Effects of sandfish (Holothuria scabra)
removal on shallow-water sediments

in Fiji

Steven Lee'?, Amanda K. Ford'*, Sangeeta Mangubhai’, Christian Wild” and
Sebastian C.A. Ferse'”

! Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
? Faculty of Biology and Chemistry (FB2), University of Bremen, Bremen, Germany
* Fiji Country Program, Wildlife Conservation Society, Suva, Fiji

ABSTRACT

Sea cucumbers play an important role in the recycling and remineralization of organic
matter (OM) in reef sands through feeding, excretion, and bioturbation processes.

Growing demand from Asian markets has driven the overexploitation of these animals
globally. The implications of sea cucumber fisheries for shallow coastal ecosystems

and their management remain poorly understood. To address this knowledge gap, the
current study manipulated densities of Holothuria scabra within enclosures on a reef
flat in Fiji, between August 2015 and February 2016, to study the effects of sea cucumber
removal on sedimentary function as a biocatalytic filter system. Three treatments were
investigated: (i) high density (350 g m~2 wet weight; ca. 15 individuals); (ii) natural
density (60 g m~2; ca. 3 individuals); and (iii) exclusion (0 g m~2). Quantity of sediment
reworked through ingestion by H. scabra, grain size distribution, O, penetration depth,
and sedimentary oxygen consumption (SOC) were quantified within each treatment.
Findings revealed that the natural population of H. scabra at the study site can rework ca.
10,590 kg dry sediment 1,000 m 2 year‘l; more than twice the turnover rate recorded
for H. atra and Stichopus chloronotus. There was a shift towards finer fraction grains in
the high treatment. In the exclusion treatment, the O, penetration depth decreased by
63% followinga 6 °C increase in water temperature over the course of two months, while

_ in the high treatment no such change was observed. SOC rates increased ca. two-fold
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INTRODUCTION

Marine coastal ecosystems are among the most productive and diverse on earth (Poore ¢
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were removed from these ecosystems (Lohrer, Thrush e Gibbs, 2004; Solan et al., 2004). A
loss in bioturbation (the biogenic mixing of sediment) has been demonstrated following
the reduction in abundance and diversity of marine benthic fauna (Solan et al., 2004).
This loss is of particular concern as bioturbation has a substantial influence on the rate
of organic matter (OM) decomposition and nutrient recycling (Meysman et al., 2006).
Efficient processing of OM and nutrients in marine coastal ecosystems is crucial to the
health and productivity of these ecosystems, and as such is vital to the coastal communities
dependent on them.

The majority of OM in marine coastal ecosystems is trapped in permeable reef sands
and degraded by the infaunal community, particularly high densities of sand-associated
microbes (Wild et al., 2004). Due to the high surface area of permeable carbonate reef
sands and advective flow into and within the sediment, these sandy sediments promote
efficient degradation of OM (Wild et al., 2004; Wild, Laforsch ¢ Huettel, 2006). Such sandy
sediments have consequently been referred to as a biocatalytic filter system, promoting
critical recycling processes (Wild, Tollrian & Huettel, 2004; Huettel, Wild & Gonelli, 2006).
Benthic-pelagic coupling implies that changes in the OM concentration of overlying
water are integrated and reflected in sediments, and furthermore implies that changes in
sediment OM composition affect the overlying water quality (Wild, Tollrian ¢ Huettel,
2004). Thus, the efficient functioning of this biocatalytic filter system provides coastal
ecosystems—which are increasingly stressed by OM enrichment from anthropogenic
inputs (Halpern et al., 2008; Rabalais et al., 2009)—with buffering capacity. Without the
capacity of the system to buffer increasing OM loads, the health of coastal ecosystems could
be compromised, resulting for example in shifts from hard coral- to algal-dominated reefs
(Fabricius, 2005; D’Angelo & Wiedenmann, 2014).

Coral reefs are a critically important component of coastal ecosystems for the ecosystem
services and goods they provide, such as fisheries, coastal protection, and nutrient cycling
(Moberg & Folke, 1999). Inshore reefs and their associated ecosystems receive a considerable
amount of OM from rivers and marine sources. The quantity of OM that reaches inshore
reefs increases following heavy rainfall and flooding events (Briand et al., 2015), delivering
a ‘pulse’ of OM that places further stress on the ecosystem. The efficiency of the system to
absorb this stress and act as a biocatalytic filter is dependent on a number of factors including
temperature, OM supply, light, water currents, and bioturbation (Kristensern, 2000).
Bioturbation is particularly important for the efficiency of this filter system (Kristensen,
2000) as it increases the surface area of the sediment, breaks down geochemical gradients,
and maximizes advective flow into the sediment (Thibodeaux ¢ Boyle, 1987; Kristensen,
20005 Lohrer, Thrush & Gibbs, 2004; Meysman, Middelburg ¢ Heip, 2006).

Deposit feeding sea cucumbers mainly of the order Holothuriida potentially play
a significant role in enhancing OM mineralization through bioturbation as well as
through feeding and excretion (Uthicke, 1999; Uthicke, 2001a; Uthicke, 2001b; Purcell,
2004; Wolkenhauer et al., 2010; MacTavish et al., 2012). Whilst sea cucumbers were once
a ubiquitous component of many coastal marine benthic communities, growing demand
from Asian markets for their dried form—known as béche-de-mer—has driven their
overexploitation, leading to population collapse and local extinctions throughout the
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Indo-Pacific (e.g., Toral-Granda, Lovatelli ¢, Vasconcellos, 2008 5 Friedman et al., 2009;
Friedman et al., 2011; Purcell et al., 2013). Sandfish, Holothuria scabra (Jaeger, 1833), is one
of the highest valued species in the béche-de-mer trade (Purcell, 2014). Individuals of this
species are easily accessible to fishers as they generally inhabit low energy environments
behind fringing reefs or within protected bays and shores (Hamel et al., 2001), rendering
the species particularly vulnerable to overexploitation. H. scabra exhibits a natural diurnal
burying cycle and ingests a considerable amount of sediment during feeding, thus playing
a key role in bioturbation (Mercier, Battaglene ¢» Hamel, 1999; Purcell, 2004). Historically
this species was found in densities of up to 2 individuals m=2 (Hamel et al., 2001), implying
that its bioturbation impact on inshore reef habitats is likely to have been substantial.

Inshore reef ecosystems are very dynamic environments in which conditions exhibit a
large variation of temperature, salinity, turbidity, and wave energy, all of which influence
sediment function and sea cucumber behavior (Mercier, Battaglene ¢» Hamel, 1999;
Mercier, Battaglene ¢ Hamel, 2000). Initial studies investigating the ecological roles of sea
cucumbers and sediment function have mainly been conducted ex situ or using mesocosms
(e.g., Uthicke, 1999). Given the nature of inshore reef ecosystems, in situ studies are required
to obtain more realistic results (see Wolkenhauer et al., 2010; Namukose et al., 2016).

Sedimentary O, consumption (SOC) and sediment O, penetration depth (OPD)
provide a proxy for the function of sediment as a biocatalytic filter system. SOC reflects
the respiration of the entire sedimentary community contained in a core and integrates
OM deposited from the overlying water column (Nickell et al., 2003). O, penetration depth
(OPD) determines the REDOX reactions occurring within the sediment, and thus the
volume of sediment effectively participating in aerobic OM decomposition (Glud, 2008).
Furthermore, sea cucumber feeding can alter grain size distribution through dissolution of
calcium carbonate via acidity and potentially abrasion processes in their gut (Hammond,
19815 Schneider et al., 2011). As the composition of sediment grain size influences sediment
O, dynamics (Urumovic & Urumovic, 2014), changes in grain size distribution caused by
sea cucumbers may account for changes in SOC and OPD.

The current study aimed to understand how the removal of sea cucumbers affects
sedimentary function through in situ experimental manipulations of H. scabra densities,
thus providing information on the poorly understood ecological implications of sea
cucumber fisheries. We hypothesized that high densities of H. scabra would facilitate the
efficient degradation of OM. Thus, in areas with H. scabra, SOC rates were expected to
decrease or remain relatively lower, and OPD was expected to increase compared to those
areas devoid of H. scabra. Finally, sediment turnover—the amount of sediment ingested
by H. scabra—was quantified as a proxy for the bioturbation potential of the animal.

METHODS
Study site

The experiment was conducted between August 2015 and February 2016 on an extensive
reef flat in front of Natuvu village, Wailevu East District, Vanua Levu, Fiji (16°44.940'S
179°9.280'E) (Fig. 1). The reef flat was part of the locally-managed marine area (LMMA)
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Figure 1 Map of the study site. Location of Wailevu East District, Vanua Levu, Fiji (A), and the location
of the study site (Natuvu) as indicated by a triangle (B).
Full-size Gal DOL: 10.7717/peerj.4773/fig-1

of the local villages. The entire reef flat covered an area of roughly 1.2 km?, and contained
a tabu area (periodically harvested closure). This tabu area supported a relatively high
density of H. scabra compared to the wider region, which was closer to regional reference
values (Pakoa et al., 2013). The remoteness of the study site and lack of electricity and
infrastructure unfortunately prohibited reliable OM measurements.

A pilot survey of the site using 100 m x 2 m belt transects was conducted various times
throughout the day and night, and during various tides in order to optimize estimates of the
population density, and burying and feeding behavior of H. scabra throughout a 24 h cycle.

Enclosure design and construction
Sixteen square plots were demarcated on the reef flat, comprising four treatments: three
types of enclosures and one control (n =4 treatment—1). Treatments included (i) high
density (high) (ca. 350 g m~2—based on the in situ carrying capacity for H. scabra)
(Namukose et al., 2016; Lavitra, Rasolofonirina ¢ Eeckhaut, 2010; Purcell & Simutoga, 2008;
Battaglene, Evizel ¢ Ramofafia, 1999), (ii) exclusion (exclusion) (0 g m~?—simulating
overexploitation), (iii) natural density (natural) (ca. 60 g m~>—determined by a pilot
survey at the study site), and (iv) control plots (uncaged control, plots without mesh).
Comparing between natural density cages and uncaged control treatments, which had the
same density of sea cucumbers, allowed assessing the effect of the presence of mesh cages.
Enclosures were stocked with H. scabra of length ca. 15 cm, which equates to ca. 200 g ind~!,
as this was the most common length of H. scabra in the general area where enclosures were
situated. Stocking densities were monitored six days per week and enclosures restocked if
necessary. Ca. 15 H. scabra were maintained in high-density enclosures and approximately
three in natural-density enclosures. All animals used to stock enclosures were collected
from beyond 500 m outside the study site.

The lengths and weights of H. scabra were recorded following similar methods used
by Seeto (1994) and Al-Rashdi, Claereboudt ¢» Al-Busaidi (2007). H. scabra individuals
were removed from the water and allowed to initially contract and expel water, which
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happened almost immediately following handling (<3 s). The animal’s length was recorded
from anus to mouth by placing a ruler along its ventral surface. All measurements were
recorded to the nearest centimeter. The specimens were then placed into containers filled
with water from the site. Water in the containers was continuously exchanged to reduce
stress on the animals. All H. scabra of the same length were kept together in containers.
Following each collection, the animals were taken ashore and weighed on a digital scale
(£0.02 g) to the nearest gram. Time from initial capture to weighing was no longer than 1 h.
Individuals were allowed to contract and expel water before being weighed, as described
above. Following weighing, all sea cucumbers were released back to the site.

Enclosures (3 x 3 m) were designed according to recommendations by Miller & Gaylord
(2007) in order to minimise cage effects. Each enclosure was constructed using eight 1.5 m
pieces of 16 mm steel re-bar driven vertically into the sediment, with walls comprised of
high-density polyethylene diamond mesh with a 40 mm aperture. Re-bars were woven
through the mesh and driven ca. 20 cm into the sediment, leaving ca. 80 cm of mesh exposed.
Enclosure construction was completed on the second week of September following initial
measurements (T =0).

Enclosures were monitored for any signs of damage, disturbance, or need for restocking
once a day—at low tide—six days per week (the community did not allow any work on
Sunday for religious reasons). All animals used to restock enclosures were collected from the
immediate area around each respective enclosure. The weather was monitored throughout
the course of the study using national and regional weather reports (http://www.met.gov.fj),
as well as anecdotal reports from villagers at the study site.

Primary sediment sampling was conducted during the first week of each month. A
plot from each treatment (i.e., high, exclusion, natural, and uncaged control) was randomly
selected for sediment sampling each day. Sampling generally took place between 0700 h
and 0900 h, which coincided with the rising tide, as dissolved O, levels during this time
were at their optimum for SOC measurements.

Grain size distribution

Sediment samples (n =3 treatment™!) were collected using a corer made from a clear
50 ml syringe (core depth = ca. 30 mm, diameter = ca. 30 mm). Sediment cores for each
plot were transferred into individual airtight containers. Sediment cores were washed out
of their containers onto a dish using freshwater, then placed in a dry oven at 70 °C for
ca. 12 h. Dry sediment samples were weighed and transferred to the top of a sieve column
(>2,000, 1,000, 500, 250, 125, < 125 pm) attached to a sieve shaker. The sieve column
was shaken for seven minutes, and the contents of each sieve then weighed using a ViBRA
analytical balance (£0.02 g). If salt in the sediment samples were to influence results, it is
likely the smallest grain size fractions would have been affected.

Oxygen penetration depth

Sediment cores from the study site exhibited a clear anoxic layer characterized by
consistently dark sediment, which indicates sulphate reduction to hydrogen sulphide by
sulphate-reducing bacteria (Castro ¢ Huber, 2012). Therefore, it was possible to determine
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OPD visually by measuring the distance from the top of the core to the black layer within
sediment cores (n =3 treatment ™!, to a depth >3 cm) collected in clear 50 ml syringes,
following methods adapted from Nilsson ¢ Rosenberg (2000). OPD was only measured
from T =2 onwards, due to time constraints during T = 0 and the initial method trialed
during T =1 being unsuitable.

Sedimentary oxygen consumption

O, consumption of sediments is driven by respiration of benthic organisms, microbially-
mediated oxidation of OM, and reduced inorganic metabolites (Kristensen, 2000), therefore
SOC can indicate OM input and degradation at a local level. In situ determination of SOC
was based on methods used by Ford et al. (2017). Sediment cores (10 cm?®) were collected
from enclosures using cut 50 ml syringes and transferred immediately to 160 ml glass
incubation chambers. Chambers were subsequently filled with undisturbed water from
the overlying water column (n = 4 treatments enclosure™!). O, concentration, salinity,
and temperature were measured using an O, optode sensor and conductivity probe
(MultiLine® IDS 3430; WTW GmbH, Weilheim, Germany; accuracy: +0.5% of measured
value). O, saturation was consistently between 70—120% at initial measurements. Chambers
were sealed airtight before being placed into opaque bags and then placed in an icebox
filled with water from the site to maintain a consistent temperature and to ensure light
was excluded. After ca. 1 h incubation, chambers were collected and O, concentration
was re-measured. The exact duration (minutes) of each incubation was recorded. Salinity
and seawater temperature within the chambers were re-measured to ensure consistency
throughout measurements. Controls (1 =3 enclosure™!) contained only undisturbed
water from our site, allowing us to account for microbial activity in the overlying water
column. O, consumption in control chambers was averaged and subtracted from sediment
SOC chamber rates. SOC values were calculated into mmol O, m~?2 sediment d—! after
accounting for incubation time, vial volume and control measurements.

Sediment turnover

Daily sediment turnover (proxy for bioturbation) by H. scabra was calculated by assuming
the quantity of defecated sediment was equal to the quantity of ingested sediment (Uthicke,
1999). H. scabra between lengths of 8-16 cm (n =27, mean length = 13 cm =+ 0.22 SE;
mean mass = 145 g £ 6.27 SE) were selected for this parameter as they represent the most
abundant size class across the entire reef flat and were found in the three most common
habitats outside the enclosures: sand (n = 17), Halodule spp. bed (n =6), and Syringodium
spp. bed (n=4) (Lee, 2016). Data were collected at flood and ebb tide during both night
and day over the course of two weeks in January 2016 (0800 h—2100 h, and random checks
for feeding behavior between 0100 h—0500 h). The methodology for this experiment was
adapted from a similar study by Uthicke (1999).

Sediment defecated was quantified from trails of faeces behind H. scabra. Markers
were driven vertically into the sediment at a standardised distance (ca. 1 cm) behind the
posterior end of the animal. Approximately every hour (for 4 h) the animal was relocated,
and an additional marker placed at its posterior end. The animal’s length and weight were
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recorded, and time was noted each time a marker was placed. Six pellets per animal were
collected in individual vials during the four hours that the animal was monitored, and the
number of pellets between each marker was counted. Sediment pellets were placed in a dry
oven at 70 °C for approximately 12 h before weighing on an analytical balance (£0.02 g).
Bulk density of sediment at the study site was calculated by comparing the volume of
sediment cores to the dry weight of sediment contained within.

Data analysis

Grain size analysis, textural classifications and distribution of sediments were carried out
in R using the gran.stats function (rysgran package; Gilbert, Camargo ¢ Sandrini-Neto,
2014) based on methods and verbal classifications by Folk ¢» Ward (1957). Differences
in skewness, kurtosis, and median grain size were tested using the aov function in R
(built-in function; R Core Team, 2016). The effect of treatment and time on SOC and OPD
data were analysed using repeated-measures analyses of variances using the aov function
in R (built-in function; R Core Team, 2016), followed by post-hoc students ¢-tests or
Mann Whitney—Wilcox U test (t.test and pairwise.wilcox.test—built-in function; R Core
Team, 2016) as appropriate. All multiple comparison post-hoc tests were performed with
Bonferroni correction. Paired tests were used to compare a treatment over time, whereas
non-paired tests were applied to compare among treatments for a single sample date. Data
were tested for normality using a Shapiro—Wilk test and a Quantile-Quantile plot of the
residuals, and for homogeneity of variances using a Levene’s test (leveneTest—car package;
Fox & Weisberg, 2011). SOC and OPD data were transformed (logl0) using R in order
to meet assumptions of normality. If these data did not meet the assumptions then the
non-parametric Mann Whitney—Wilcox U test (pairwise.wilcox.test—built-in function; R
Core Team, 2016) was used. Uncaged control and natural treatments were tested against
each other for significant differences at each sampling date; if no significant differences
were found then high treatment was compared to exclusion treatment, and natural was
compared to exclusion and high treatments.

RESULTS

As indicated above, primary sediment sampling was conducted during the first week of
each month. Sampling began in September 2015 (T = 0) and continued each month until
February 2016 (T =5). As enclosures were checked daily and restocked if necessary to
maintain stocking densities, the effect of loss of H. scabra between restocking was deemed
minimal; overall, restocking was in the range of two to three animals in the high treatment
enclosures and one to two animals in cages of the natural treatment. H. scabra would

occasionally have to be removed from exclusion treatment enclosures.

Environmental parameters

Water temperature as quantified during initial SOC measurements showed a steady

increase between September (T = 0; 23.8 °C % 0.23 mean + SE) and December 2015
(T =3; 26.6 °C £ 0.19), followed by a severe increase between December 2015 and
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February 2016 (T = 5; 31.2 °C £ 0.07) (Fig. 2A). Heavy rain 10 days prior to sampling in
November (T = 2; Fig. 2C) caused coastal flooding, and a tropical depression (Tropical

Disturbance 05F; Fiji Meteorological Service, 2015) five days prior to sampling in January
(T =4; Fig. 2C) caused coastal flooding and storm surge at the site.

Grain size distribution

Throughout the course of the study within all treatments, mean skewness was between
0.01 and 0.07, i.e., near symmetrical, and mean kurtosis was between 0.88 and 0.95, i.e.,
approximately mesokurtic. Therefore, grain size distribution was approximately normal.
Prior to the onset of the experiment (T = 0) there were neither significant differences
in grain size fractions between controls (uncaged control vs. natural treatment) nor
experimental treatments (high vs. exclusion) (ANOVA; p > 0.05). The uncaged control and
natural treatments remained consistent between T =0 and T =3 (ANOVA; p= >0.05).
Over the same time period the high treatment did exhibit two trends, though they are
contradictory and neither was significant (ANOVA; p > 0.05). First, there was an increase
in median grain size from 0.91 = 0.09 phi (mean + SE) to 1.07 & 0.06 phi (mean + SE),
and second, skewness tended to decrease from 0.04 £ 0.03 (mean + SE) at T =0 to 0.01
=+ 0.03 (mean =+ SE) at T = 3. Despite storm surge affecting the study site five days prior
to T =4, there were no significant differences between treatments at T =4 and T =5
(ANOVA; p > 0.05). Changes to grain size distribution between T'=3 and T = 4 were not
considered, as the storm surge between these sampling events had visibly shifted sediments.

Oxygen penetration depth

The interaction of treatment and time had a significant effect on OPD (Repeated measures
ANOVA; F(9,116), p=0.02). OPD measurements began at T =2 of the experiment.
Initial (T = 2) OPD were similar between treatments and controls (Mann—Whitney U -test;
p > 0.05). By T =3 the only significant change was an increased OPD in high treatment
enclosures (Mann—Whitney U -test; p = 0.03). The exclusion treatment remained consistent
(Mann—-Whitney U-test; p=0.37) between T =2 and T = 3. A distinctly different pattern
emerged at T = 5. Whilst high treatment enclosures returned to their earlier state (T =5
vs. T =2; U-test, p=1), OPD in sediment from exclusion treatment enclosures decreased
from 32 mm + 3 at T =3 to 12 mm = 2 (mean =£ SE) at T = 5, exhibiting a 63% reduction
and resulting in a highly significant difference between treatments (Mann—Whitney U -test;
p < 0.01). While natural and uncaged control varied over the course of the entire study
(Fig. 2B), there were no significant differences between natural and uncaged control at any
individual sampling date.

Sedimentary oxygen consumption

The interaction of treatment and time had a significant effect on SOC (Repeated measures
ANOVA; F(15,360), p < 0.01). Between T =0 and T =1, SOC in exclusion treatment
areas initially increased almost two-fold from 43.03 mmol O, m~2 day~! + 4.59 to 75.96
mmol O, m™2 day~! 4 4.69 (Mann—Whitney U-test; p < 0.01, Fig. 2C). Over the same
time period, high treatment SOC rates remained consistent (Mann—Whitney U -test,
p=0.74). Sediment in exclusion treatment areas had a noticeably higher SOC than high
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Table 1 Amount of sediment bioturbated by a population of Holothuria scabra. Average H. scabra
densities are taken from a pilot survey (S Lee, 2015, unpublished data), quantity of sediment defecated is
assumed equal to that consumed, and sea cucumbers are assumed to consume only the upper 5 mm of
sediment (Uthicke, 1999).

Bioturbation potential of H. scabra™!

Defecation rate 26 sediment pelletsh=! x 10 h d~! 260 pellets d*
Defecation quantity 260 pellets d = x 0.36 g pellet™ 93.6gd™!
Annual defecation rate 93.6gd™! x 365d 34.164 kgind y~!
H. scabra population bioturbation (1,000 m ~2)

ca. 310 H. scabra 310 ind. x 34.164 kg ind y~! 10,590.84 kg y!
Available sediment (upper 5 mm)

Area 1,000 m?
Volume of sediment 1,000 m? x 0.005 m 5 m?

Weight of sediment 5m?* x 0.83 gcm™® 4,150 kg

Sediment turnover rate (upper 5 mm 1,000 m~2)
10,590.84 kg y~1/4,150 kg 2.55 times y !

treatment areas at T =1 and T =3 (Mann—Whitney U-test; p < 0.01, at both T =1
and T = 3). Apart from an initially higher SOC rate in the natural compared with the
uncaged control treatment at T =0 (Mann—Whitney U-test; p < 0.01), there were no
differences throughout the experimental period. Uncaged control increased significantly
from T =0 to T =1 (Mann—Whitney U-test, p < 0.01), while natural did not over this
time period (Mann—Whitney U-test, p > 0.05). Natural and high treatments only showed
a significant difference (Mann—Whitney U-test, p < 0.01) at T' = 3, while natural and
exclusion treatments only exhibited significant differences at T =0 and T =1 (Mann—
Whitney U-test, p=0.02 and p < 0.01, respectively).

Sediment turnover

On average each animal produced 26 sediment pellets h~! & 2, which had a mass of
0.36 g £ 0.01. Observations of H. scabra at the study site showed individuals of this species
actively fed for 10 h day~! during daylight hours (0600-1800 h) and were inactive for 14
h day™!; H. scabra at the site generally remained buried during low tide. During daylight
hours H. scabra were found at a density of 31 ind. 100 m~2; this equates to 372,000 H. scabra
on Natuvu’s ca. 1.2 km? reef flat (S Lee, 2015, unpublished data). Bulk density of sediment
at the site was 0.83 g cm™> + 0.01. After incorporating these findings, calculations (Table
1) showed that the H. scabra population on Natuvu’s reef flat had the potential to rework
10,590.84 kg sediment dry weight 1,000 m—2 y~!. Given the bulk density of sediment at the
site, the upper 5 mm of sediment in an area of 1,000 m* would weigh 4,150 kg. Assuming
sea cucumbers consume sediment to a depth of 5 mm, which is based on observations
noted in Uthicke (1999), the estimated population of H. scabra in 1,000 m? has the potential
to rework the upper 5 mm of sediment approximately two and a half times a year.
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DISCUSSION

The current study explored the impact of holothurian removal on sedimentary function
in a unique in situ setting. Despite the considerable ‘background noise’ from inherent and
uncontrollable factors such as waves, wind, currents and marine benthos, several parameters
provided clear evidence that overharvesting of sea cucumbers has a potentially strong effect
on the ability of sediment to function as a biocatalytic filter system. The estimated rates
of sediment turnover observed here for Holothuria scabra alone are substantial, and are
more than twice the turnover recorded for a mixed population of H. atra and Stichopus
chlorontus (4,600 kg dry wt yr_1 1,000 m~2), which was estimated to be equivalent to
turning over the upper 5 mm of sediment in that area annually (Uthicke, 1999).

Grain size selectivity has not been conclusively demonstrated for H. scabra (e.g.,
Wiedmeyer, 1982; Tsiresy, Pascal ¢ Plotieau, 2011). However, within the current study,
changes to grain size composition in areas of high H. scabra densities and the lack of any
changes in their absence indicate that H. scabra are selective to certain grain sizes. This
suggests that when sea cucumbers are present on inshore reef flats in high densities, they
play a key role in the physical reworking and change of sediment structure in marine
ecosystems. Based on the observed non-significant trends, a higher number of samples
are suggested for future work. Several sea cucumber species are able to change sediment
grain size through dissolution of calcium carbonate via acidity, and potentially abrasion
processes, in their gut (Hammond, 1981; Schneider et al., 2011).

Throughout the study SOC rates and OPD exhibited a ‘buffered’ response in high
treatment enclosures compared to exclusion enclosures, where they exhibited several
large fluctuations. This buffered response was characterized by a predictable pattern
with relatively low amplitude changes. Higher SOC rates in the exclusion treatment were
consistent with findings by Nickell et al. (2003 ); these higher SOC rates were likely driven by
the increased respiration of benthic fauna, microbially-mediated oxygenation of OM, and
reduced inorganic metabolites (Kristensen, 2000; Nickell et al., 2003). Deviations from this
trend occurred at T =2 and T =4, following coastal flooding ten days prior to T'=2, and
storm surge and coastal flooding five days prior to T = 4. Differences between the T =0
measurements and the strong increase in the uncaged control between T =0 and T =1,
compared to an absence of changes in the natural treatment over the same time, could
be attributed to sampling during different tides, which was rectified for later time-points.
Sea cucumbers actively feed on OM, thus reducing its concentration within the sediment
(e.g., Uthicke ¢ Karez, 1999; Wolkenhauer et al., 2010). Thus, there should be a higher OM
concentration in the sediment of the exclusion treatment compared with that of the high
treatment. Relatively higher OM concentrations facilitate increased microbial abundance
and activity (MacTavish et al., 2012), in line with the observed higher SOC rates in exclusion
treatment enclosures. Similarly, coastal flooding (observed at the study site ten days prior
to T =2 and five days prior to T = 4) likely delivered a strong OM-‘pulse’ onto the reef flat
(Briand et al., 2015), explaining the elevated SOC rates even in high treatment enclosures
following flooding (Fig. 2C).
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The buffering capacity provided by high sea cucumber densities is likely due to the effect
of the animals’ feeding, excretion, and bioturbation. Feeding by sea cucumbers acts to ‘clean’
sediments, whereas the subsequent digestion and excretion of waste products plays an
important role in nutrient recycling (Purcell ef al., 2016). The recycled nutrients stimulate
the growth of benthic microalgal communities (e.g., Uthicke & Klumpp, 1998; Uthicke,
2001a), which absorb nutrients and produce O, through photosynthesis (Stockenreiter
et al., 2016). Bioturbation increases advective flow into and within the sediment directly
through burying, burrowing, and bio-irrigation (Meysman, Middelburg ¢» Heip, 2006), and
indirectly as it increases bed sediment complexity (bioroughness). Bioroughness creates
pressure gradients that can increase advective porewater flow up to seven-fold compared to
smooth-bed flows (Thibodeaux ¢ Boyle, 1987; Huettel ¢ Gust, 1992), increasing the supply
of degradable material and electron acceptors (such as O;) to the sediment (Rusch et al.,
2006), and thus promoting aerobic degradation. As aerobic degradation of OM in marine
sediments is ca. ten times faster than anaerobic degradation (Kristensen, Ahmed & Devol,
1995; Hulthe, Hulth ¢» Hall, 1998), sea cucumbers promote the efficient degradation of
OM in a closely coupled benthic recycling system.

As grain size distribution showed no significant difference between high and exclusion
treatment sediments at T =5, simultaneous changes of OPD are assumed to be caused by
the presence of sea cucumbers and not an alteration in sediment structure following storm
surge prior to T' = 4. Exceptionally high temperatures were recorded at T =5 (31.2 °C
40.07) compared with earlier months (T =0 to T = 3; 25.74 °C % 0.16) as a result of the
2015/2016 El Nino (Blunden, 2017). High water temperatures recorded at T =5 coincided
with the substantial reduction in sediment OPD of exclusion treatment enclosures. Warmer
water temperatures induce microbial growth and respiration (Nydahl, Panigrahi ¢ Wikner,
2013), and the relatively calm conditions for the same time period resulted in limited wave
action and thus limited mixing of bed sediment and the overlying water column. Both these
factors contribute to an increased SOC and a reduced OPD (Kristensen, 2000; Friedrich
et al., 2014). The high, natural and uncaged control treatments did not experience a rapid
reduction in OPD, despite being subject to the same environmental conditions. The abrupt
and significant reduction in OPD during T' =5 in the exclusion treatment was likely caused
by the combined manifestation of local and global stressors: the removal of sea cucumbers
and the coinciding rapid increase in sea surface temperature.

Storm surge five days prior to T =4 had visibly shifted and re-suspended a considerable
amount of sediment at the study site. This disturbance would have functioned similarly
to bioturbation (e.g., by oxygenating sediment and redistributing OM), explaining the
significantly decreased SOC rate in exclusion enclosures at T =4 (Fig. 2C). Disturbances
such as storms, which are projected to increase in intensity as a consequence of climate
change (Emanuel, 2013; IPCC, 2014), may thus be able to induce sufficient mixing of bed
sediment capable of reducing SOC. However, the same models predict an increase in the
severity, frequency, and duration of extreme precipitation events and heat waves (IPCC,
2014). While the global stressor of increased sea surface temperature in the current study
had an effect on sediment function in all treatments, the high densities of sea cucumbers
in the high treatment were able to buffer such extreme changes, particularly to OPD.
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These results suggest a synergistic interaction between local and global stressors, whereby
reductions in bioturbation caused by local overexploitation of a key benthic species (Solan
et al., 2004) in combination with elevated temperatures led to an amplified effect. As mean
sea surface temperatures, warm temperature extremes, and heavy precipitation events are
forecast to increase and occur at higher frequency and intensity (IPCC, 2014), bioturbation
becomes increasingly important to maintaining and improving sediment quality. Given the
mechanisms of benthic-pelagic coupling (Wild, Tollrian ¢ Huettel, 2004), the increased
SOC rate and reduced OPD observed in areas void of H. scabra could contribute to
deoxygenation of the overlying water column. Hypoxia affects the distribution, abundance,
diversity and physiological state of benthic communities (Meyer-Reil ¢» Koster, 2000), and
increases the risk of hypoxia-derived mortality for larval stages of several marine organisms
(Vaquer-Sunyer & Duarte, 2008).

High densities (350 g m~2) of the sea cucumber H. scabra seem able to enhance the
buffering capacity of sediment to stressors such as increased OM load and anoxia. This
finding may have particularly strong implications in shallow restricted bodies of water,
which are prone to large temperature variability, such as that of Marovo Lagoon, Solomon
Islands. In June 2011, the lagoon experienced a large-scale harmful algal bloom, and its
subsequent senescence resulted in large-scale hypoxia-derived mortality (Albert, Dunbabin
& Skinner, 2012). The authors of the report suggest this event was caused in part by an
increase in the catchment nutrient pool, and reduced processing of sediment nutrients
and oxygenation of sediment following 15 years of extensive overharvest of sea cucumbers,
combined with prolonged warm and calm weather conditions (Albert et al., 2011). As
the frequency and severity of record high global temperatures and El Nifio events are
projected to increase with climate change (Cai et al., 2014; Blunden, 2017), and coastal
waters are becoming increasingly eutrophic (Fabricius, 2005), events such as that reported
for Marovo Lagoon may become more frequent. As such, the role sea cucumbers play in the
bioturbation of inshore sediment becomes increasingly essential to the buffering capacity
of tropical coastal marine ecosystems.

CONCLUSION

This study builds upon previous work investigating the ecosystem role of sea cucumbers.
Sandfish (H. scabra) are shown to play a demonstrable function in the role of sediment as
a biocatalytic filter system. The combination of global stressors such as elevated sea surface
temperatures and the local stressor of sea cucumber removal is of particular concern, as
our results suggest potential synergisms resulting in an amplified effect. A consequence of
the extensive overexploitation of sea cucumbers is that ecosystem functions and services
offered by coastal marine environments in which these animals have been removed is
likely compromised. These changes will leave coastal human communities increasingly
vulnerable, particularly those of small Pacific islands that rely heavily upon such ecosystem
services for their livelihoods and food security. We recommend that management should
maintain moderate (in this study 60 g m~2) to high densities (350 g m~2) of sea cucumbers
within reef ecosystems. Such densities should allow sea cucumbers to fulfil their role in
maintaining sediment function at a scale that has a measurable impact.
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