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ABSTRACT
Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached
fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other
species of Drosophila. Since the bacterial microbiota of Drosophila, and of many
other animals, is affected by diet, we hypothesized that the bacteria associated with
D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and
Illumina sequencing, we characterized the bacterial communities of larval and adult
D. suzukii collected from undamaged, attached cherries in California, USA. We find
that the bacterial communities associated with these samples of D. suzukii contain
a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known
associations with Drosophila, were also found, although at lower frequency than
Tatumella in four of the five samples examined. Sampling D. suzukii from different
locations and/or while feeding on different fruits is needed to determine the general-
ity of the results determined by these samples. Nevertheless this is, to our knowledge,
the first study characterizing the bacterial communities of this ecologically unique
and economically important species of Drosophila.
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INTRODUCTION
D. suzukii is an introduced pest insect that has recently become established in both North

America and Europe (Rota-Stabelli, Blaxter & Anfora, 2013). The economic impact of

D. suzukii in fruit growing regions may be substantial (Bolda, Goodhue & Zalom, 2010).

Unlike most species of Drosophila, D. suzukii has a serrated ovipositor that allows it to lay

its eggs in undamaged fruit (Rota-Stabelli, Blaxter & Anfora, 2013). This is distinct from

most other Drosophila, including the closest relatives of D. suzukii, which lack a serrated

ovipositor and therefore lay eggs in fallen and damaged fruit (Ashburner, Golic & Hawley,

2004; Mitsui, Takahashi & Kimura, 2006; Rota-Stabelli, Blaxter & Anfora, 2013). Therefore,

the diet of D. suzukii is different from that of most other species of Drosophila.
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The microbial communities associated with natural Drosophila populations are well

characterized (for a review see Broderick & Lemaitre, 2012). Most studies have focused

on the bacterial communities of Drosophila that feed upon fallen fruit (Cox & Gilmore,

2007; Corby-Harris et al., 2007; Staubach et al., 2013; Wong, Chaston & Douglas, 2013),

while others have looked at additional host diets, such as mushrooms, cacti, and flowers

(Chandler et al., 2011). The yeast communities of various Drosophila species have also

been investigated (Chandler, Eisen & Kopp, 2012), and the yeasts associated with D. suzukii

feeding upon undamaged fruits have been characterized (Hamby et al., 2012). However, to

our knowledge, the bacterial communities of D. suzukii have not been examined.

In Drosophila, both laboratory and natural studies have found that diet plays an

important role in shaping bacterial communities (Chandler et al., 2011; Staubach et

al., 2013; Sharon et al., 2010). Since D. suzukii consume a distinct diet compared to

other Drosophila, we hypothesized that this may play a role in shaping their bacterial

communities. We therefore characterized the bacterial communities of adult and larval

D. suzukii collected from undamaged cherries.

MATERIALS AND METHODS
On June 28th 2012 at Wolfskill Experimental Orchard near the town of Winters, California,

USA, adult Drosophilids were aspirated directly from attached cherries (cherry variety

DPRU0327/PRUNUS/AVIUM/F 98 CAROON/C 1 52). No insecticides or fungicides were

applied in this orchard during this growing season. No specific permits were required for

the described field studies and site managers provided informed consent before collections

took place. Collected Drosophilids were stored alive in autoclaved glass vials for transport

to the University of California, Davis (UCD) where they were positively identified as

Drosophila suzukii (24 males and 1 female). Intestines were dissected from the males under

sterile conditions and randomly divided into three sets of eight intestines each. Total time

between collection and dissection did not exceed four hours. Whole cherries that lacked

any visible damage were collected from the same tree and placed in sterile plastic bags

for transport to UCD. The cherries were macerated in the bags and the largest visible

larvae were picked from the bags, externally washed in 70% ethanol, rinsed in sterile water,

and divided into three sets of ten individuals each. Additional larvae were collected from

the same cherries, washed and rinsed as described above, and then individually placed

in yeast extract-peptone-dextrose (YEPD) plates (1% yeast extract, 2% peptone, and

2% glucose/dextrose). The larvae were allowed to migrate for 30–60 s and the resulting

colonies were used in a complementary study (Dunitz et al., 2014). The larvae were then

individually placed in plastic vials containing Bloomington Drosophila media and all

eclosing adults were positively identified as D. suzukii (4 males and 6 females).

DNA extractions were performed on these larvae and the adult intestines as previously

described (Chandler et al., 2011). Bacterial DNA was amplified by a two-step PCR targeting

the 16S rDNA gene (V4 region) with primers 515F and 806R, designed to include Illumina

adaptor and barcode sequences. Sequencing was performed on an Illumina MiSeq at the

UC Davis Genomics Core Facility generating 150 basepair paired-end reads. Samples were
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Table 1 Proportion of the most abundant OTUs in each sample of D. suzukii. OTUs are identified
by their closest hit in the SILVA SSU Reference Database Release 111. Number of sequences is after all
quality-control steps. L, larva; A, adult.

L1 L2 A1 A2 A3

Tatumella punctata 0.991 0.989 0.309 0.990 0.800

Gluconobacter cerinus 0.001 <0.001 0.658 0.002 0.123

Acetobacter cerevisiae <0.001 <0.001 0.021 <0.001 0.028

Dyella sp. 0 0 0 0 0.015

Gluconobacter oxydans <0.001 <0.001 0.001 0 0.009

Orbus sp. <0.001 0 0 0 0.008

All other taxa 0.001 0.001 0.008 0.001 0.011

Total number of sequences in sample 50,701 65,346 55,426 44,545 40,256

multiplexed with dual barcode combinations and demultiplexed with a custom script.

After demultiplexing, the six samples had between 71,131 and 1,388 raw paired-end

sequences for a total of 279,046 paired-end sequences. Paired sequences were combined

using FLASH (Magoč & Salzberg, 2011) with parameters of a minimum overlap of 20

base pairs and a maximum overlap of 120 base pairs. These parameters were chosen to

accommodate the 150 base pair paired-end reads used here (Jeff Froula, pers. comm.,

2013). Other parameters were left as default.

Merged sequences were quality checked using QIIME (Caporaso & Kuczynski et

al., 2010b) and default settings (Bokulich et al., 2013). Using UCLUST (Edgar, 2010),

the 267,204 quality-checked sequences were clustered into de novo OTUs at the 97%

similarity threshold producing 3,518 OTUs. The most abundant sequence in each OTU

was chosen as a representative sequence. The representative sequences for all OTUs are

available in Data S1. These representative sequences were screened for chimeras using the

PyNAST aligner (Caporaso et al., 2010a) and ChimeraSlayer (Haas et al., 2011). Any OTU

containing only 1 sequence was removed thus removing 2,878 OTUs (and therefore 2,878

sequences).

Taxonomic assignments were generated by querying the representative sequences

against the truncated SILVA SSU Reference Database Release 111 (Quast et al., 2013)

using the Blastn algorithm (Altschul et al., 1990) (Data S2). Any OTU with a best hit to

mitochondria, chloroplast, or Wolbachia was removed from further analysis. Two OTUs

with low query coverage (<63 basepairs) within the SILVA database were removed. Since

we are primarily interested in the bacterial microbiota, four Archaeal OTUs were also

removed. One of the larval libraries contains less than 300 sequences (all others contain

greater than 35,000; Table 1) and was removed from subsequent analyses, which also

removed four OTUs that were unique to this library (totaling eight sequences). The final

dataset consists of 617 OTUs containing 256,274 total sequences. The proportions of the

six most abundant OTUs in each sample are given in Table 1. Further details, including

information on the more rare OTUs, the singleton OTUs, and the removed larval library,

are found in Data S3.
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Figure 1 Rarefaction analysis of observed richness of the D. suzukii bacterial communities.

Table 2 Alpha diversity calculations for each sample of D. suzukii.

L1 L2 A1 A2 A3

Observed OTUs 204.12 240.86 120.61 182.24 213.08

Observed OTUs-SD 5.53 8.78 5.35 4.61 4.59

Chao 475.54 505.76 272.45 448.24 464.91

Chao-SD 55.26 52.50 47.86 46.28 49.74

Shannon diversity 0.13 0.16 1.18 0.14 1.22

Shannon-SD 0.0038 0.0061 0.0048 0.0032 0.0044

Notes.
SD, Standard deviation; L, larva; A, adult.

Alpha diversity was determined in QIIME by rarefying each sample to 35,000 sequences

and taking the average of 100 iterations of rarefication (Table 2). Rarefaction curves of

the observed OTUs were made in mothur using 100 iterations of the UCLUST generated

OTUs (Schloss et al., 2009) (Fig. 1). Beta diversity was determined using weighted UniFrac

(Lozupone & Knight, 2005) after aligning the representative sequencing using PyNAST

(Caporaso et al., 2010a), building a phylogenetic tree using FastTree (Price, Dehal & Arkin,

2010), and rarifying each sample to 35,000 sequences in QIIME (Fig. 2).

Demultiplexed sequenced reads are available through NCBI’s Sequence Read Archive

(SRA) under project number SRX391503.

RESULTS AND DISCUSSION
We characterized the bacterial communities of adult and larval Drosophila suzukii

collected from undamaged, attached cherries. Three adult samples, each containing eight

dissected male intestines, and two samples of larvae, each containing ten whole, externally

sterilized individuals of unknown sex, are included in this analysis. 16S rDNA PCR and
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Figure 2 Weighted UniFrac principle coordinate analysis of the D. suzukii bacterial communities.

Illumina sequencing generated over 40,000 reads per sample (Table 1). Operational

taxonomic units (OTUs) were formed by clustering sequences at the 97% similarity cutoff.

Taxonomic assignments were generated by querying the representative sequence of each

OTU against the truncated SILVA SSU Reference Database Release 111 using the Blastn

algorithm (Data S2).

We find that the microbiota of both of the larval samples and adult sample A2 are

composed of at least 99% Tatumella, and the remaining two adult samples contain 31%

and 80% Tatumella (Table 1) (the larval sample that was excluded from formal analysis due

to its extremely small library size was composed of 83% Tatumella [Data S3]). Tatumella

is an Enterobacteriaceae that has been linked to both human and plant infections (Costa,

Mendes & Ribeiro, 2008; Marin-Cevada et al., 2010). Tatumella punctata, the nearest hit

to the largest Tatumella OTU identified in this study, was originally isolated from oranges

(Kageyama et al., 1992). Although this genus is not considered a common Drosophila

associate (Broderick & Lemaitre, 2012), it was recovered from D. melanogaster at an

apple farm in New York, USA (Wong, Chaston & Douglas, 2013). Recently, several species

previously classified as Pantoea have been transferred into Tatumella (Brady et al., 2010).

Given that these species of Pantoea have been reported in Drosophila (Wong, Chaston &

Douglas, 2013), perhaps Tatumella is a more common Drosophila associate than currently

recognized. Nevertheless, Tatumella is the dominant bacteria associated with these samples

of D. suzukii, while being absent, or at minimal levels, with other species of Drosophila.

Sampling D. suzukii from different locations and/or while feeding on different fruits is

needed to determine the ubiquity of the D. suzukii/Tatumella association.

The next most abundant taxa are species of Acetobacteraceae, specifically Gluconobacter

and Acetobacter (Table 1). These are found in all five samples, but are primarily associated

with adult samples A1 and A3. The Acetobacteraceae are commonly found associated with

natural Drosophila populations (Chandler et al., 2011; Staubach et al., 2013; Wong, Chaston
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& Douglas, 2013; Corby-Harris et al., 2007; Cox & Gilmore, 2007). A minor, but notable,

component to the bacterial community of adult sample A3 is a Gammaproteobacteria in

the Orbus genus (0.8% of total community in A3). Orbus was the most common genus in

a global survey of Drosophilid species (Chandler et al., 2011), but has not been recovered

in most other studies of Drosophila-associated bacteria (Broderick & Lemaitre, 2012). The

reasons for this are unclear, although it has been found at low frequencies in naturally

collected fruit-feeding D. melanogaster and D. simulans (Staubach et al., 2013).

It is well established that alpha diversity measurements in 16S-based studies are affected

by amplicon length, primer selection, alignment method, and quality control procedures

(Schloss, 2010; Bokulich et al., 2013; Youssef et al., 2009). Furthermore, differences in sample

collection and preparation can affect perceived bacterial diversity. For example, studies

that examine whole bodies (Staubach et al., 2013; Wong, Chaston & Douglas, 2013) may

have artificially high diversity compared to those using dissected intestines (such as was

done here for the adult samples). Indeed, in laboratory raised flies, dissected intestines

have slightly lower observed and Chao richness than whole bodies (Chandler et al., 2011).

Furthermore, since transit time through the Drosophila intestine can be as low as 50 min

(Wong et al., 2008), undue time between collection and sample preparation can affect

diversity measurements as the individuals purge their intestinal contents. Because of these

caveats, it is difficult to compare results of previous studies to those generated here (Fig. 1

and Table 2).

Weighted UniFrac analysis (a phylogenetically-informed beta-diversity metric that

takes into account between-sample frequency differences) finds the two samples of

D. suzukii larvae harbor similar bacterial communities, while the three samples of

D. suzukii adults each have a distinct community (Fig. 2). The same pattern was found

in a weighted UniFrac analysis that did not exclude singleton OTUs (data not shown).

Furthermore, the observed OTUs, Chao richness, and Shannon diversity are very similar

for both larval samples, whereas the adult samples exhibit much higher between sample

variability in these three indices (Table 2). It should be noted that a consequence of our

pooling method means that it cannot be determined if this variability is the result of a

single individual with a highly different bacterial community or if multiple individuals,

each with the same community, were pooled together by chance. Furthermore, since

whole larvae were used it cannot be determined if non-intestinal bacteria, for example in

the trachea or salivary glands, are obscuring potential variability of the larval intestinal

microbiota.

One explanation for the differences in variability between larval and adult samples is

that larvae are confined to the fruit that they were laid into, while adults can travel to

other surfaces where they can acquire different bacteria. This result informs other studies

of Drosophila, and insect-microbe studies in general, many of which characterize only a

single sample from each population under investigation. The variability of adult samples

described here indicates that, despite pooling multiple individuals, a single sample may not

provide an accurate representation of the microbiota associated with that population.
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CONCLUSIONS
In this study, we find that Drosophila suzukii larvae and adults harbor simple bacterial

communities that are mostly dominated by Tatumella. As D. suzukii is a generalist

feeder that has been introduced to many areas of North America and Europe, sampling

D. suzukii from different locations and/or while feeding on different fruits is needed to

determine the ubiquity of the D. suzukii/Tatumella association. Nevertheless, given the

distinct food source of D. suzukii (relative to most Drosophila species), the potential role of

Tatumella (or other, yet to be identified D. suzukii-associated bacteria) on host fitness or

physiology is intriguing. In particular, the draft genome of the most abundant Tatumella

strain associated with this population of D. suzukii is available (Dunitz et al., 2014) and

analysis of this genome may reveal the metabolic potential of the microbiota to supplement

the D. suzukii diet with nutrients that are scarce on unfallen fruit. Furthermore, by

inoculating D. suzukii with defined bacterial communities under controlled dietary

conditions, future experimental work can explicitly reveal the microbiota’s role in host

biology. In summary, by characterizing the bacterial microbiota of these samples of

D. suzukii, this study is the initial step in the investigation of the interplay between diet

and bacteria in this interesting and economically important host-microbe system.
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