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ABSTRACT
Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar peo-
ple of the Ecuadorian Amazon. This traditional beverage made from cassava tuber
(Manihot esculenta) is thought to improve nutritional quality and flavor while ex-
tending shelf life in a tropical climate. Bacteria responsible for chicha fermentation
could be a source of microbes for the human microbiome, but little is known regard-
ing the microbiology of chicha. We investigated bacterial community composition
of chicha batches using Illumina high-throughput sequencing. Fermented chicha
samples were collected from seven Shuar households in two neighboring villages
in the Morona-Santiago region of Ecuador, and the composition of the bacterial
communities within each chicha sample was determined by sequencing a region of
the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples.
Significantly greater phylogenetic similarity was observed among chicha samples
taken within a village than those from different villages. Community composition
varied among chicha samples, even those separated by short geographic distances,
suggesting that ecological and/or evolutionary processes, including human-mediated
factors, may be responsible for creating locally distinct ferments. Our results add
to evidence from other fermentation systems suggesting that traditional fermen-
tation may be a form of domestication, providing endemic beneficial inocula for
consumers, but additional research is needed to identify the mechanisms and extent
of microbial dispersal.
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Keywords Fermentation, Microbial domestication, Food microbiology,
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INTRODUCTION
Fermentation converts simple carbohydrates into secondary compounds, including

alcohols and lactic acid, and is used by human societies worldwide as a means to improve

the flavor, nutritional value, and/or preservation of food and drinks (Campbell-Platt,

1994; Van Hylckama Vlieg et al., 2011). Fermentation is mediated by a variety of

microorganisms; for example, yeasts convert carbohydrates into carbon dioxide and

alcohol to produce alcoholic beverages, while Lactobacillus bacteria create lactic acid,
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the tangy flavor characteristic of food such as sauerkraut and yogurt. Conventional

fermentation utilizes commercially available bacteria or yeast for fermentation, often from

a single laboratory-isolated strain. In contrast, spontaneous fermentation—sometimes

called traditional or wild fermentation—exposes carbohydrates to diverse microorganisms

resident in the environment to cultivate a ferment (Campbell-Platt, 1994; Scott & Sullivan,

2008; McGee, 2013). Often, diverse communities of bacteria and yeast undergo ecological

succession in the fermentation vessel as the community structure changes in response to

conditions created by preceding species.

In a liquid-substrate ferment of cassava (Manihot esculenta), lactic-acid bacteria (LAB)

dominate throughout the process but specific composition is variable as the bacterial

byproducts increase the acidity, shifting the pH from 6.5 to around 4.5 after 48 h (Abriba

et al., 2012; Tetchi et al., 2012). LAB are commonly associated with nutrient rich-substrates

belonging to a range of plants and animals. Sources of bacteria in a lactic-acid ferment

could include inocula from the raw material (plant substrate or water), airborne dust,

fermentation tools/vessel, or bacteria introduced by humans supervising the fermentation

process. Site-specific spontaneous fermentation replicated over long periods of time has

been considered a form of microbial domestication, especially in Saccharomyces yeast

and LAB (Fay & Benavides, 2005; Suzzi, 2011; Bachmann et al., 2012). This suggests that

ecological processes inherent in spontaneous fermentation, including human-mediated

selection, could result in artisanal products unique to a particular region and cultural

practice (e.g., Iambic ales (Spitaels et al., 2014), Old World wines (Sun et al., 2009),

cheeses (Bokulich & Mills, 2013), and sourdough breads (Scheirlinck et al., 2007)).

Domestication of LAB can be demonstrated if human choice (e.g., tuber variety, batch

size, fermentation length, and individual flavor preferences), and adaptation to unique

environmental fluctuations (e.g., temperature, pH, and disturbance) result in a unique

microbial community that is consistent over time.

Chicha is a generic term for traditional fermented beverages produced by indigenous

groups throughout the Amazon basin and Andes. It can be made from a variety of starchy

plant crops including maize, cassava, and millet. Archaeologists have identified traces

of 1,600-year-old sprouted maize chicha in 150-l clay vats in the remains of a pre-Incan

civilization in Cerro-Baul, Peru, making it one of the oldest known ferments (Moseley et

al., 2005). Today, indigenous Amazonian groups continue to brew chicha (also generically

referred to as masato in some regions) from sweet cassava, also called manioc or yuca, a

staple tuber cultivar in tropical climates. Chicha from cassava is typically a low alcohol

beverage (2%–5%), with a milky consistency and somewhat sour flavor. Amongst Shuar,

chicha (nijiamanch’ in Shuar) is typically prepared over a 2–3 day period. First, the

roots of yuca are peeled, washed, and boiled until soft. Water is then drained off and

the root mashed (traditionally on a large wooden platter but now commonly in a large

metal pot) with a dedicated pestle, while the brewer masticates pieces of the yuca and

periodically spits into the mash. Recipes vary according to the brewer’s taste. For example,

different locally identified varieties of yuca can be mixed together, or yam (Dioscorea

sp.) is sometimes added. The finished mash is placed in a designated vessel to ferment
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for 1–3 days, depending on preference for sweet (slightly to unfermented) to sour (very

fermented) chicha. While traditional fermentation vessels were ceramic, today 3–5 gallon

plastic buckets are typically used. Water is then mixed with the fermented mash just prior

to serving, with consistency based on desired water to mash content.

First domesticated in neo-tropical lowland South America 8,000–10,000 years ago,

cassava continues to be a dietary staple across this region for many Amazonian forager-

horticulturalist groups (Piperno, 2011). Fermented cassava beer remains a key component

of the diet for many, with fermentation improving bioavailability and synthesis of essential

vitamins and minerals (zinc, calcium, iron and magnesium) that may otherwise be lacking

(Boonnop et al., 2009; Ahaotu, Ogueke & Owuamanam, 2011; Dilworth, Brown & Asemota,

2013). This is particularly important since chronic nutritional stress among indigenous

groups can stunt growth (Blackwell et al., 2009; Piperata et al., 2011). Furthermore,

fermentation facilitates decomposition of organic toxins such as naturally occurring

cyanides in yuca that cause weakness, hypothyroidism, and paralysis (Lei, Amoa-Awua

& Brimer, 1999).

Despite the importance and widespread consumption of chicha, no studies to date

have characterized the microbial community present in chicha using modern culture-

independent techniques. Several groups of lactic-acid bacteria including Lactobacillus spp.,

have been detected in cassava ferments using culture-dependent methods (Axelsson, 2004;

Santos et al., 2012). Other research on similar cassava ferments documented the sharpest

decrease in sugar content occurring between 24 and 48 h, corresponding with increasing

mass of LAB reaching peak CFU/g at 72 h after fermentation is initiated (Tetchi et al.,

2012). In culture-dependent sugar metabolism profiling experiments, 90% of LAB strains

isolated from a cassava ferment digest glucose, gluconate, maltose, melibiose, raffinose and

sucrose, while less than 10% of strains fermented esculin, cellobiose, glycerol, mannitol,

melizitose and rhamnose (Kostinek et al., 2005). Isolates from cassava fermentation also

exhibited high levels of hydrogen peroxide and bacteriocin production, antimicrobial

agents produced by LAB antagonistic toward closely related strains (Kostinek et al., 2007)

and toward fungal species (Adebayo & Aderiye, 2010).

Some species of Lactobacillus are considered to be beneficial to human health, given

their ability to compete with pathogens, stimulate mucus production, and bind to the

lining of the intestinal tract (Kravtsov et al., 2008; Lebeer, Vanderleyden & De Keersmaecker,

2008; Turpin et al., 2012). Certain strains also improve the uptake of nutrients by en-

hancing mineral absorption, promoting host growth factors, and degrading antinutrients

(e.g., digestion inhibitors synthesized as a plant’s self-defense against herbivores) (Turpin et

al., 2010). Commercially-isolated Lactobacillus strains are commonly added to pasteurized

dairy products such as yogurt or sold in capsule form as an increasingly popular solution

for an array of common health problems, including irritable bowel syndrome and other

conditions related to chronic inflammation of the intestinal tract (Allgeyer, Miller & Lee,

2010; Ranadheera, Baines & Adams, 2010; Yang & Sheu, 2012). In contrast, a few species

of LAB are also known producers of biogenic amines in vegetable ferments but these are

only toxic in high concentrations when they accumulate in ferments lasting several weeks
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(Halász et al., 1994). Traditional amylaceous (starch-based) ferments such as chicha may

contain novel strains of Lactobacillus that might be a source of microbes in indigenous

populations (Aro, 2008; Chelule, Mokoena & Gqaleni, 2010; Chelule et al., 2010; Van

Hylckama Vlieg et al., 2011). Much is known about the health benefits of certain strains

but these cannot be generalized across all species of LAB since specific characteristics can

vary dramatically (Makarova et al., 2006; Turpin et al., 2010).

Just as in any ecosystem, bacterial communities in fermented foods are shaped by

a variety of ecological processes, including environmental selection and dispersal, that

select for a subset of potential inhabitants from a metacommunity (a set of communities

linked by dispersal of multiple, interacting species). Lactic-acid bacteria in spontaneous

ferments have the unique ability to survive both nutrient saturation and starvation,

suggesting that some Lactobacilli are well adapted to fermentation of food both inside

and outside the gastrointestinal tract (Ganesan, Dobrowolski & Weimer, 2006; Suzzi, 2011;

Van Hylckama Vlieg et al., 2011). Recent research shows spatial diversification of bacteria

and yeast populating artisan cheese cultures that correlate with those of specific surfaces

in the processing facility (Bokulich & Mills, 2013), hinting at the possibility that microbial

communities undergo geographic divergence in human-mediated ecosystems. However,

it is unclear whether bacterial community composition in a small-batch spontaneous

ferment shows spatial diversification that would suggest incidental domestication.

To examine geographic variation in spontaneous ferments, we collaborated with

an indigenous group of Shuar (as part of the Shuar Health and Life History Project

[http://www.bonesandbehavior.org/shuar/]) engaged in a forager-horticulturalist lifestyle

in the remote Cross-Cutucú region of the Ecuadorian Amazon. We assessed phylogenetic

similarity of bacterial communities in chicha batches from households in two villages to

determine whether: (1) a ferment from one house was significantly different than ferments

from neighboring households in the same village, and; (2) ferments from different

households in the same village were more similar to each other than to batches from

households in a different village.

MATERIALS & METHODS
Population and location
All samples were collected in the Cross-Cutucú region of the neo-tropical lowlands of

southeastern Ecuador, which lies east of the Cutucú Mountains along the Morona river

drainage. This region has an annual rainfall of more than 4,000 mm (158 inches) and

average daytime temperatures of 29 ◦C (85 ◦F) (Kricher, 1999).

The Shuar of this region are an indigenous forager-horticulturalist group who live

primarily in small riverine villages. They are a natural fertility population and traditionally

lived in scattered matrilocal household clusters in traditional thatch-wall, earthen-floor

houses (Karsten, 1935; Descola, 1996; Rubenstein, 2001), although plank houses with tin

roofs are becoming more common. Present day subsistence remains based on horticulture,

fishing, hunting and gathering, yet they are currently experiencing increasingly rapid

infrastructure development and market integration as a result of regional economic
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development (Blackwell et al., 2009; Liebert et al., 2013). However the villages in the present

study subsist with limited daily access to markets or exposure to economic development.

Rates of infectious disease remain high throughout this population, accounting for 15%

adult mortality in 2008 (World Health Organization, 2011; McDade et al., 2012). Further,

Cepon-Robins et al. (2013) reported that 65% of the population in this particular region

is infected with parasitic worms, with even higher prevalence among children. Stunting

among children is a common public health concern, and is relevant to ongoing studies

investigating metabolic health in the context of economic transitioning populations

(Santos & Coimbra, 2003; Foster et al., 2005; Orellana et al., 2009; Blackwell et al., 2009;

Liebert et al., 2013) making nutrition-related health research a high priority in this region.

Sample collection
We collected samples in two villages in the Cross-Cutucú region of Morona Santiago,

Ecuador. Village 1 (V1; pop. 50) is located approximately one to four hours by motorized

canoe (depending on water levels) from the nearest port with road access. A nearby spring

located upstream from the village provides water for bathing and cooking. Village 2 (V2;

pop. 400) is located twenty-minutes by foot from V1 (including a bridgeless river crossing).

Water is pumped from the river to a reserve that flows through pipes to some houses. In

both villages, each household has their own chicha ferment, containing brews that are

commonly maintained by the resident women. New batches are produced every 3–5 days

or as needed.

We collected 2 mL of mature chicha from five households in V1 and two households

in V2, during August 2012 (sample volume was limited due to limited freezer space on

site). Over a period of two weeks, we collected samples from each of these seven ferments

up to three times, each representing independent batches (with a shared starter culture).

Fermentation maturity of samples was confirmed with litmus paper ensuring a pH range

between 4.0 and 4.5 (Luedeking & Piret, 1959; Santos et al., 2012). We sampled 300 mL

of spring water (concentrated on a 0.45 µm pore, cellulose acetate filter) that residents

in V1 use to prepare chicha. We were unable to collect water from V2 due to equipment

malfunction. All samples were immediately frozen (−20 ◦C) before being transported and

stored at the University of Oregon until they were processed. All samples were examined

under a light microscope for evidence of helminth eggs or macrophages.

Ethics statement
This study was conducted in Shuar villages located within Canton Tiwintza, Morona

Santiago, Ecuador. Research for the Shuar Health and Life History project was authorized

in a letter provided by the Federación Interprovincial de Centros Shuar (FICSH). No

human data was gathered as part of this project, and the bacterial data gathered was purged

of human mitochondrial sequences by removing all sequences classified within the Order

Rickettsiales before archiving. Genetic material resulting from this research will never be

used for human DNA research or commercial cell-line patenting.
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Bacterial DNA extraction and sequencing
Whole genomic DNA was extracted from all samples using MO BIO Power Plant Pro

kit including phenol separation solution step (MO BIO Laboratories, Carlsbad, CA)

and amplified on the V4 region of the 16S rRNA (F515/R806 primer combination:

5′-GTGCCAGCMGCCGCGGTAA-3′, 5′-TACNVGGGTATCTAATCC-3′) (Caporaso et al.,

2010). DNA amplifications were performed in triplicate and pooled prior to sequencing.

The reverse primer included a 12 bp Golay barcode for demultiplexing in downstream

analysis. PCR conditions followed Caporaso et al. (2010). Amplicons were purified using

gel electrophoresis and the MO BIO UltraClean GelSpin DNA extraction kit. Equal

amounts of purified amplicons from each sample were pooled and sent to the Dana

Farber Cancer Institute Molecular Biology Core Facility (http://www.dana-farber.org),

to be sequenced on the Illumina MiSeq platform using a paired-end 250 bp protocol.

All sequences have been deposited in the MG-RAST archive under accession numbers

4545634.3–4545652.3.

Sequence processing and statistical analysis
Sequence processing was conducted in QIIME (Caporaso et al., 2010) using

MacQiime (version 1.6.0, http://www.wernerlab.org/software/macqiime; QIIME,

RRID:OMICS 01521). Quality filtered forward reads (Phred score > 20; 250 bp) were

binned with barcodes corresponding to the respective sample IDs. Operational taxonomic

units (OTUs) were assigned at 99% genetic similarity. Representative OTU sequences

were aligned to the Greengenes database (October 2012 version) and assigned taxonomic

nomenclature with an RDP classifier. We rarified all samples to 19,000 sequences for even

sampling depth; two samples significantly below that threshold were omitted from further

analysis.

We also conducted a manual BLAST search against the NCBI 16S isolate database for the

top 10 OTUs for exploratory purposes (NCBI BLAST, RRID:nlx 84530). We included these

species-level NCBI database matches for visualization and reporting. Results from OTU

clustering matched to the Greengenes database using an RDP classifier within the QIIME

pipeline were used for all analysis purposes.

Community similarity was calculated in two different ways: with the phylogeny-based

UniFrac metric (unweighted), and by calculating the number of OTUs shared between

samples. Unweighted UniFrac uses phylogeny-based branch lengths generated from our

rarified dataset, comparing their fractions between samples to quantify dissimilarity

between communities without regard for species abundance. We determined if differences

were significant using PERMANOVA (Adonis method) in QIIME. Using the UniFrac ma-

trix, we generated a PCoA plot in QIIME and included it as Fig. 4. We then used the QIIME

generated OTU table to conduct a one-way ANOVA in SPSS (SPSS, RRID:rid 000042,

version 20.0.0) to investigate differences in the number of shared OTUs across households

and across villages (Fig. 3).
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Figure 1 All chicha samples were dominated by Lactobacillus spp. OTU predicted identities are from a
manual BLAST search against the NCBI 16S isolate database. We found ten OTUs with greater than 1%
relative abundance. This barplot shows the relative abundance (%) of ten most common bacteria isolates
for each sample. Up to three independent batches were sampled for each house (e.g., H1a–H1c). Eleven
samples were analyzed from Village 1 and three from Village 2.

RESULTS
We generated a total of 1,055,214 barcoded sequences 249 base pairs in length. Sequences

were quality filtered and rarefied to 19,000 OTUs per sample. The nineteen samples used

for analysis represent one to three chicha batches from each of 7 different households (five

from Village 1 and two from Village 2). Clustering of OTUs revealed that members of

the genus Lactobacillus dominated the bacterial communities in all samples (Fig. 1). Of

the ten most abundant OTUs across samples, nine were Lactobacillus; the other was an

Acetobacter. These 10 OTUs each represented >1% of each sample, collectively accounting

for 71% of the sequences in all samples. The top two most abundant species predicted

through a BLAST search on the NCBI database, L. acidophilus and L. reuteri, account for

51% of the entire dataset (Fig. 2). Two of the most abundant Lactobacillus OTUs were

less than 98% similar to existing isolates in the NCBI database, potentially suggesting the

presence of previously undescribed taxa, though we were not able to assess this with short

16S sequence reads. Figure 2 provides a descriptive table of the most abundant species, as

predicted by a BLAST search in the NCBI 16S isolate database, as well as an isolate source

habitat for each.

The bacterial communities detected in water samples had higher phylum level

diversity than chicha (Supplemental Information; 127,558 OTUs per sample). Whereas

Lactobacillaceae dominated chicha, Delftia acidovorans (NC 010002), a member of the

Comamonadaceae first isolated from a sewage treatment plant (Schleheck et al., 2004),

was the most abundant OTU encountered in water (Supplemental Information; 18.4%).

The bacteria most commonly shared between water and chicha were species within the

genus Acetobacter. This clade oxidizes alcohol and sugar to create acetic acid and some

members of this genus have been found in traditional balsamic vinegar production (Gullo,

De Vero & Giudici, 2009). Overall, community composition of chicha was very different
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Figure 2 All chicha samples were dominated by Lactobacillus spp. We report the NCBI accession number and the environment where isolates with
the closest match to our OTUs were identified. Many of these Lactobacillus species were also identified in the human intestinal tract. Lactobacillus
acidophilus and Lactobaccillus reuteri make up 51% of all OTUs in our rarified chicha samples. Collectively, these ten OTUs account for 71%
cumulative abundance for all samples. “Unknown” samples had no match above 97% similarity to an existing NCBI submission.

Figure 3 Chicha from the same village contain more shared OTUs. We counted shared OTUs between
every possible combination of chicha samples. The average number of matching OTUs between samples
that are paired within the same village was significantly higher than those paired from different villages.
We considered chicha samples from different batches within the same house as independent since there
was no significant difference by house. They are grouped together in this figure for visualization purposes.

from water, indicating the bacterial population is driven by more than just the water

source.

The bacterial community in an unfermented sample is dominated by Bacillus (64%) and

chloroplast (22%) clusters (Fig. 1), presumably from the plant’s genetic material before

it is degraded during boiling and fermentation. We opted to leave chloroplast sequences

in the dataset since levels were negligible in mature ferments (<1%), and the abundance

in the unfermented sample is potentially informative (Supplemental Information). Low

levels of Lactobacillus are present in the unfermented sample (1.5%) but the increase in
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Figure 4 Principle coordinate analysis by village. A PERMANOVA (Adonis) on an unweighted UniFrac
dissimilarity matrix shows significant differences in bacterial populations when grouped by village
(F1,12 = 1.11, R2

= 0.08; p = 0.038). While several of the samples from Village 1 are closely clustered
those from Village 2 are relatively more spread out, suggesting higher variance could partially explain
the significant results. More samples, evenly distributed between villages, will likely be needed to better
understand the extent and pattern of site-specific differences.

Lactobacillus sequences in the finished product is accompanied by a dramatic reduction in

the OTUs found in the unfermented sample.

Since this population is known to carry a high parasite burden (Cepon-Robins et al.,

2013), we examined our samples for evidence of viable parasites. No helminth eggs

or macrophages were detected in the samples. However, the samples underwent two

freeze-thaw cycles before microscopic examination, which is known to reduce visibility

of parasites. Additional research is needed before we can present any evidence that

fermentation affects the transmission of parasites.

Bacterial communities in chicha were significantly different across the two villages

(Fig. 4; F1,12 = 1.11, R2
= 0.08; p = 0.038; from PERMANOVA on unweighted UniFrac

dissimilarity matrix), but they were not significantly different across households within a

village (F5,8 = 0.38, p = 0.73). Water samples were significantly different from the chicha

samples (Supplemental Information: F1,17 = 8.25, p = 0.005). More OTUs were shared

between households within a village than across villages (Fig. 3: MDifferentVillage = 7.44,

MSameVillage = 8.31, F1,89 = 4.11, p = 0.046), but batches from the same household did
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Figure 5 Conceptual model of microbial exchange between human cultivators and a locally distinct
ferment. Spontaneous fermentation is an ecological phenomenon driven by distance-limited dispersal,
human- mediated selection, and stochastic succession that may explain geographically diversified lactic
acid fermentation. Over many generations, this process can be considered a process of microbial domes-
tication if microbe assemblages are consistently distinct.

not have more OTUs in common than they did with other batches from houses in the same

village (MDifferentHouse = 7.93, MSameHouse = 8.27, F1,89 = 0.28, p = 0.60).

DISCUSSION
Humans continuously and intimately interact with microorganisms. This study

demonstrates that spontaneous, or traditional, fermentation promotes a diversity of

microorganisms, including some Lactobacillus strains that may potentially interact with

human and environmental microbes during production and consumption. Spontaneous

fermentation and consumption of its product can be a microbial exchange between the

environment and the human microbiome that is mediated by human behavior, abiotic

factors, and random chance (Fig. 5). The microbial community of chicha could be initiated

from a variety of sources including saliva added to each new batch, tools and vessels that

may contain remnants or bacterial residue from a previous ferment, the water added to

thin the cassava mash, the substrate of the raw material, or the household and airborne

environment. In turn, ferments by lactic acid bacteria are consumed and become a

potential source of microbes for the human body. While not all LAB confer benefits, many
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Lactobacilli have been positively associated with human health. (Dethlefsen, McFall-Ngai

& Relman, 2007; Costello et al., 2009; Spor, Koren & Ley, 2011; Human Microbiome Project

Consortium, 2012; Linnenbrink et al., 2013). All of the numerically dominant OTUs we

detected in chicha were related to Lactobacillus species that have also been reported in

the human oral and fecal microbiome (Dewhirst et al., 2010). Our conclusions are based

on short reads so a much more detailed study is necessary to determine if any of the

Lactobacillus taxa we detected might confer health benefits or even successfully assimilate

into the human microbiome.

Lactic-acid bacteria are found in association with nutrient rich environments on

animals and plants. While some strains produce biogenic amines that can be detrimental to

human health (Halász et al., 1994), other research highlights positive effects of consuming

LAB in moderate amounts. In the human intestinal tract, high rates of adhesion to the

mucus membrane allow for direct interface with the human intestine, and have been

shown to protect against pathogens, modulate immune response, and promote mucus

secretions to soothe the intestinal lining. In addition, lactic-acid bacteria provide digestion

assistance, improving vitamin and mineral bioavailability while degrading antinutrients

and other phytotoxins such as cyanide (Campbell-Platt, 1994; Westby, Reilly & Bainbridge,

1997; Aro, 2008; Chelule, Mokoena & Gqaleni, 2010; Turpin et al., 2010).

To better understand the spatial and household variability in microbial community

composition in spontaneous ferments, we were interested in knowing if bacterial

composition showed phylogenetic divergence over geographic space. We observed that the

bacterial communities in chicha were more similar within a village than between villages

(p = 0.038). This variation could result from a combination of mechanisms, including

distance-limited dispersal, stochastic succession (including horizontal gene-transfer),

and human-mediated selection. Since our sample size is modest, we recognize that the

significant difference we found could be driven by one particular sample (Fig. 1) but our

Adonis results are supported by our ANOVA analysis showing significant within-village

OTU overlaps, strengthening evidence for higher rates of bacterial similarity within a

village.

We observed that chicha is generously shared with neighbors within a village so it is

not surprising that we did not see significant phylogenetic dissimilarity at the household

level. Dispersal between chicha ferments could occur if starter cultures are mixed or if a

brewer contributes saliva to her neighbor’s chicha. Based on ethnographic evidence, oral

microbiome swapping is actually more likely to happen during consumption, when the

drinking cup, pilchis, are passed around a social gathering and dipped repeatedly into the

fermentation vessel after each individual takes a drink. Distance and geographic barriers

(e.g., a bridgeless river in our case) limit social interaction and subsequently the oppor-

tunity for dispersal between the two villages, which may partially explain the observed

variation in the bacterial community (Bokulich & Mills, 2013; Linnenbrink et al., 2013).

Each new chicha batch represents a unique opportunity for succession, which could

be contingent on the order and frequency of species arrival. In addition, competition

between microbes, abiotic conditions, rate of horizontal gene transfer, and random chance
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could all shape the communities within each chicha vessel. The water source used in the

fermentation vessel (V1: hauled in vessels from a spring; V2: piped to outdoor spigots

near houses from a reservoir) may represent a source of either facilitative or competing

microbes that could influence the final composition of the ferment. Since households

within a village rely primarily on the same water source, this could help explain why

chicha is more similar within a village but not within an individual household. It is

possible that soil differences between gardens or village areas could yield variation in

the plant-associated bacteria present on the raw material, but this seems unlikely since the

raw material is peeled and boiled in preparation for fermentation, although contamination

of pre-boiled product via tools and skin is possible.

Differences in ferment cultivation practice between the two villages may also contribute

to variation (human-mediated selection). Expressions among the Shuar such as “the

prettiest girls makes the best chicha” suggest individuality, personal preferences, or oral

hygiene could also play a role in the cultivation of this ferment. The addition of saliva could

be another source of variance, particularly if genetic or lifestyle differences contribute to

distinct oral microbiome communities. Finally, any bacteria leftover in the fermentation

vessel or on the tools used to make the mash may act as a starter culture for each new batch.

Although beyond the scope of this article, it is tempting to speculate that distinct bacterial

communities may be maintained over time, and that the combination of these factors

suggest an example of microbial domestication.

These three processes, human-mediated selection, distance-limited dispersal, and

stochastic variance help explain the cross-sectional bacterial community variation we

observed in chicha. If site-specific bacteria communities are consistent over time this would

indicate that the ferment may be a player in a co-evolutionary relationship with human

and environmental microbes (Fig. 5), but future work with higher sample size is necessary

to explore these ideas in greater depth.
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