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Background: Alzheimer’ disease (AD) is an ultimately fatal degenerative brain disorder with an
increasingly large burden on health and social care systems. There are only five drugs for AD on the
market and haven’t been any novel effective medicines for quite a few years. Chinese medicinal plants
were used for treating diseases for thousands of years and screening herbal remedies is a way to
develop new drugs.

Methods: We use molecular docking to screen mpounds from traditional Chinese medicine (TCM)
into the comprehensive AD targets. Compounds with excellent binding affinity are drug candidates. The
structural similarity with existing drugs and druggability properties of these drug candidates are studied.
And we searched CNKI database to obtain anti-AD Chinese plants from 2007 to 2017 and only the articles
of the clinical study were remained.

Results: 1654 compounds have excelle ding affinity with 33 AD targets. Most of them are rich in
the plants used for treating AD in China. The main plants are from two genera Panax and Morus. We
classify the compounds by single target and multiple targets. Structural similarity reveals that 20
candidate anti-AD compounds are structurally identical with 14 existing drugs which were reported as
anti-AD compounds in previous study. After ADME@er, we get 13 anti-AD compounds with favorable
druggability properties. And 9 compounds are ingredients of anti-AD Chinese plants.

Discussion: The natural compounds from TCM provide a broad prospect for the screening of anti-AD
drugs. We establish networks to systematically study the connection among natural compounds,
approved drugs, TCM plants and AD targets and find promising candidate drugs. We hope our study can
be helpful for in-depth research for Chinese medicine treatment of AD.

Peer] reviewing PDF | (2017:11:21844:0:3:NEW 30 Nov 2017)


Sticky Note
Title needs to be changed as suggested above

Sticky Note
instead of all, use the exact number of compounds screened. readers don't know exactly how many compounds are there

Sticky Note
authors should not use descriptive words like excellent since it doesn't doesnt imply scientific facts. what "excellent" means when compared to other effective drugs?!! authors again should edit the statement with a precise description in relation to other known drugs

Sticky Note
shortcuts/abbreviations should be avoided in the abstracts, unless the full names are given first. this applies to all abbreviations listed in the abstract


Peer]

10

11

12

13

14

15

16

17

18

19

The strategy to find novel candidate anti-AD drugs by constructing the interaction

networks between drug targets and natural compounds in medical plants

Bi-Wen Chen®®!, Wen-Xing Li**!, Guang-Hui Wang?, Gong-Hua Li®¢, Jia-Qian Liud, Jun-Juan
Zheng®*, Qian Wang®*, Hui-Juan Li>¢, Shao-Xing Dai®*" and Jing-Fei Huangb<"

aCollege of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
bState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology,
Chinese Academy of Sciences, Kunming 650223, Yunnan, China

°Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming
650204, Yunnan, China

dSchool of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China

¢KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical

Sciences, Soochow University, Kunming 650223, Yunnan, China

! These authors contributed equally to this work.
* Correspondence authors:

Shao-Xing Dai (daishaoxing@mail.kiz.ac.cn)
Jing-Fei Huang (huangjf@mail.kiz.ac.cn)

Tel: +86 0871 65195183

Peer] reviewing PDF | (2017:11:21844:0:3:NEW 30 Nov 2017)



Peer]

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

ABSTRACT
Background

Alzheimer’ disease (AD) is an ultimately fatal degenerative brain disorder with an
increasingly large burden on health and social care systems. There are only five drugs for AD on
the market and haven’t been any novel effective medicines for quite a few years. Chinese
medicinal plants were used for treating diseases for thousands of years and screening herbal
remedies is a way to develop new drugs.
Methods

We use molecular docking to screen all compounds from traditional Chinese medicine
(TCM) into the comprehensive AD targets. Compounds with excellent binding affinity are drug
candidates. The structural similarity with existing drugs and druggability properties of these drug
candidates are studied. And we searched CNKI database to obtain anti-AD Chinese plants from
2007 to 2017 and only the articles of the clinical study were remained.
Results

1654 compounds have excellent binding affinity with 33 AD target@os‘[ of them are rich
in plants used for treating AD in China. The main plants are from two genera Panax and Morus.
We classify the compounds by single target and multiple targets. Structural similarity reveals that
20 candidate anti-AD compounds are structurally identical with 14 existing drugs which were
reported as anti-AD compounds in previous study. After ADMET filter, we get 13 anti-AD
compounds with favorable druggability properties. And 9 compounds are ingredients of anti-AD
Chinese plants.
Discussion

The natural compounds from TCM provide a broad prospect for the screening of anti-AD
drugs. We establish networks to systematically study the connection among natural compounds,
approved drugs, TCM plants and AD targets and find promising candidate drugs. We hope our
study can be useful for in-depth research for Chinese medicine treatment of AD.

Keywords: Alzheimer’s disease, molecular docking, candidate drugs
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INTRODUCTION

Alzheimer's disease (AD) is a progressive and ultimately fatal degenerative brain disorder of
the central nervous system, which is thought of being one of the main causes for dementia in
senior citizens!?.(Fan & Chiu 2014; Song et al. 2015) Some psychiatric symptoms are observed
in AD patients, such as irritability, changes in mood or personality, paranoid delusions and
hallucinations.(Coyle et al. 1983) Pathological diagnoses for AD are the senile plaques and the
neurofibrillary degeneration (Dickson 1997). The degeneration is caused by neurofibrillary
tangles in the intracellular fibrous aggregation of protein tau, and which exists mainly in areas of
the brain involved in learning, memory, and emotional behaviors, for example, the hippocampus,
the basal forebrain, the entorhinal cortex and the amygdala (Mattson 2004). Some hypotheses
about AD pathogenesis involved in many pathways and targets have been suggested, such as, the
amyloid (Goedert & Spillantini 2006), the cholinergic (Craig et al. 2011), the oxidative stress
(Pratico 2008), the glutamatergic (Bezprozvanny & Mattson 2008), the inflammatory (Trepanier
& Milgram 2010) and the metal hypotheses (Bonda et al. 2011). However, the cause for AD are
not very clearly yet, because it is a complex and multifactor disease (Armstrong 2013). Up to
now, five drugs of symptom relief can be used to Alzheimer's patients on clinical, including four
cholinesterase inhibitors and one N-methyl-D-aspartate(NMDA) -receptor antagonist, but no one
can cure the patients or inverse AD (Cummings et al. 2014; Peng et al. 2016). Thus, the new
drug discovery for AD is still a challenge.

Traditional Chinese medicines (TCMs) have been used in therapy in various diseases for
several thousand years in Chinese history, and some natural ingredients in them have been also
developed into the drug successfully, such as artemisinin.  Screening natural ingredients or
compounds from the herbal remedies and TCMs may be an effective way to develop new
drugs.(Normile 2003; Sanderson 2011; Sucher 2013) For example, the interactions between
some ingredients from anti-AD herbs and their corresponding target proteins(Sun et al. 2013)
and between 12 ginger components and 13 anti-AD targets can be found(Azam et al. 2014).

There are many validated AD targets, such as AchE(Yiannopoulou & Papageorgiou 2013),
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BchE(Darvesh 2016; Mushtaq et al. 2014), RAGE(Cai et al. 2016; Deane 2012), TNF-
alpha(Leszek et al. 2016; Wyss-Coray & Rogers 2012), PLA2(Gentile et al. 2012; Lee et al.
2011) and so on. They are involved in various AD associated pathways. Because we want to
study comprehensive AD targets, we select 33 targets which have protein crystal structures from
all validated AD therapeutic targets as our research objects. In order to explore the interactions
between the 33 validated AD therapeutic targets involved in various hypotheses and compounds
in TCM plants, the interaction networks among the targets, compounds, approved drugs and
TCMs have been established in this study. Finally, 13 candidate anti-AD compounds with
favorable druggability properties are structurally novelty, and 9 compounds of them are
ingredients of anti-AD Chinese plants. Thus, these 13 compounds may be valuable in anti-AD
drug development in the future; of course, they will also be needed to prove in the further drug
experiments. The results implicates that the strategy of drug discovery based on the interaction
networks may be very helpful for drug development.

MATERIALS AND METHODS

Data collection and preprocessing

More than 60000 natural compounds from 8529 different plants are from TCM
Database@Taiwan (http://tcm.cmu.edu.tw/). This database is the web-based database and is also
the most comprehensive non-commercial database of @tional Chinese medicine (TCM)(Chen
2011). The 3D structures of molecules are available as mol2 format in the database. The mol2
file format is converted to the pdbqt format and the SMILES string by Open Babel toolbox
v2.3.1(O'Boyle et al. 2011).

All 33 validated therapeutic targets of AD are obtained from the Thomson Reuters Integrity
database (https://integrity.thomson-pharma.com/integrity/). Protein structures of these targets are
from Protein Data Bank (PDB) database (http://www.rcsb.org/pdb/home/). The 3D structures of
the proteins are available as pdb format. This format is converted to the pdbqt format by
AutoDock tools v1.5.6 (Morris et al. 2009), and the 3D view is shown by Discovery Studio v3.1

(http://accelrys.com/products/collaborative-science/biovia-discovery-studio/).
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Molecular docking between natural compounds and AD targets

Docking is tantamount to position the ligand in different orientations and conformations
within the binding site to calculate optimal binding geometries and energies. The interaction
between natural compounds and AD target@ predicted by AutoDock Vina 1.1.2 (Trott &
Olson 2010). The docking binding site center for each target is the structural binding center of
ligand embedded. To allow free rotation of the compounds, the search space is set to 25 x 25 x
25 A in each axis. The default settings are used for all other docking parameters. Each docking is
performed by a command that contains space size and three-dimensional coordinate of docking
center. Binding pose with the lowest energy for each docking test is considered as the best
binding mode of each compound. The lower energy score means stronger binding affinity
between the ligand and the receptor. The compounds with top 0.5% docking score are chosen as
the candidate ligands for each target.
The interactions among targets, compounds and plants

The networks of target-compound and of target-plant are constructed by Cytoscape
v3.4.0(Shannon et al. 2003). The target and the compound will be connected, if the compound is
docked to the target successfully. The target and the plant will also be connected, if the plant
with the compound can interact with the target. The link strength is represented as the line’s
thickness, which indicates the number of the compounds between the target and the plant.
Collection of anti-AD plants from Chinese medicine prescription

The word senile dementia is searched in the subject column of CNKI database
(http://www.cnki.net/) to retrieve Chinese medicine prescription for anti-AD from the related
Chinese articles. The articles from 2007 to 2017 have been collected, and just those articles from
the clinical study are remained. Chinese medicine prescriptions and its usage frequency are from
these articles too. The common anti-AD plants in traditional Chinese clinical medicines can be
found from the prescriptions. The Chinese version of raw data prescription with corresponding
English includes, the Latin name of anti-AD plants in each prescription, the patient number

(male and female if available), the article title of study and published data (years).
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The similarity between candidate compounds and existing drugs

Both Tanimoto coefficient (Tc) and Pybel(O'Boyle et al. 2008) the package of Python are
used to measure the structural similarity between two compounds. The fingerprint FP2
implemented in the Pybel is generated for each structure and used to calculate Tc. Tc is defined
as Tc = C(1, j)/U(1, j), where C(i, j) is the number of common features in the fingerprints of
molecules i and j, and where U(i, j) is the number of all features in the union of the fingerprints
of molecules i and j. If the fingerprints of two compounds are Tc = 1, they will be considered
structurally identical.

The Cytoscape v3.4.0 is used to construct the network including candidate compounds, their
targets and structurally identical drugs. The existing drug in drugbank database(Wishart et al.
2006) and natural compound will be connected, if their Tc score equals to 1. The natural
compound and their targets are also connected in this network.

Clusters of potential candidate compounds for AD

1654 of all compounds in docking with 33 targets are located at top 0.5%, they have been
regarded as the potential candidate compounds for AD. The cluster ligands protocol in BOVIA
Pipeline Pilot V8.5 (http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/) is
used to cluster the 1654 compounds. A set of compounds is assigned to different clusters during
clustering, and every cluster compounds have similar properties. The clustering is based on
maximal dissimilarity partitioning of a relocation method. Only the fingerprint FP2 is used in
this study. Cluster selection can be performed by size or number, and the cluster number is
assigned to 10 in this study. If the sum of one member distancing to other members reaches the
minimum value, this member is selected as the cluster center.

ADMET properties for candidate compounds for AD

ADMET properties of candidate compounds for AD are estimated by Discovery Studio.
These properties, including aqueous solubility, blood brain barrier penetration (BBB), human
intestinal absorption (HIA), plasma protein binding (PPB) and hepatotoxicity, are used to filter

the compounds. The values of these properties have been set as the controlled parameters, they
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are 3~4 (3: good; 4: optimal) for aqueous solubility, 1~2 (1: high; 2: medium) for BBB, 0 (0:
good) for HIA, FALSE for both PPB and hepatotoxicity.

RESULTS

Molecular docking of natural compounds and embedded ligands to the 33 AD targets

30438 of 60000 compounds in TCM Database contain plant information, and they have been
docked with th@f& AD targets’ embedded ligands (Table 1). The docking scores of embedded
ligand in the protein crystal structure are from —3.31 to —12.65 (kcal/mol). The lowest docking
energy scores for the 33 targets are from —8.44 to —14.5 (kcal/mol). Some targets, such as
Caspase-3, QC, IDO and GLP-1R, can bind with more than 20000 natural compounds, and the
docking scores of compounds are better than those of their embedded ligands. However, the
docking scores of the target RAR with natural compounds are worse than those of the RAR with
its embedded ligand.

Because lots of TCM compounds can bind to AD targets, just top 0.5% compounds in scores,
for each target, are taken as the candidate compounds for AD; all these top 5% compounds
include 1654 compounds. The docking results of 1654 compounds indicate that almost all
docking energies of the top 0.5% compounds with targets are higher than those of embedded
ligands (Fig. 1). Thus, the docking results should be reliable and the 1654 compounds can be
taken as candidate compounds for AD.

The analysis of single target and multi-target compounds

There are 976 compounds with single target and 678 compounds with multiple targets in
1654 candidate compounds for AD (see Supplementary Fig. 1 and 2). The single-target
compounds corresponding to each target are very different in numbers. For example, target
SIRT1 corresponds to 76 compounds, but target lyn just corresponds to 4 compounds. The multi-
target compounds are classified into 21 networks based on their corresponding target numbers.
For examples, the two-target network contains 274 compounds, and the three-target network
includes 131 compounds. Finally, the compound, number 24508, binding to 25 AD targets have

been observed.
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The candidate compounds for AD and their enrichment plants

1654 candidate compounds for AD have been mapped to the 363 plants corresponding to 33
AD targets. The plant numbers for each target are from 42 to 71, whereas the compounds
numbers for each target are from 62 to 123 (Fig. 2 and Supplementary Fig. 3).

101 clinical related articles have been obtained from more than 10000 senile dementia
related articles, and 141 anti-AD traditional Chinese plants have been also observed from 101
clinical prescriptions. The 141 traditional Chinese anti-AD plants are classified based on the
functional property in the TCM database. Most of the 141 anti-AD plants are in the category
‘Tonifying, Replenishing’, and the plants in this category reach 28.45% in all anti-AD plants
(Supplementary Fig. 4).

The best associated plant for each target containing most compounds can dock with this
target (Table 2 and Fig. 3). Thus 33 targets correspond to 18 best associated plants. The top 6
plants corresponding to 17 targets in these 18 plants are anti-AD traditional Chinese plants, they
include Panax and Morus corresponding to 6 targets, respectively, others are Salvia, Rheum,
Paeonia and Glycyrrhiza.

The similarities between candidate compounds and existing drugs

The structural similarities between existing drugs and top 0.5% natural compounds show
that some compounds are identical to existing drugs in similairty (Tc=1). The connection
network among candidate compounds, existing drugs and AD targets has been established (Fig.
4). There are 20 candidate compounds, 14 existing drugs and 27 AD associated targets in the
network. The 14 drugs include Lutein (DB00137), Vitamin A (DB00162), Vitamin E (DB00163),
Azelaic Acid (DB00548), Ergotamine (DB00696), Estradiol (DB00783), Menthol (DB00825),
Drostanolone (DB00858), Glyburide (DB01016), Tubocurarine (DB01199), Metocurine
(DB01336), Yohimbine (DB01392), Lactose (DB04465), Artemether (DB06697).

10 in these 20 candidate compounds can only bind with one target, but others can interact
with more than one target, which is similar to those 14 drugs. For example, compound 18491 can

only interact with the target Ftase, and this is same to Menthol, both compound 19476 and 19477
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are also same to Tubocurarine and Metocurine, respectively; but compound 18582 and 18583 are
similar to Ergotamine, they can combine with 16 and 14 targets, respectively.
The structure cluster of candidate compounds for AD

In order to compare the structural features among candidate compounds for AD, the 1654
candidate compounds for AD have been assigned into 10 clusters (Table 3). All the compounds
in cluster center contain the carbocyclic structure, which is similar to the five approved drugs for
AD. The size of different clusters is not same, the largest cluster contains 477 compounds, but
the smallest cluster is made of just 6 compounds. Every cluster has its primary target that can
better combine with the compounds in this cluster.
13 candidate compounds for AD with favorable ADMET properties

13 of 1654 candidate compounds are retained after ADMET analysis (Table 4). 8 of 13
compounds are the single-target compounds, others are the multi-target compounds. For example,
compound 5868, 8792, 9593, 10639, 28814, 31515 just can combine with one target, they are
MGLUR, GABA(B), XO, MAOB, PDE4, RAR, SIRTI, respectively; compound 5862 and
16167 share one common target, AchE; compound 5863 can combine with three targets, AchE,
GABA(B) and MGLUR; compound 5869 and 30713 can interact with two targets, but compound
26629 and 28468 can be interacted with five targets. These 13 compound structures and their
corresponding plants have been shown in Table 5. The corresponding plants of 9 compounds
have been regarded as the anti-AD plants in TCM, including Curcuma kwangsiensis, Poria
cocos, Lindera aggregate, Ophiopogon japonicus (L. f.) Ker-Gawl. and Glycyrrhiza glabra.
DISCUSSION

The candidate compounds from traditional Chinese plants provide a broad prospect for the
screening of anti-AD drugs. The network between all compounds in traditional Chinese plants
and comprehensive anti-AD targets involved in various hypotheses has been established. The
network among compounds, TCM plants and targets may be very helpful for the anti-AD drug
design.

The identical structure between existing drugs used to treat other diseases and the 1654
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candidate compounds can provide enlightenment for drug discovery. Except for existing AD
drugs, the positive effects on AD in other existing drugs have also been reported. Some studies
have shown that Lutein is closely related to preventing cognitive decline and risk of AD, thus
Lutein may contribute to the treatment of AD(Kiko et al. 2012; Min & Min 2014; Xu & Lin
2015). Similarly, Vitamin A, Vitamin E, Estradiol, Menthol, Glyburide and Yohimbine are also
considered to be helpful for the prevention and therapy of AD.(Bhadania et al. 2012; Dysken et
al. 2014; Lamkanfi et al. 2009; Lan et al. 2016; Mohamd et al. 2011; Ono & Yamada 2012;
Peskind et al. 1995; Takasaki et al. 2011) All above suggested that compounds with similar
structures to existing drugs may also have anti-AD function through interacting with similar
targets. For example, Tubocurarine can interact with the target AchE which has been described
in Drugbank database. Because candidate compounds have identical structures with these
existing drugs, their anti-AD activities can be expected and these compounds should be worth
being studied further.

ADMET is one important index in drug development. After five ADMET properties filtering,
13 candidate anti-AD compounds with novel structure are remained. In the 13 compounds, 8 are
single-target compounds, 2 are double-target compounds and other 3 compounds combine with
more than two targets. The structures and targets of these compounds have known, so they can
be study easily in drug development in future. And because these compounds have favorable
druggability properties, they may become the promising candidate drugs for AD. Of course, the
further experiments are necessary before their becoming real candidate drugs.

Many compounds combining with AD associated targets have been observed in some plants
never used in the traditional Chinese clinical prescription. So some non-anti-AD plants may
become the anti-AD plants, which will offer more natural compound resource for the new drug
discovery for AD and be also helpful for the development of TCMs.

In this study, three verification methods have used to test the result credibility of has been
tested. Firstly, the ligand embedded in the protein crystal structure is used as a validation

criterion; the results show that docking energy scores of most candidate anti-AD compounds are
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better than those of the protein-embedded ligands. Secondly, some of candidate compounds with
same structures to existing drugs used in other diseases can be identified, and these drugs have
been reported to be a positive effect for AD treatment. Finally, many of medical plants used to
treat AD in TCM clinical prescriptions can be also observed in this study.
CONCLUSION

In summary, this study offers one strategy to find novel candidate anti-AD drugs from
traditional Chinese plants by constructing the interaction networks between AD targets and
natural compounds in TCM plants, which may be helpful for understanding the molecular
mechanism of anti-AD. In addition, 13 novel anti-AD candidate compounds have also been
found.
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Table 1(on next page)

Details of docking results of 33 anti-AD targets with the number of successfully docked
TCM compounds

a. the number of compounds with better docking score than that of ligand embedded in the crystal
structure.

b. 'Ligand Energy' means the docking energy of ligand embedded in the crystal structure.
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1 Table 1. Details of docking results of 33 anti-AD targets with the number of successfully docked
2 TCM compounds

. Lowest
f];: SB Protein Name @ Cl\?::gg:;d ];lli:;l;b docking
Energy
1DB4 PLA2(Phospholipase A2, membrane associated) 5290 -7.31 -11.55
IDQA HMG-COA(3-hydroxy-3-methylglutaryl-coenzyme A 437 742 978
reductase)
INME Caspase-3 21028 -4.57 -10.24
10JA MAOB(Amine oxidase [flavin-containing] B) 11173 -6.58 -12.2
1TB7 PDE4(cAMP-specific 3',5'-cyclic phosphodiesterase 4D) 17375 -6.47 -14.5
ITN6 Ftase(Protein farnesyltransferase subunit beta) 14437 -6.59 -11.9
2AFW QC(Glutaminyl-peptide cyclotransferase) 23635 -4.48 -11.11
2AZ5 TNF(Tumor necrosis factor) 9261 -5.66 -9.53
2D0T IDO(Indoleamine 2,3-dioxygenase 1) 20739 -5.71 -12.4
2DQ7 Fyn(Tyrosine-protein kinase Fyn) 63 -10.28 -12.41
2E1Q XO(Xanthine dehydrogenase/oxidase) 15609 -4.65 -11.05
2VQM  HDAC(Histone deacetylase 4) 5356 -7.11 -11.33
275Y MAOA (Amine oxidase [flavin-containing] A) 5299 -7.96 -12.8
3A40 lyn(Tyrosine-protein kinase Lyn) 431 94 -12.53
3G9N JNK(Mitogen-activated protein kinase 10) 1606 -7.19 -10.36
3IKA EGFR(Epidermal growth factor receptor) 6324 -7.64 -11.45
3KMR RAR(Retinoic acid receptor alpha) 0 -12.65 -11.4
303U RAGE(Advanced glycosylation end product-specific 13309 776 14.08
receptor)
4DJU BACE-1(Beta-secretase 1) 14161 -7.12 -12.2
4EY5 AchE(Acetylcholinesterase) 329 -8.5 -10.6
4KXQ SIRT1(NAD-dependent protein deacetylase sirtuin-1) 45 -10.3 -12.4
AMS4 GABA(B)(Gamma—aminobutyric acid type B receptor 13107 573 106
subunit 1)
40C7 RXR(Retinoic acid receptor RXR-alpha) 708 -8.48 -11.3
40TH PKC(Serine/threonine-protein kinase N1) 2591 94 -13.26
4XAR MGLUR(Metabotropic glutamate receptor 3) 9244 -4.98 -8.5
AVLK DYRKIA(]?ual specificity tyrosine-phosphorylation- 7167 813 1254
regulated kinase 1A)
4ZGM GLP-1R(Glucagon-like peptide 1 receptor) 24782 -3.31 -9.06
5A46 FGFRI1(Fibroblast growth factor receptor 1) 699 -8.54 -12.8
SAFH a7NACHR(Neuronal acetylcholine receptor subunit 6934 6.02 964
alpha-7)
SH8S AMPA (Glutamate receptor 2) 8926 -5.3 -8.44
SHK1 SIG-1R(Sigma non-opioid intracellular receptor 1) 1281 -9.29 -12.8
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S5IHS CKI-6(Casein kinase I isoform delta) 5998 -7.62 -12.5
5JAU LP-PLA2(Platelet-activating factor acetylhydrolase) 1402 -8.08 -11.85

3  a. the number of compounds with better docking score than that of ligand embedded in the
crystal structure.
5 b. 'Ligand Energy' means the docking energy of ligand embedded in the crystal structure.
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Table 2(on next page)

Targets and their best associated plant which has the most compounds docking with the
target
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Table 2. Targets and their best associated plant which has the most compounds docking with the

2 target
Target Top1 Plant Target Topl Plant Target Topl Plant
PLA2 Bletilla(5) HMG-COA Morus(9) Caspase-3 Paeonia(4)
MAOB Corydalis(16) PDE4 Isatis(4) Ftase Panax(8)
QC Panax(4) TNF Panax(10) IDO Morus(7)
Fyn Papaver(11) XO Corydalis(17) HDAC Bletilla(5)
MAOA Corydalis(11) lyn Claviceps(5) INK Morus(8)
EGFR Artemisia(7) RAR Rauwolfia(8) RAGE Fritillaria(7)
BACE-1 Lonicera(6) AchE Piper(6) SIRT1 Glycyrrhiza(7)
GABA(B) Morus(11) RXR Salvia(10) PKC Solanum(6)
MGLUR Morus(4) DYRKIA Strychnos(6) GLP-1R Panax(9)
FGFR1 Rheum(6) a7NACHR Panax(8) AMPA Panax(7)
SIG-1R Corydalis(7) CKI-o Salvia(11) LP-PLA2 Morus(10)
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Table 3(on next page)

The 10 clusters of anti-AD TCM compounds and their primary targets
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1 Table 3. The 10 clusters of anti-AD TCM compounds and their primary targets

Cluste Cluster Cluster .
Structure . Primary Targets
r Center Size

1 24407 238 SIG-1R(33)

5 s625 ; JNK(4), DYRK1A(4), CKI-
3(4)

3 25654 264 LP-PLA2(40)

4 33348 71 DYRKIA(16)

5 31600 60 RXR(13)

6 35138 477 HMG-COA(64), PDE4(64)

7 5802 39 RAR(S)

8 23679 84 QC(15), PKC(15)

9 23424 81 MAOB(18), SIRT1(18)
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10 1314 334 BACE-1(39)
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Table 4(on next page)

ADMET properties of 13 candidate drugs
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1

Table 4. ADMET properties of 13 candidate drugs

Solubility BBB  Hepatotoxic Absorption PPB
Name(ID) Level Level Prediction Level Prediction Targets
(3S)-1-(3,4-
Dihydroxyphenyl)-7-(4- 2 FALSE 0 FALSE AchE
hydroxyphenyl)heptan-3-
0l(5862)
(35)-1-(3,4- AchE,G
Dihydroxyphenyl)-7-(4- ABA(B
3 2 FALSE 0 FALSE
hydroxyphenyl)-(6E)-6- ),MGL
hepten-3-01(5863) UR
(3R)-1-(3,4-
Dihydroxyphenyl)-7-(4- GABA(
hydroxyphenyl)heptan-3- 3 2 FALSE 0 FALSE B)
ol(5868)
(3R)-1-(3,4-
Dihydroxyphenyl)-7-(4- X0,Ach
3 2 FALSE 0 FALSE
hydroxyphenyl)-(6E)-6- E
hepten-3-01(5869)
coniferyl,ferulate(8792) 3 2 FALSE 0 FALSE X0
pallidine(9593) 3 2 FALSE 0 FALSE MAOB
4,5-di-o-
’ . 3 2 FALSE 0 FALSE PDE4
caffeoyl,quinic,acid(10639)
Anagyrine(16167) 3 1 FALSE 0 FALSE AchE
PLA2,Q
C,HDA
Blestrin D(26629) 3 2 FALSE 0 FALSE C,JNK,
GABA(
B)
Ftase,Q
C,HDA
Dibothrioclinin 11(28468) 4 2 FALSE 0 FALSE C,GLP-
IR, AM
PA
5,7-Dihydroxy-6,8-
dimethyl-3-(4*-hydroxy-3*- 2 FALSE 0 FALSE RAR
methoxybenzyl)chroman-4-
one(28814)
Glabroisoflavanone TNE,SI
AGO713) 3 2 FALSE 0 FALSE RTI
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Hupehenidine(31515) 3 2 FALSE 0 FALSE SIRT1
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Table 5(on next page)

2D structure and corresponding plants of 13 compounds with favorable ADMET
properties
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1 Table 5. 2D structure and corresponding plants of 13 compounds with favorable ADMET
2 properties

Compoun Structure Plant Compou Structure Plant

dID nd ID

5862 Curcuma 5863 O o Curcuma
kwangsiensi o kwangsiensis
S

5868 Curcuma 5869 O o Curcuma
kwangsiensi o kwangsiensis
S 0,

8792 "

Poria cocos 9593 Lindera
o | aggregate
10639 iy Taraxacum 16167 Thermopsis
@0 mongolicu lanceolata R.
A m Br., Laburnum
>= .

L anagyroides,
) Sophora
8 flavescens Alt.,
Sophora
tonkinensis
Gerbera

piloselloides

26629 . Bletilla 28468
‘O o striata

O | Cass.
(o} T
28814 N Ophiopogon 30713 Glycyrrhiza
japonicus glabra
Z (L f) Ker-
o Gawl.
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31515 Fritillaria

hupehensis
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Figure 1

The docking ennergy scores of the top 0.5% natural compounds and embedded ligands
for 33 targets.

Red boxes represent top 0.5% compounds for each target. Blue points represent the targets’

embedded ligands.
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Figure 2

Manuscript to be reviewed

The exact number of candidate anti-AD compounds and their plants for each anti-AD

target

The number is tagged above each column, and every target is displayed on the horizontal

axis.
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Figure 3

The network contained targets and their best associated plant.

Pink boxes represent targets. Green boxes represent compounds.
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Figure 4
The network contained anti-AD targets, TCM compounds and structurally identical

drugs.

Pink boxes represent targets. Yellow boxes represent compounds. Blue boxes represent

drugs.
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