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ABSTRACT
Diabetic retinopathy (DR) is the most common chronic complication of diabetes. It
can cause impaired vision and even blindness. However, the pathological mechanism
of DR is still unknown. In the present study, we use bioinformatic analysis to reveal
the pathological changes of early DR in a streptozotocin (STZ) induced diabetes rat
model. The dataset GSE28831 was downloaded from the Gene Expression Omnibus
(GEO) database. To clarify the pathological mechanism of early DR, genes which were
up-regulated (UP group) or down-regulated (DOWNgroup) over time were identified.
One hundred eighty six genes in the UP group and 85 genes in the DOWN group were
defined. There were in total 28 Gene ontology (GO) terms with a P value lower than
0.05 in UP group, including astrocyte development, neutrophil chemotaxis, neutrophil
aggregation, mesenchymal cell proliferation and so on. In the DOWN group, there
were totally 14 GO terms with a P value lower than 0.05, including visual perception,
lens development in camera-type eye, camera-type eye development, bicellular tight
junction and so on. Signaling pathways were analyzed with all genes in the UP and
DOWN groups, and leukocyte transendothelial migration and tight junction were
selected. Protein–protein interaction (PPI) network was constructed and six hub genes
Diras3, Actn1, Tssk6, Cnot6l, Tek and Fgf4 were selected with connection degree ≥5.
S100a8, S100a9 and Tek may be potential targets for DR diagnosis and treatment. This
study provides the basis for the diagnosis and treatment of DR in the future.

Subjects Bioinformatics, Ophthalmology
Keywords Differentially expressed genes, Gene ontology terms, Protein–protein interaction,
Diabetic retinopathy, Bioinformatics

INTRODUCTION
The number of diabetic patients in the world reached 366 million in 2011. There were
92.4 million diabetic patients in China, ranking first in the world (Yang et al., 2010). The
main hazard of diabetes is chronic complications of diabetes. Diabetic retinopathy (DR)
is the most common chronic complication of diabetes and is the first blinding eye disease
in the working population (Kobrin Klein, 2007). In the American diabetic population, the
prevalence of DRwas 98% and 78%, respectively, in patients with type 1 and type 2 (Kempen
et al., 2004). In the Chinese diabetic population, the prevalence of DR was 37%. Ten to
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19 years later, the prevalence of DR increased to 54% (Xie et al., 2009). The Wisconsin
Epidemiology Survey of Diabetic Retinopathy (WESDR) found that the blindness rates
in patients with type 1 and type 2 diabetes were 3.6% and 1.6%, respectively (Fong et al.,
2004). The main causes of visual impairment of DR are diabetic macular edema (DME)
and proliferative diabetic retinopathy (PDR), the incidences of which are 23% and 14%,
respectively in type 1 and type 2 diabetic patients (Kempen et al., 2004; Porta, Maldari &
Mazzaglia, 2011).

The basic pathological process of DR is microcirculatory disturbance. Long-term
hyperglycemia leads to vascular endothelial injury, activation of cell adhesion molecules,
leukocyte accumulation and activation of a series of cytokines. These changes are followed
by the expression of hypoxia regulated growth factors and an increase in cytokines resulting
in microcirculatory disturbances, such as intraretinal microvascular abnormalities(IRMA),
leakage, obstruction, microaneurysms (Chibber et al., 2007; Kern, 2007). Multiple factor
interactions play a key role in the development and progression of DR (Brownlee, 2005).

Streptozotocin (STZ) is particularly toxic to mammalian pancreatic beta cells. Due to
its high toxicity to beta cells, streptozotocin has been used in scientific studies to induce
insulitis and diabetes in experimental animals (Rossini et al., 1977). Kirwin et al. (2011)
used microarrays to evaluate early changes (up to 3 months) in STZ-induced diabetic rats.
They found that the expression of visual cyclin proteins was significantly down-regulated
post STZ treatment. This microarray dataset (GSE28831) has been uploaded to the Gene
Expression Omnibus database. Using this dataset, Zhao et al. (2017) further analyzed
differentially expressed genes (DEGs), Gene Ontology (GO) enrichment and signaling
pathways on days 7, 28 and 84 in STZ-induced diabetic rats. However, they only analyzed
DEGs at this three time points without analyzing the tendency of gene expression over
time. The molecule mechanism and pathological process from day 7 to day 84 was still
unclear. As a matter of fact, DR is associated with apoptosis, oxidative stress, inflammation
and so on. Therefore, the analysis of the integrated bioinformatic changes with time in DR
is important.

In previous studies, GSE28831 has been analyzed by two research groups. Kirwin et al.
(2011) produced the pathological model and performed microarray analysis. Zhao et al.
(2017) also analyzed the dataset, listed GeneOntology (GO) enrichment terms and pathway
analysis at three time points in detail, and analyzed the protein–protein interaction (PPI)
of DEGs. To investigate the pathological changes of early stages of DR over time, further
analysis was performed with new bioinformatic approach. In this study, we divide the
genes in GSE28831 into two groups depending on the increase in expression (UP group) or
the decrease in expression (DOWN group) over time. We then analyzed GO enrichment,
signaling pathway and protein–protein interaction (PPI) for both groups by comparing
DEGs between the respective groups. From these results, the new molecular mechanism
and pathological process of early DR are discovered.
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MATERIALS AND METHODS
Affymetrix microarray data of the retina in diabetic rats
The data set GSE28831 provided by Kirwin et al. (2011) was downloaded from Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE28831). The preparation of samples is described in their study. They extracted the
retinas of Evans rats on days 7, 28 and 84 after STZ induced diabetes.Microarray experiment
was performed. Agilent-014879Whole Rat GenomeMicroarray 4× 44 K G4131F was used
as the platform.

Analysis of DEGs over time
The dataset was analyzed with GEO2R. The expression of STZ group was compared with
control group. Then, fold-change (FC) was calculated. DEGs in each time point were
screened with |log2FC|> 1 and P value <0.05. In this study, we divided the genes into two
groups. If the FC of a gene on day 84 was greater than the FC on day 28 and the FC on day
28 was also greater than the FC on day 7 [FC(7d) <FC(28d) <FC(84d)] and the P value of
the three time points is at least one less than 0.05, we defined it as a UP gene. Similarly, if
the FC on day 84 was less than the FC on day 28 and the FC on day 28 was less than the
FC on day 7 [FC(7d) >FC(28d) >FC(84d)], and the P value of the three time points was
at least one less than 0.05, we defined it as a DOWN gene.

The heatmaps of UP group and DOWN group were designed according to average FC.
The data was transformed with log2.

Functional enrichment analysis
Genes in UP group and DOWN group were submitted to the Database for Annotation,
Visualization and Integrated Discovery (DAVID, version 6.8; https://david.ncifcrf.gov/;
Huang, Sherman & Lempicki, 2009). Gene ontology (GO) terms and Kyoto Encyclopedia of
Genes andGenomes (KEGG)pathwayswere screenedwithP value<0.05.We selectedDEGs
of glucose homeostasis, astrocyte development, neutrophil chemotaxis, eye development
and bicellular tight junction from GO enrichment results and plotted heatmaps with fold
change.

Protein–protein interaction (PPI) network
The protein–protein interaction (PPI) analysis is necessary to illustrate the molecular
mechanisms. In this study, Search Tool for the Retrieval of Interacting Genes (STRING;
http://string-db.org/) database was used to construct PPI network. Genes in the UP group
and DOWN group were submitted to the database. Interaction score of 0.4 was defined as
the screened threshold. Hub genes were selected with connection degree ≥5.

RESULTS
Changes of expression in DEGs
According to the grouping method mentioned above, 186 genes in UP group and 85 genes
in DOWN group were defined. We plotted heatmaps of UP group and DOWN group
based on FC of genes (Fig. 1).
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Figure 1 Heatmaps of genes in UP group (A) and DOWN group (B). Red represents up-regulation. Blue
represents down-regulation. Each group from left to right are day 7, day 28 and day 84, respectively. Bar
unit: log2FC.

Full-size DOI: 10.7717/peerj.4762/fig-1
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GO terms enrichment and signaling pathways analysis
The genes in UP group and DOWN group were submitted to DAVID to analyze GO term
enrichment and KEGG signaling pathway. GO terms consist of Biological Process (BP),
Cellular Component (CC) and Molecular Function (MF). There were totally 28 GO terms
with a P value lower than 0.05 in UP group, including astrocyte development, neutrophil
chemotaxis, neutrophil aggregation, mesenchymal cell proliferation and so on (Table 1).
In DOWN group, there were totally 14 GO terms with a P value lower than 0.05, including
visual perception, lens development in camera-type eye, camera-type eye development,
bicellular tight junction and so on (Table 2). KEGG signaling pathways were analyzed with
all genes in UP group and DOWN group. The screening threshold was set to P value <0.05.
Only two pathways (leukocyte transendothelial migration and tight junction) were selected
(Table 3). We selected DEGs of glucose homeostasis, astrocyte development, neutrophil
chemotaxis, eye development and bicellular tight junction from GO enrichment results
and plotted heatmaps with fold change (Fig. 2).

Protein–protein interaction (PPI) network construction and hub gene
selection
The genes inUP group andDOWNgroupwere submitted to STRINGdatabase to construct
PPI network. Interaction score of 0.4 was defined as the screened threshold. The constructed
PPI network is shown in Fig. 3. Hub genes were selected with connection degree ≥5. Six
hub genes were Diras3, Actn1, Tssk6, Cnot6l, Tek and Fgf4 .

DISCUSSION
Diabetic retinopathy (DR) is the leading cause of blindness and a major microvasculature
complication of diabetes mellitus (DM). At present, the pathogenesis of DR has not been
fully elucidated. However, some mechanisms are associated with the pathogenesis of DR.

DM patients have a higher concentration of blood glucose. Hyperglycemia increases the
thickness of capillary basement membrane in the nerve fiber layer and the outer plexiform
layer, which leads to retinal capillary cell apoptosis, reduced activity of retinal dismutase and
catalase (Zhang et al., 2015). Recent studies have shown that hyperglycemia-induced retinal
pigment epithelial (RPE) cell apoptosis is also thought to be involved in the development
of DR (Kim et al., 2014).

In previous studies, Kirwin et al. (2011) analyzed the microarray data, listed the GO
enrichment terms, and discussed the DEGs of the visual cycle in DR. Zhao et al. (2017)
analyzed the dataset, listed GO enrichment terms, pathway analysis and PPI at three time
points in detail. The effects of genes such as CYP2B2, MASP2, LRAT, RPE65, RDH5,
MAPK13, LRAT and RPE65 on DR were discussed. To investigate the pathological changes
of early stages of DR over time, further analysis was performed with new bioinformatic
approach. In this study, we divided these genes into the UP group and DOWN group based
on changes in gene expression. GO terms astrocyte development, neutrophil chemotaxis,
neutrophil aggregation, mesenchymal cell proliferation, glucose homeostasis and so on are
in the UP group. Visual perception, lens development in camera-type eye, camera-type
eye development, bicellular tight junction and so on are in the DOWN group. Meanwhile,
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Table 1 Gene ontology analysis of UP group.

Category Term Count % P-Value Genes

GO TERM_BP GO:0042475∼odontogenesis of dentin-containing tooth 6 3.23 0.0003 Msx1, Nf2, Wnt6, Lhx8, Nkx2-3,
Fgf4

GO TERM_BP GO:0014002∼astrocyte development 4 2.15 0.0004 Gfap, S100a8, S100a9, Pou3f2
GO TERM_BP GO:0044341∼sodium-dependent phosphate transport 3 1.61 0.0021 Slc17a3, Slc17a1, Slc17a2
GO TERM_BP GO:0046415∼urate metabolic process 3 1.61 0.0027 G6pc, Slc17a3, Slc17a1
GO TERM_BP GO:0021879∼forebrain neuron differentiation 3 1.61 0.0057 Lhx5, Lhx8, Phlda1
GO TERM_BP GO:0021846∼cell proliferation in forebrain 3 1.61 0.0086 Arx, Lhx5, Ncor2
GO TERM_BP GO:0014912∼negative regulation of smooth muscle cell

migration
3 1.61 0.0097 Prkg1, Igfbp3, Trib1

GO TERM_BP GO:0035435∼phosphate ion transmembrane transport 3 1.61 0.0108 Slc17a3, Slc17a1, Slc17a2
GO TERM_BP GO:0030593∼neutrophil chemotaxis 4 2.15 0.0147 Gbf1, S100a8, S100a9, Vav1
GO TERM_BP GO:0023019∼signal transduction involved in regulation of

gene expression
3 1.61 0.0174 Epcam, Tbx6, Msx1

GO TERM_BP GO:0070488∼neutrophil aggregation 2 1.08 0.0176 S100a8, S100a9
GO TERM_BP GO:0030317∼sperm motility 4 2.15 0.0207 Spag6l, Tekt2, Dnah1, Cacna1e
GO TERM_BP GO:0042593∼glucose homeostasis 5 2.69 0.0237 G6pc, Ffar1, Rph3al, Cacna1e, Ncor2
GO TERM_BP GO:0010273∼detoxification of copper ion 2 1.08 0.0349 Mt2a, Mt1
GO TERM_BP GO:0048863∼stem cell differentiation 3 1.61 0.0362 Epcam, Msx1, Ell3
GO TERM_BP GO:0002793∼positive regulation of peptide secretion 2 1.08 0.0434 S100a8, S100a9
GO TERM_BP GO:0035106∼operant conditioning 2 1.08 0.0434 Tacr2, Aldh1a7
GO TERM_BP GO:0010463∼mesenchymal cell proliferation 2 1.08 0.0434 Msx1, Fgf4
GO TERM_BP GO:0050714∼positive regulation of protein secretion 3 1.61 0.0487 Fgb, Rph3al, Exph5
GO TERM_CC GO:0005615∼extracellular space 19 10.22 0.0318 Wnt10a, Spaca3, Aifm2, S100a8,

Pgf, S100a9, Cpxm2, Artn, Napsa,
Tnfsf9, Muc4, Cxcl10, Serpina3n,
Serpina6, Fgb, C1ql4, Wnt6, Igfbp3,
Muc5b

GO TERM_MF GO:0005436∼sodium: phosphate symporter activity 3 1.61 0.0016 Slc17a3, Slc17a1, Slc17a2
GO TERM_MF GO:0015321∼sodium-dependent phosphate

transmembrane transporter activity
3 1.61 0.0021 Slc17a3, Slc17a1, Slc17a2

GO TERM_MF GO:0001085∼RNA polymerase II transcription factor
binding

4 2.15 0.0137 Gata1, Tbx6, Hcls1, Tead3

GO TERM_MF GO:0003779∼actin binding 7 3.76 0.0226 Spata32, Myrip, Nf2, Plekhh2,
Map1a, Hcls1, Sptbn4

GO TERM_MF GO:0017137∼Rab GTPase binding 5 2.69 0.0250 Myrip, Rph3al, Exph5, Rgp1, Als2cl
GO TERM_MF GO:0043565∼sequence-specific DNA binding 11 5.91 0.0281 Arx, Gata1, Msx1, Thrb, Nkx6-2,

Lhx5, Pou3f2, Prrx2, Lhx8, Ncor2,
Nkx2-3

GO TERM_MF GO:0035662∼Toll-like receptor 4 binding 2 1.08 0.0346 S100a8, S100a9
GO TERM_MF GO:0004672∼protein kinase activity 7 3.76 0.0359 Stk26, Mos, Map3k10, Prkg1, Sik2,

Epha1, Trib1
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Table 2 Gene ontology analysis of DOWN group.

Category Term Count % P-value Genes

GO TERM_BP GO:0007601∼visual perception 4 4.76 0.0098 Lrat, Rpe65, Cryba1, Cln5
GO TERM_BP GO:0002088∼lens development in camera-type eye 3 3.57 0.0103 Crygb, Crygs, Cryba1
GO TERM_BP GO:0070192∼chromosome organization involved in

meiotic cell cycle
2 2.38 0.0311 Ccne2, Ccne1

GO TERM_BP GO:0016051∼carbohydrate biosynthetic process 2 2.38 0.0349 Chst9, Chst14
GO TERM_BP GO:0043010∼camera-type eye development 3 3.57 0.0378 Wdpcp, Rpe65, Cryba1
GO TERM_BP GO:0055123∼digestive system development 2 2.38 0.0387 Wdpcp, Cela1
GO TERM_BP GO:1903827∼regulation of cellular protein localization 2 2.38 0.0425 Ccne2, Ccne1
GO TERM_BP GO:0031100∼organ regeneration 3 3.57 0.0499 Ccne1, Nr4a3, Nnmt
GO TERM_CC GO:0005923∼bicellular tight junction 4 4.76 0.0096 Cldn16, Strn, Cldn22, Actn1
GO TERM_CC GO:0031252∼cell leading edge 3 3.57 0.0215 Bspry, Actn1, Iqgap1
GO TERM_CC GO:0030176∼integral component of endoplasmic

reticulum membrane
3 3.57 0.0449 Acer3, Dolpp1, Rhbdd1

GO TERM_MF GO:0005212∼structural constituent of eye lens 3 3.57 0.0034 Crygb, Crygs, Cryba1
GO TERM_MF GO:0001537∼N-acetylgalactosamine 4-O-sulfotransferase

activity
2 2.38 0.0197 Chst9, Chst14

GO TERM_MF GO:0045322∼unmethylated CpG binding 2 2.38 0.0313 Kmt2a, Mecp2

Table 3 KEGG pathway analysis of UP group and DOWN group.

Category Term Count % P-Value Genes

KEGG_PATHWAY rno04670: Leukocyte transendothelial migration 6 2.22 0.0228 Cldn16, Ncf1, Cldn6, Cldn22, Actn1, Vav1
KEGG_PATHWAY rno04530: Tight junction 6 2.22 0.0427 Cldn16, Myh1, Cldn6, Hcls1, Cldn22, Actn1

signaling pathways such as leukocyte transendothelial migration and tight junction have
significant changes. From the above results we can conclude that the following factors play
an important role in the development of early DR.

The first one is the abnormality of retinal pigment epithelial (RPE) cells. RPE is
the outermost layer of the retina 10-layer structure, located between the choroid and
retina. It is composed of a single layer of pigment epithelial cells arranged in a very
regular manner. The RPE cells are polygonal. The RPE has many functions, including
light absorption, epithelial transport, spatial ion buffering, visual cycle, phagocytosis,
secretion and immune modulation (Strauss, 2005). In this study, the expression of
Cldn16 and Cldn22 was down-regulated over time. Downregulation of claudin, indicated
that tight junctions in the retina were damaged. Epithelial-mesenchymal transition
(EMT) was occurred. RPE cells undergo EMT and produce fibroblast-like cells, and
extracellular matrix (ECM) components, participating in fibrotic sequelae on the
detached retina (Saika et al., 2008). In addition, the expression of Myh1 and Wdpcp
was down-regulated over time. Myosin II (Myh1) is closely related to cell polarity
(Vicente-Manzanares et al., 2007). WD repeat containing planar cell polarity effector
(Wdpcp) can directly modulate the actin cytoskeleton to regulate cell polarity (Cui
et al., 2013). RPE cells lose their polarity and remain in the shape of mesenchymal
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cells, showing deviation from the properties of epithelial cells (Lee et al., 2001).
Ccne1 and Ccne2 were both expressed highly on day 7 and normally on day 84. Cyclin E
is a member of the cyclin family. It can regulate EMT through phosphorylation of Slug, a
transcriptional repressor (Wang et al., 2015).

The second is the impairment of visual function. The visual cycle is the sensory
transduction of the visual system. This is a process by which light transforms into electrical
signals in the rod cells, cone cells and photosensitive ganglion cells of the retina. Rpe65 and
Lrat are the key enzymes of visual cycle. In this study, their expression was down-regulated
over time. Kirwin et al. (2011) demonstrated that in hyperglycemic state, the expression of
visual cycle enzymes is down-regulated.

The third is the inflammation in retina. In the present study, the expression of S100a8
textitand S100a9 was gradually increased. Calprotectin (S100A8/A9), a heterodimer of
the two calcium-binding proteins S100A8 and S100A9, was originally discovered as an
immunogenic protein expressed and secreted by neutrophils. Subsequently, it has emerged
as an important pro-inflammatory mediator in acute and chronic inflammation (Gebhardt
et al., 2006). Ryckman et al. (2003) have shown that calprotectin is involved in neutrophil
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migration to inflammatory sites. Ansari & Ganaie (2014) found that MRP-14 (S100A9)
protein was upregulated in the ocular microenvironment in patients with PDR, which
indicated that increased MRP-14 levels were associated with inflammation in PDR. It is
a potential inflammatory marker in PDR. The expression of Vav1 and Gbf1 were down-
regulated on day 7 and returned to normal or even up-regulated on day 84. They promote
neutrophil chemotaxis with calprotectin (Mazaki, Nishimura & Sabe, 2012; Phillipson et
al., 2009). Gfap was expressed decreasingly on day 7 and returned to normal on day 84.
Gfap is not only involved in retinal damage repair (Humphrey et al., 1997), but is also
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proposed to play a role in astrocyte-neuron interactions as well as cell–cell communication
(Weinstein, Shelanski & Liem, 1991).

The last one is early retinal regeneration. When the retina is damaged, tissue repair
and regeneration begin. Cryba1, Crygb and Crygs were highly expressed on day 7, and
then decreased on day 28 and 84. βB2-crystallin was shown to be highly expressed in
regenerating ganglion cells where they have an autocrine effect promoting retinal ganglion
cell axon regrowth (Liedtke et al., 2007). This was among the first evidence suggesting
that β-crystallin proteins could also be secreted and be neuroprotective through other
mechanisms. A subsequent study then demonstrated that this effect was related to increased
inflammation and activation of the CNTF-STAT3 pathway. The authors also showed that
γ-crystallins had a similar action (Fischer et al., 2008). Lu et al. (2013) found that CRYBB2
was significantly elevated in the retina after 1 month of diabetes in mice. A study also
revealed that β-crystallin and γ-crystallin were up-regulated in rat’s retina with DR (Fort et
al., 2009). Free fatty acid receptor 1 (FFAR1) is an important nutrient sensor of circulating
lipids that controls retinal glucose entry to match mitochondrial metabolism with available
fuel substrates. Activation of the Ffar1 impairs glucose entry into photoreceptors (Joyal et
al., 2016).

PPI network shows six hub genes Diras3, Actn1, Tssk6, Cnot6l, Tek and Fgf4. Diras3 is
an imprinted gene, with monoallelic expression of the paternal allele, which is associated
with growth suppression. Thus, this gene appears to be a putative tumor suppressor gene
whose function is abrogated in ovarian and breast cancers (Yu et al., 2006). A study found
that Diras3 inhibits proliferation and activation of NF-κB in glioblastoma (Rymaszewski et
al., 2016).Therefore, this gene may become a target of DR treatment and diagnosis. Actn1
(α-Actinin 1) was found to play roles in the survival, motility, and RhoA signaling of
astrocytoma cells (Quick & Skalli, 2010). Cnot6l was expressed increasingly on day 7 and
returned to normal on day 84. Mittal et al. (2011) that Ccr4a (Cnot6) and Ccr4b (Cnot6l)
deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell
death and senescence. It shows that the death of retinal cells modulated the expression
of Cnot6l up-regulated. Angiopoietin-1 receptor (Tek) is an angiopoietin receptor. In the
present study, the expression of Tek was up-regulated on day 7 and returned to normal
on day 84. Khalaf & Helmy (2017) found that the angiopoietin/tie system and VEGF
are essential features in the commencement and development of PDR. AKB-9778 is a
small-molecule that promotes Tie2 activation. In clinical trials, patients with diabetic
macular edema (DME) were treated with AKB-9778 for 4 weeks. It reduced macular edema
and improved vision in some patients (Campochiaro et al., 2015). In 2016, this research
group found that in the clinical trial the combination of Tie2 activator AKB-9778 and
vascular endothelial growth factor (VEGF) inhibitor ranibizumab was significantly more
effective than suppression of VEGF alone in reducing DME (Campochiaro et al., 2016). So
Tie2 (Tek) may be an important factor of DR development.

This rat model is STZ-induced. No literature was found to prove that STZ can
directly affect the expression of the above genes. However, the toxicity of STZ can
cause DNA damage, chromosome aberrations, and cell death (Bolzán & Bianchi, 2002).
STZ also has more or less illimitable effects on nervous system (Biessels et al., 1999),
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cardiovascular system (Schaan et al., 2004), kidneys (Martin et al., 2004), respiratory
system (Samarghandian, Afshari & Sadati, 2014), and reproductive system (Ansari &
Ganaie, 2014). These effects may lead to indirect changes in gene expression. It needs
further proof of study.

CONCLUSIONS
In conclusion, we speculate that the following pathological mechanisms of STZ-induced
diabetes rat model with the above microarray analysis and prediction of key genes. On
day 7, the retina was firstly damaged and RPE EMT occurred. Then crystallin repaired
early damaged ganglion cells. On day 84, the expression of key enzyme of visual cycle
was down-regulated. Inflammation occurred and EMT gradually stopped. Neutrophil
chemotaxis occurred. Polarity and function of epithelial and endothelial cell were lost. In
addition, S100a8, S100a9 and Tek may be potential targets for DR diagnosis and treatment.
This provides the basis for the diagnosis and treatment of DR in the future.
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