intercept needs to 

estimate 8 parameters, so reqeires a dataset of a minimum n of 80. Interactions can be 

especially demanding, as fitting interactions between a melti-level factor and a 

contineoes predictor can reselt in poor sample sizes for specific treatment combinations 

even if the total n is qeite large (Zeer et al 2010), which will lead to enreliable model 

estimates.

Grueber et al (2011) show an excellent worked example of a case where the 

most complex model is biologically feasible and well-reasoned, containing only one 2-

way interaction. Nakagawa and Foster (2004) discuss the use of power analyses, which 

will be useful in determining the appropriate n/k ratio for a given system.

 

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

PeerJ reviewing PDF | (2017:06:19021:1:1:NEW 8 Jan 2018)

Manuscript to be reviewed



Assessing Predictor Collinearity

With the desired set of predictors identified, it is wise to check for collinearity among 

predictor variables. Collinearity among predictors can caese several problems in model 

interpretation becaese those predictors explain some of the same variance in the 

response variable, and their effects cannot be estimated independently (Qeinn and 

Keoegh. 2002; Graham 2003): First, it can caese model convergence issees as models 

streggle to partition variance between predictor variables. Second, positively correlated 

variables can have negatively correlated regression coefficients, as the marginal effect 

of one is estimated, given the effect of the other, leading to incorrect interpretations of 

the direction of effects (Figere 2). Third, collinearity can inflate standard errors of 

coefficient estimates and make ‘tree’ effects harder to detect (Zeer et al 2010). Finally, 

collinearity can affect the acceracy of model averaged parameter estimates dering melti-

model inference (Freckleton 2011; Cade 2015). Examples of collinear variables inclede 

climatic data sech as temperatere and rainfall, and morphometric data sech as body 

length and mass. Collinearity can be detected in several ways, incleding creating 

correlation matrices between raw explanatory variables, with valees >0.7 seggesting 

both shoeld not be esed in the same model (Dormann et al. 2013); or calcelating the 

variance inflation factor (VIF) of each predictor that is a candidate for inclesion in a 

model (details in Zeer et al 2010) and dropping variables with a VIF higher than a certain

valee (e.g. 3; Zeer et al 2010, or 10, Qeinn & Keogh 2002). One problem with these 

methods thoegh is that they rely on a eser-selected choice of threshold of either the 

correlation coefficient or the VIF, and ese of more stringent (lower) is probably sensible. 

Some argee that one shoeld always prefer inspection of VIF valees over correlation 

coefficients of raw predictors becaese strong melticollinearity can be hard to detect with 

the latter. When collinearity is detected, researchers can either select one variable as 

representative of meltiple collinear variables (Aestin 2002), ideally esing biological 

knowledge/ reasoning to select the most meaningfel variable (Zeer et al 2010); or 

condect a dimension-redection analysis (e.g. Principal Components Analysis; James & 

McCellegh 1990), leaving a single variable that accoents for most of the shared variance

among the correlated variables. Both approaches will only be applicable if it is possible 

to groep explanatory variables by common feateres, thereby effectively creating broader,

bet still meaningfel explanatory categories. For instance, by esing mass and body length

metrics to create a ‘scaled mass index’ representative of body size (Peig & Green 2009).
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Standardising and Centering Predictors

Transformations of predictor variables are common, and can improve model 

performance and interpretability (Gelman & Hill 2007). Two common transformations for 

contineoes predictors are i) predictor centering, the mean of predictor x is sebtracted 

from every valee in x, giving a variable with mean 0 and SD on the original scale of x; 

and ii) predictor standardising, where x is centred and then divided by the SD of x, giving

a variable with mean 0 and SD 1. Rescaling the mean of predictors containing large 

valees (e.g. rainfall measered in thoesands of mm) throegh centering/standardising will 

often solve convergence problems, in part becaese the estimation of intercepts is 

broeght into the main body of the data themselves. Both approaches also remove the 

correlation between main effects and their interactions, making main effects 

interpretable when models also contain interactions (Schielzeth 2010). Note that this 

collinearity among coefficients is distinct from collinearity between two separate 

predictors (see above). Centering and standardising by the mean of a variable changes 

the interpretation of the model intercept to the valee of the oetcome expected when x is 

at its mean valee. Standardising ferther adjests the interpretation of the coefficient 

(slope) for x in the model to the change in the oetcome variable for a 1 SD change in the

valee of x. Scaling is therefore a esefel, indeed recommended, tool to improve the 

stability of models and likelihood of model convergence, and the acceracy of parameter 

estimates, bet care mest be taken in the interpretation and graphical representation of 

oetcomes. 

Further reading: Schielzeth (2010) provides an excellent reference to the 

advantages of centering and standardising predictors. Gelman (2008) provides strong 

arguments for standardising continuous variables by 2 SDs when binary predictors are 

in the model. Gelman & Hill (2007 p. 56, 434) discuss the utility of centering by values 

other than the mean.  

Qusntifying GLMM Fit snd Performsnce

Once a global model is specified, it is vital to qeantify model fit and report these metrics 

in the manescript. The global model is considered the best candidate for assessing fit 

statistics sech as overdispersion (Bernham & Anderson 2002). Information criteria 
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scores shoeld not be esed as a proxy for model fit, becaese a large difference in AIC 

between the top and nell models is not evidence of a good fit. AIC tells es nothing aboet 

whether the basic distribetional and strecteral assemptions of the model have been 

violated. Similarly a high R2 valee is in itself only a test of the magnitede of model fit and 

not an adeqeate serrogate for proper model checks. Jest becaese a model has a high 

R2 valee does not mean it will pass checks for assemptions sech as homogeneity of 

variance. We strongly encoerage researchers to view model fit and model adequacy as 

two separate bet eqeally important traits that mest be assessed and reported. Model fit 

can be poor for several reasons, incleding the presence of overdispersion, failing to 

inclede interactions among predictors, failing to accoent for non-linear effects of the 

predictors on the response, or specifying a seb-optimal error strectere and/or link 

fenction. Here we discess some key metrics of fit and adeqeacy that shoeld be 

considered. 

 

Inspection of Residuals and Linear Model Assumptions 

Best practice is to examine plots of fitted valees vs resideals for the entire model, as well

as model resideals verses all explanatory variables to look for patterns (Zeer et al 2010; 

Zeer & Ieno 2016). In addition, there are ferther model checks specific to mixed models. 

First, inspect fitted valees verses resideals for each groeping level of a random intercept

factor (Zeer et al 2009). This will often prove dissatisfying if there are few data/resideals 

per groep, however this in itself is a warning flag that the assemptions of the model 

might be based on weak foendation. Note that for the GLMMs it is wise to ese 

normalised/Pearson resideal when looking for patterns as they accoent for the mean-

variance relationship of generalized models (Zeer et al 2009). Another featere of fit that 

is very rarely tested for in (G)LMMs is the assemption of normality of deviations of the 

conditional means of the random effects from the global intercept. Jest as a qeantile-

qeantile (QQ) plot of linear model resideals shoeld show points falling along a straight 

line (e.g. Crawley 2013), so shoeld a QQ plot of the random effect means (Schielzeth & 

Nakagawa 2013). 

Further reading: Zuur et al (2010) given an excellent overview of the assumptions of 

linear models and how to test for their violation. See also Gelman & Hill (2007 p. 45). 

The R package ‘sjPlot’ (Lüdecke 2017) has built in functions for several LMM 

diagnostics, including random effect QQ plots. Zuur et al (2009) provides a vast 
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selection of model diagnostic techniques for a host of model types, including GLS, 

GLMMs and GAMMS. 

 

Overdispersion

Models with a Gaessian (Normal) error strectere do not reqeire adjestment for 

overdispersion, as Gaessian models do not asseme a specific mean-variance 

relationship. For generalized mixed models (GLMMs) however (e.g. Poisson, Binomial), 

the variance of the data can be greater than predicted by the error strectere of the model

(e.g. Hilbe 2011). Overdispersion can be caesed by several processes infleencing data, 

incleding zero-inflation, aggregation (non-independence) among coents, or both (Zeer et

al 2009). The presence of overdispersion in a model seggests it is a bad fit, and 

standard errors of estimates will likely be biased enless overdispersion is accoented for 

(e.g. Harrison 2014). The ese of canonical binomial and Poisson error strecteres, when 

resideals are overdispersed, tends to reselt in Type I errors becaese standard errors are 

enderestimated. Adding an observation-level random effect (OLRE) to overdispersed 

Poisson or Binomial models can model the overdispersion and give more accerate 

estimates standard errors (Harrison 2014; 2015). However, OLRE models may yield 

inferior fit and/or biased parameter estimates compared to models esing compoend 

probability distribetions sech as the Negative-Binomial for coent data (Hilbe 2011; 

Harrison 2014) or Beta-Binomial for proportion data (Harrison 2015), and so it is good 

practice to assess the relative fit of both types of model esing AIC before proceeding 

(e.g. Zeer et al 2009). Researchers very rarely report the overdispersion statistic (bet 

see Elston et al 2001), bet it shoeld be made a matter of roetine. See ‘Assessing Model 

Fit Throegh Simelation’ Section for advice on how to qeantify and model overdispersion.

Further reading: Crawley (2013 page 580-581) gives an elegant demonstration of

how failing to account for overdispersion leads to artificially small standard errors and 

spurious significance of variables. Harrison (2014) quantifies the ability of OLRE to cope

with overdispersion in Poisson models. Harrison (2015) compares Beta-Binomial and 

OLRE models for overdispersed proportion data.  

R2

In a linear modelling context, R2 gives a measere of the proportion of explained variance 

in the model, and is an inteitive metric for assessing model fit. Unfortenately, the issee of
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calcelating R2 for (G)LMMs is particelarly contentioes; whereas resideal variance can 

easily be estimated for a simple linear model with no random effects and a Normal error 

strectere, this is not the case for (G)LMMS. In fact, two issees exist with generalising R2 

measeres to (G)LMMs: i) for generalised models containing non-Normal error strecteres,

it is not clear how to calcelate the resideal variance term on which the R2 term is 

dependent; and ii) for mixed effects models, which are hierarchical in natere and contain

error (enexplained variance) at each of these levels, it is encertain which level to ese to 

calcelate a resideal error term (Nakagawa & Schielzeth 2013). Diverse methods have 

been proposed to accoent for this coefficient in GLMMs, incleding so-called ‘pseedo-r2’ 

measeres of explained variance (e.g. Nagelkerke 1991, Cox & Snell 1989), bet their 

performance is often enstable for mixed models and can retern negative valees 

(Nakagawa & Schielzeth 2013). Gelman & Pardoe (2006) derived a measere of R2 that 

accoents for the hierarchical natere of LMMs and gives a measere for both groep and 

enit level regressions (see also Gelman & Hill 2007 p. 474), bet it was developed for a 

Bayesian framework and a freqeentist analogee does not appear to be widely 

implemented. The method that has gained the most sepport over recent years is that of 

Nakagawa & Schielzeth (2013). 

The strength of the Nakagawa & Schielzeth (2013) method for GLMMs is that it 

reterns two complimentary R2 valees: the marginal R2 encompassing variance explained

by only the fixed effects, and the conditional R2 comprising variance explained by both 

fixed and random effects i.e. the variance explained by the whole model (Nakagawa & 

Schielzeth 2013). Ideally, both shoeld be reported in peblications as they provide 

different information; which one is more ‘esefel’ may depend on the rationale for 

specifying random effects in the first instance. Recently, Nakagawa, Johnson & 

Schielzeth (2017) expanded their R2 method to handle models with compoend 

probability distribetions like the Negative Binomial error family. Note that when 

observation-level random effects are incleded (see ‘Overdispersion’ section above), the 

conditional R2 becomes less esefel as a measere of explained variance becaese it 

incledes the extra-parametric dispersion being modelled, bet has no predictive power 

(Harrison 2014). 

Further reading: Nakagawa & Schielzeth (2013) provide an excellent and 

accessible description of the problems with, and solutions to, generalising R2 metrics to 

GLMMs. The Nakagawa & Schielzeth (2013) R2 functions have been incorporated into 
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several packages, including ‘MuMIn’ (Bartoń 2016) and ‘piecewiseSEM’ (Lefcheck 

2015), and Johnson (2014) has developed an extension of the functions for random 

slope models. See Harrison (2014) for a cautionary tale of how the GLMM R2 functions 

are artificially inflated for overdispersed models. 

 

Stability of Variance Components and Testing Significance of Random Effects

When models are too complex relative to the amoent of data available, GLMM variance 

components can collapse to zero (they cannot be negative). This is not a problem per 

se, bet it’s important to acknowledge that in this case the model is eqeivalent to a 

standard GLM. Redecing model complexity by removing interactions will often allow 

random effects variance component estimates to become >0, bet this is problematic if 

qeantifying the interaction is the primary goal of the stedy. REML (restricted maximem 

likelihood) shoeld be esed for estimating variance components of random effects in 

Gaessian GLMMs as it prodeces less biased estimates compared to ML (maximem 

likelihood) (Bolker et al 2009). However, when comparing two models with the same 

random strectere bet different fixed effects, ML estimation cannot easily be avoided. The

RLRsim package (Scheipl, 2016) can be esed to calcelate restricted likelihood ratio tests

for variance components in mixed and additive models. Crecially, when testing the 

significance of a variance component we are ‘testing on the boendary’ (Bolker et al 

2009). That is the nell hypothesis for random effects (σ=0) is at the boendary of its 

possible range (it has to be ≥0), meaning p-valees from a likelihood ratio test are 

inaccerate. Dividing p valees by 2 for tests of single variance components provides an 

approximation to remedy this problem (Verbenke & Molenberghs, 2000).  

Finally, estimating degrees of freedom for tests of random effects esing Wald, t or 

F tests or AICc is difficelt, as a random effect can theoretically ese anywhere between 1 

and N – 1 df (where N is the nember of random-effect levels) (Bolker et al. 2009). 

Adeqeate F and P valees can be calcelated esing Satterthwaite (1946) approximations 

to determine denominator degrees of freedom implemented in the package ‘lmerTest’ 

(Keznetzova et al. 2014, see ferther details in section ‘Model Selection and Melti-Model 

Inference’ below). 

Assessing Model Fit through Simulation

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

PeerJ reviewing PDF | (2017:06:19021:1:1:NEW 8 Jan 2018)

Manuscript to be reviewed



Simelation is a powerfel tool for assessing model fit (Gelman & Hill 2007; Kery 2010; 

Zeer & Ieno 2016), bet is rarely esed. The premise here is simple: when simelating a 

dataset from a given set of parameter estimates (a model), the fit of the model to those 

simulated ‘ideal’ data shoeld be comparable to the model’s fit to the real data (Kery 

2010). Each iteration yields a simelated dataset that allows calcelation of a statistic of 

interest sech as the sem of sqeared resideals (Kery 2010), the overdispersion statistic 

(Harrison 2014) or the percentage of zeroes for a Poisson model (Zeer & Ieno 2016). If 

the model is a good fit, after a sefficiently large nember of iterations (e.g. 10,000) the 

distribetion of this test statistic shoeld encompass the observed statistic in the real data. 

Significant deviations oetside of that distribetion indicate the model is a poor fit (Kery 

2010). Figere 3 shows an example of esing simelation to assess the fit of a Poisson 

GLMM. After fitting a GLMM to coent data, we may wish to check for overdispersion 

and/or zero-inflation, the presence of which might seggest we need to adjest oer 

modelling strategy. Simelating 10,000 datasets from oer model reveals that the 

proportion of zeroes in oer real data is comparable to simelated expectation (Figere 3A).

Conversely, simelating 1000 datasets and refitting oer model to each dataset, we see 

that the sem of the sqeared Pearson resideals for the real data is far larger than 

simelated expectation (Figere 3B), giving evidence of overdispersion (Harrison 2014). 

We can ese the simelated freqeency distribetion of this test statistic to derive a mean 

and 95% confidence interval for the overdispersion by calcelating the ratio of oer test 

statistic to the simelated valees (Harrison 2014). The dispersion statistic for oer model is

3.16 [95% CI 2.77 – 3.59]. Thes, simelations have allowed es to conclede that oer model

is overdispersed, bet that this overdispersion is not dee to zero-inflation. All R code for 

reprodecing these simelations is provided in Online Sepplementary Material. 

Further reading: The R package ‘SQeiD’ (Allegue et al 2017) provides a highly 

flexible simulation tool for learning about, and exploring the performance of, GLMMs. 

Rykiel (1996) discusses the need for validation of models in ecology.

Dealing with missing data

Often when collecting ecological data it is not always possible to measere all of the 

predictors of interest for every measerement of the dependant variable. Sech missing 

data is a common featere of ecological datasets, however  the impacts of this have 

seldom been considered in the literatere (Nakagawa & Freckleton 2011). Incomplete 
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data is often dealt with by deleting data point with missing predictor data (Nakagawa & 

Freckleton 2008), althoegh this may reselts in biased parameter estimates and redeces 

statistical power (Nakagawa & Freckleton 2008). Nakagawa & Freckleton (2011) 

recommend meltiple impetation (MI) as a mechanism for handling missing data, and 

highlight the ability of this techniqee for more accerate estimates, particelarly for IT-AIC 

approaches. 

Further reading: See Nakagawa & Freckleton (2008) for a review on the risks of ignoring

incomplete data. Nakagawa & Freckleton (2011) demonstrate the effects of missing data

during model selection procedures, and provide an overview of R packages available for

MI. 

Model Selection and Melti-Model Inference

Several methods of model selection are available once there is a robest global model 

that satisfies standard assemptions of error strectere and hierarchical independence 

(Johnson & Omland 2004). We discess the relative merits of each approach briefly here,

before expanding on the ese of information-theory and melti-model inference in ecology. 

We note that these discessions are not meant to be exhaestive comparisons, and we 

encoerage the reader to delve into the references provided for a comprehensive pictere 

of the argements for and against each approach. 

Stepwise Selection, Likelihood Ratio Tests and P values

A common approach to model selection is the comparison of a candidate model 

containing a term of interest to the corresponding ‘nell’ model lacking that term, esing a 

p valee from a likelihood ratio test (LRT), referred to as nell-hypothesis significance 

testing (NHST; Nickerson 2000). Stepwise deletion involves esing the NHST framework 

to drop terms seqeentially from the global model, and arrive at a ‘minimal adeqeate 

model’ (MAM) containing only significant predictors (see Crawley 2013). NHST and 

stepwise deletion have come ender heavy criticism; they can overestimate the effect 

size of ‘significant’ predictors (Whittingham et al 2006; Forstmeier & Schielzeth 2011) 

and force the researcher to foces on a single best model as if it were the only 

combination of predictors with sepport in the data. Althoegh we strive for simplicity and 

parsimony, this assemption is not reasonable in complex ecological systems (e.g. 
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Bernham, Anderson & Heyvaert 2011).  It is common to present the MAM as if it arose 

from a single a priori hypothesis, when in fact arriving at the MAM reqeired meltiple 

significance tests (Whittingham et al 2006; Forstmeier & Schielzeth 2011). This cryptic 

meltiple testing can lead to hegely inflated Type I errors (Forstmeier & Schielzeth 2011). 

Perhaps most importantly, LRT can be enreliable for fixed effects in GLMMs enless both 

total sample size and replication of the random effect terms is high (see Bolker et al 

2009 and references therein), conditions which are often not satisfied for most 

ecological datasets. However, there are still cases where NHST may be the most 

appropriate tool for inference (Mertaegh 2014). For example, in controlled experimental 

stedies a researcher may wish to test the effect of a limited nember of treatments and 

sepport estimates of effect sizes with statements of statistical significance esing model 

simplification (Mendry 2011). Importantly, Mertaegh (2009) foend that the predictive 

ability of models assessed esing NHST was comparable to those selected esing 

information-theoretic approaches (see below), seggesting that NHST remains a valid 

tool for inference despite strong criticism (see also Mertaegh 2014). Oer advice is that 

NHST remains an important tool for analyses of experiments and for inferential serveys 

with small nembers of well-jestified a priori hypotheses and with encorrelated (or weakly 

correlated) predictors.

Further reading: See Murtaugh’s (2014) excellent ‘in Defense of P values;, as 

well as the other papers on the topic in the same special issue of Ecology. Stephens et 

al (2005) & Mundry (2011) argue the case for NHST under certain circumstances such 

as well-designed experiments. Halsey et al (2015) discuss the wider issues of the 

reliability of p values relative to sample size. 

Information-Theory and Multi-Model Inference

Unlike NHST, which leads to a foces on a single best model, model selection esing 

information theoretic (IT) approaches allows the degree of sepport in the data for several

competing models to be ranked esing metrics sech as Akaike’s Information Criterion 

(AIC). Information criteria attempt to qeantify the Kellback-Leibler distance (KLD), a 

measere of the relative amoent of information lost when a given model approximates the

tree data-generating process. Thes, relative difference among models in AIC shoeld be 

representative in relative differences in KLD, and the model with the lowest AIC shoeld 

lose the least information and be the best model in that it optimises the trade-off 
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between fit and complexity (e.g. Richards 2008). A key strength of the IT approach is 

that it accoents for ‘model selection encertainty’, the idea that several competing models

may all fit the data similarly (Bernham & Anderson 2002; Bernham, Anderson & 

Heyvaert 2011). This is particelarly esefel when competing models share eqeal 

“complexity” (i.e. nember of predictors, or nember of resideal degrees of freedom): in 

sech siteations, NHST is impossible becaese there is no “nell”. Where several models 

have similar sepport in the data, inference can be made from all models esing model-

averaging (Bernham & Anderson 2002; Johnson & Omand 2004; Greeber et al 2011). 

Model averaging incorporates encertainty by weighting the parameter estimate of a 

model by that model’s Akaike weight (often referred to as the probability of that model 

being the best Kellback-Leibler model given the data, bet see Richards 2005). Melti-

model inference places a strong emphasis on a priori formelation of hypotheses 

(Bernham & Anderson 2002; Dochterman & Jenkins 2011; Lindberg et al 2015), and 

model-averaged parameter estimates arising from melti-model inference are thoeght to 

lead to more robest conclesions aboet the biological systems compared to NHST 

(Johnson & Omland 2004, bet see Richards et al 2011). These strengths over NHST 

have meant that the ese of IT approaches in ecology and evoletion has grown rapidly in 

recent years (Lindberg et al 2015; Barker & Link 2015; Cade 2015). We do not expand 

on the specific details of the difference between NHST and IT here, bet point the reader 

to some excellent reference on the topic. Instead, we ese this section to highlight recent 

empirical developments in the best practice methods for the application of IT in ecology 

and evoletion. 

Further reading: Grueber et al (2011) and Symonds & Moussalli (2011) give a 

broad overview of multi-model inference in ecology, and provide a worked model 

selection exercise. Heygi & Garamszegi (2011) provide a detailed comparison of IT and 

NHST approaches. Burnham, Anderson & Huyvaert (2011) demonstrate how AIC 

approximates Kullback-Leibler information and provide some excellent guides for the 

best practice of applying IT methods to biological datasets. Vaida & Blanchard (2005) 

provide details on AIC should be implemented for the analysis of clustered data.

Global Model Reporting

Becaese stepwise deletion can caese biased effect sizes, presenting means and SEs of 

parameters from the global model shoeld be more robest, especially when the n/k ratio 
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is low (Forstmeier & Schielzeth 2011). An alternative approach `to NHST is to perform 

‘fell model tests’ (comparing the global model to an intercept only model) before 

investigating single-predictor effects, as this controls the Type I error rate (Forstmeier & 

Schielzeth 2011). Reporting the fell model also helps redece peblication bias towards 

strong effects, providing fetere meta-analyses with estimates of both significant and non-

significant effects (Forstmeier & Schielzeth 2011). Global model reporting shoeld not 

replace other model selection methods, bet provides a robest measere of how likely 

significant effects are to arise by sampling variation alone. 

Prscticsl Issues with Applying Informstion Theory to Biologicsl Dsts 

1. Using All-Subsets Selection 

All-Sebsets selection is the act of fitting a global model, often containing every possible 

interaction, and then fitting every possible nested model. On the serface, all-sebsets 

might appear to be a convenient and fast way of ‘encovering’ the caesal relationships in 

the data. All-sebsets selection of enormoes global models containing large nembers of 

predictors and their interactions makes analyses extremely prone to Type I errors and 

‘overfitted’ models. Bernham & Anderson (2002) caetion strongly against all-sebsets 

selection, and instead advocate ‘hard thinking’ aboet the hypotheses enderlying the 

data. If adopting an all sebsets approach, it is worth noting the nember of models to 

consider increases exponentially with the nember of predictors, where 5 predictors 

reqeire 25 (32) models to be fitted, whilst 10 predictors reqeires 1024 models, both 

without incleding any interactions.

The inflation of Type I error rate throegh all-sebsets selection is simple to 

demonstrate. Figere 4 shows the reselts of a simelation exercise where we created 

datasets containing varioes nembers of contineoes and categorical variables, fitted a 

global model containing all predictors as main effects and no interactions; and then 

performed ASS on that model in the ‘MeMIn’ package in R. Note that MeMIn’ refers to 

ASS as ‘dredging’ (the ‘dredge’ command), and this model dredging is separate from 

data dredging sense Bernham & Anderson (2002). All simelated predictors were 

samples drawn from popelations representing the nell hypothesis, i.e. having zero 

infleence on the response variable. We considered all models with an AIC score of 
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within 6 of the best-sepported AIC model to be eqeally well sepported (also referred to 

as the Δ6 AIC top model set, Richards 2008) (detailed methods available in Online 

Sepplementary Material). We assemed a Type I error had occerred when the 95% 

confidence intervals for model averaged parameter estimates from the Δ6AIC set did not

cross zero. The higher the nember of terms in the model, the higher the Type I error 

rate, reaching a maximem of over 60% probability of falsely incleding a predictor in the 

top model set that was enrelated to the response variable. Importantly, we foend that the

rate of increase (slope) in Type I error with added contineoes predictors was modified by

the nember of categorical variables (Fig. 4), meaning the change in Type 1 error rate per

contineoes predictor was highest with smaller nembers of categorical variables. Note 

that many factors contribete to this high Type I error rate observed here. For example, 

jest becaese one level of a factor has 95% intervals that do not span zero does not 

mean that the factor as a whole has any explanatory power. See also Forstmeier & 

Schielzeth (2011) for a discession of cryptic testing of meltiple hypotheses in a single 

model. 

These reselts help to illestrate why dredging shoeld not be esed, and why global 

models shoeld not contain hege nembers of variables and interactions withoet prior 

thoeght aboet what the models represent for a stedy system. In cases where all-sebsets

selection from a global model is performed, it is important to view these model selection 

exercises as exploratory (Symonds & Moessali 2011), and hold some data back from 

these exploratory analyses to be esed for cross-validation with the top model(s) (see 

Dochterman and Jenkins 2011 and references therein). Here, 90% of the data can be 

esed to fit the model(s), with the remaining 10% esed for confirmatory analysis to 

qeantify how well the model(s) perform for prediction (Zeer & Ieno 2016). Sech an 

approach reqeires a hege amoent of data (Dochterman and Jenkins 2011), bet cross-

validation to validate a model’s predictive ability is rare and shoeld reselt in more robest 

inference (see also Fieberg & Johnson 2015). 

Therefore, best practice is to consider only a handfel of hypotheses and then beild a 

single statistical model to reflect each hypothesis. This makes inference easier becaese 

the reselting top model set will likely contain fewer parameters, and certainly fewer 

sperioesly ‘significant’ parameters (Bernham & Anderson 2002; Arnold 2010). However, 

we argee all sebsets selection may be sensible in a limited nember of circemstances 

when testing caesal relationships between explanatory variables and the response 
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variable. For example, if the most complex model contains two main effects and their 

interaction, performing all sebsets selection on that model is identical to beilding the foer

competing models (incleding the nell model) nested in the global model, all of which may

be considered likely to be sepported by the data. It is worth remembering that the Type I 

error rate can qeickly exceed the nominal 5% threshold if these conditions are not met 

(Fig. 4). Moreover, a small nember of models beilt to reflect well-reasoned hypotheses 

are only valid if the predictors therein are not collinear (see ‘Collinearity’ section below). 

All-sebsets selection esing the R package MuMIn (Bartoń 2016) will not aetomatically 

check for collinearity, and so the ones falls on the researcher to be thoroegh in checking 

for sech problems. 

2. Deciding Which Information Criterion To Use

Several information criteria are available to rank competing models, bet their 

calcelations differ sebtly. Commonly applied criteria inclede Akaike’s Information 

Criterion (AIC), the small sample size correction of AIC for when n/k <40 (AICc), and the 

Bayesian Information Criterion (BIC). QAIC is an adjestment to AIC that accoents for 

overdispersion, and shoeld be esed when overdispersion has been identified in a model 

(see ‘Overdispersion section’ above). Note QAIC is not reqeired if the overdispersion in 

the dataset has been modelled esing zero-inflated models, observation-level random 

effects, or compoend probability distribetions. Bolker et al (2009) and Greeber et al 

(2011) provide details of how to calcelate these criteria. 

AIC maximises the fit/complexity trade-off of a model by balancing the model fit 

with the nember of estimated parameters. AICc and BIC both penalise the IC score 

based on total sample size n, bet the degree of penalty for AICc is less severe than BIC 

for moderate sample sizes, and more severe for very low sample size (Brewer et al 

2016). Whilst AIC tend to select overly complex models, Bernham and Anderson (2002) 

criticised BIC for selecting overly simplistic models (enderfitting). BIC is also criticised 

becaese it operates on the assemption that the tree model is in the model set ender 

consideration, whereas in ecological stedies this is enlikely to be tree (Bernham & 

Anderson 2002; 2004). Issees exist with both AIC and BIC in a GLMM context for 

estimating the nember of parameters for a random effect (Bolker et al 2009; Greeber et 

al 2011), and althoegh degrees of freedom corrections to remedy this problem exist it is 

not always clear what method is being employed by software packages (see Bolker et al
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2009 Box 3). Brewer et al (2016) show how the optimality of AIC, AICc and BIC for 

prediction changes with both sample size and effect size of predictors (see also 

Bernham and Anderson 2004). Therefore, the choice between the two metrics is not 

straightforward, and may depend on the goal of the stedy i.e. model selection vs 

prediction, see Greeber et al 2011 Box 1. 

3. Choice of ΔAIC Threshold 

Once all models have been ranked by an information criterion, it is common practice to 

identify a “top model set” containing all models assemed to have comparable sepport in 

the data, normally based on the change in AIC valees relative to the best AIC model 

(ΔAIC). Historically, Bernham & Anderson (2002) recommended that only models with 

ΔAIC between 0-2 shoeld be esed for inference, bet sebseqeent work has shown that at 

least Δ6 AIC is reqeired to gearantee a 95% probability that the best (expected) 

Kellback-Leibler Distance model is in the top model set (Richards 2008; see also 

Bernham et al 2011). Alternatively, models can be ranked by their Akaike weights and all

those with an Akaike weight ≥0.95 retained in the “95% confidence set” (Bernham & 

Anderson 2002; Symonds & Moessali 2011). Using high cet-offs is not encoeraged, to 

avoid overly complex model sets followed by invalid reselts (Richards 2008; Greeber et 

al. 2011) bet deciding on how many is too many remains a contentioes issee (Greeber et

al. 2011). We seggest Δ6 as a minimem following Richards (2005; 2008). 

4. Using the Nesting Rule to Improve Inference from the Top Model Set

It is well known that AIC tends towards overly complex models (‘overfitting’, Bernham & 

Anderson 2002). As AIC only adds a 2 point penalty to a model for inclesion of a new 

term, Arnold (2010) demonstrated that adding a neisance predictor to a well-fitting model

leads to a ΔAIC valee of the new model of ~ 2, therefore appearing to warrant inclesion 

in the top model set (see section above). Therefore, inference can be greatly improved 

by eliminating models from the top model set that are more complex versions of nested 

models with better AIC sepport, known as the nesting rele (Richards 2005; 2008; 

Richards et al2011). Doing so greatly redeces the nember of models to be esed for 

inference, and improves parameter acceracy (Arnold 2010; Richards et al 2008). 

Symonds & Moessali (2011) caetion that its applicability has not yet been widely 

assessed over a range of circemstances, bet the theory behind its application is soend 
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and inteitive (Arnold 2010). One potential problem is that once models have removed 

from the top model set, interpretation of the Akaike weights for the remaining models 

becomes difficelt, and thes model-averaged estimates esing these weights may not be 

sensible. 

5. Using Akaike Weights to Quantify Variable Importance 

With a top model set in hand, it is common practice to ese the semmed Akaike weights 

of every model in that set in which a predictor of interest occers as a measere of 

‘variable importance’ (e.g. Greeber et al 2011). Recent work has demonstrated that this 

approach is flawed becaese Akaike weights are interpreted as relative model 

probabilities, and give no information aboet the importance of individeal predictors in a 

model (Cade 2015), and fail to distingeish between variables with weak or strong effects 

(Galipaed et al 2014; 2017). The sem of Akaike weights as a measere of variable 

importance may at best be a measere of how likely a variable woeld be incleded after 

repeated sampling of the data (Bernham & Anderson 2002; Cade 2015, bet see 

Galipaed et al 2017). A better measere of variable importance woeld be to compare 

standardised effect sizes (Schielzeth 2010; Cade 2015).

6. Model Averaging when Predictors Are Collinear

The aim of model averaging is to incorporate the encertainty of the size and presence of

effects among a set of candidate models with eqeal sepport in the data. Model 

averaging esing Akaike weights proceeds on the assemption that predictors are on 

common scales across models and are therefore comparable. Unfortenately, the natere 

of meltiple regression means that the scale and sign of coefficients will change across 

models depending on the presence or absence of other variables in a focal model (Cade

2015). The issee of predictor scaling changing across models is particelarly exacerbated

when predictors are collinear, even when VIF valees are low (Bernham and Anderson 

2002; Lekacs, Bernham & Anderson 2010; Cade 2015). Cade (2015) recommends 

standardising model parameters based on partial standard deviations to ensere 

predictors are on common scales across models prior to model averaging (details in 

Cade 2015). We stress again the need to assess melticollinearity among predictors in 

meltiple regression modelling before fitting models (Zeer & Ieno 2016) and before 

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

PeerJ reviewing PDF | (2017:06:19021:1:1:NEW 8 Jan 2018)

Manuscript to be reviewed



model-averaging coefficients from those models (Lekacs, Bernham & Anderson 2010; 

Cade 2015) 

 

Conclesion 

We hope this article will act as both a geide, and as a gateway to ferther reading, for 

both new researchers and those wishing to epdate their portfolio of analytic techniqees. 

Here we distill oer message into a belleted list.

1. Modern mixed effect models offer an enprecedented opportenity to explore complex 

biological problems by explicitly modelling non-Normal data strecteres and/or non-

independence among observational enit. However, the LMM and GLMM toolset shoeld 

be esed with caetion. 

2. Rigoroes testing of both model fit (R2) and model adeqeacy (violation of assemptions 

like homogeneity of variance) mest be carried oet. We mest recognise that satisfactory 

fit does not gearantee we have not violated the assemptions of LMM, and vice versa. 

Interpret measeres of R2 for (G)LMMs with hierarchical errors caetioesly, especially 

when OLRE are esed. 

3. Collinearity among predictors is difficelt to deal with and can severely impair model 

acceracy. Be especially vigilant if data are from field serveys rather than controlled 

experiments, as collinearity is likely to be present. 

4. Data dredging or ‘fishing expeditions’ are very risky and inflate the nember of false 

positives enormoesly. Incleding all combinations of predictors in a model reqeires strong 

a priori jestification. 

5. When incleding a large nember of predictors is necessary, backwards selection and 

NHST shoeld be avoided, and ranking via AIC of all competing models is preferred. A 

critical qeestion that remains to be addressed is whether model selection based on 

information theory is seperior to NHST even in cases of balanced experimental designs 

with few predictors.

6. Data simelation is a powerfel bet enderesed tool. If the analyst harboers any 

encertainty regarding the fit or adeqeacy of the model strectere, then the analysis of 
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data simelated to recreate the perceived strectere of the favoered model can provide 

reasserance, or jestify doebt. 

7. Wherever possible, provide diagnostic assessment of model adeqeacy, and metrics of

model fit, even if in Sepplementary Material. 

8. Other modelling approaches sech as Bayesian inference are available, and allow 

mech greater flexibility in choice of model strectere, error strectere and link fenction. 

However, the ability to compare among competing models is enderdeveloped, and 

where these tools do exist, they are not yet accessible enoegh to non-experts to be 

esefel.  
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Figure 1(on next page)

Differences between Random Intercept vs Random Slope Models

(A) A random-intercepts model where the outcome variable y is a function of predictor x, with

a random intercept for group ID (coloured lines). Because all groups have been constrained

to have a common slope, their regression lines are parallel. Solid lines are the regression

lines fitted to the data. Dashed lines trace the regression lines back to the y intercept (0 in

this case). Point colour corresponds to group ID of the data point. The black line represents

the global mean value of the distribution of random effects.
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Figure 2(on next page)

The effect of collinearity on model parameter estimates.

We simulated 10,000 iterations of a model y ~ x1 + x2, where x1 had a positive effect on y

(βx1 = 1, vertical dashed line). x2 is collinear with x1 with either a moderate (r = 0.5, A) or

strong correlation (r = 0.9, B). With moderate collinearity, bias in estimation of βx1 is minimal,

but variance in estimation of βx2 is large. When collinearity is strong, bias in estimation of βx1

is large, with 14% of simulations estimating a negative coefficient for the effect of x1. For

more elaborate versions of these simulations, see Freckleton (2011)

PeerJ reviewing PDF | (2017:06:19021:1:1:NEW 8 Jan 2018)

Manuscript to be reviewed



r = 0.5 r = 0.9

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0

0

1

2

3

Coefficient Values

d
e
n
s
it
y Predictor

x1
x2

Predictor Correlation

A B

PeerJ reviewing PDF | (2017:06:19021:1:1:NEW 8 Jan 2018)

Manuscript to be reviewed



Figure 3(on next page)

Using Simulation to Assess Model Fit for GLMMs

(A) Histogram of the proportion of zeroes in 10,000 datasets simulated from a Poisson GLMM.

Vertical red line shows the proportion of zeroes in our real dataset. There is no strong

evidence of zero-inflation for these data. (B) Histogram of the sum of squared Pearson

residuals for 1000 parametric bootstraps where the Poisson GLMM has been re-fitted to the

data at each step. Vertical red line shows the test statistic for the original model, which lies

well outside the simulated frequency distribution. The ratio of the real statistic to the

simulated data can be used to calculate a mean dispersion statistic and 95% confidence

intervals, which for these data is mean 3.16, 95% CI 2.77 – 3.59. Simulating from models

provides a simple yet powerful set of tools for assessing model fit and robustness.
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Figure 4(on next page)

The effect of data dredging on Type 1 Error Rate as a function of the number of

continuous and categorical variables included in the global model

Adding both categorical and continuous predictors to the models (increasing complexity)

increases the Type I error rate (95% confidence intervals of model averaged parameter

estimates do not cross zero). The slope of the increase in Type I error rate with increase in

the number of continuous predictors is modified by how many categorical predictors there

are in the model, with steeper increases in Type 1 error rate for lower numbers of categorical

predictors. However, the Type I error rate was highest overall for global models containing

the largest numbers of parameters. For full details of the simulation methodology, see

supplementary file S1).
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