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ABSTRACT
Occlusive artery disease (CAD) is the leading cause of death worldwide. Bypass
graft surgery remains the most prevalently performed treatment for occlusive arterial
disease, and veins are the most frequently used conduits for surgical revascularization.
However, the clinical efficacy of bypass graft surgery is highly affected by the long-
term potency rates of vein grafts, and no optimal treatments are available for the
prevention of vein graft restenosis (VGR) at present. Hence, there is an urgent need
to improve our understanding of the molecular mechanisms involved in mediating
VGR. The past decade has seen the rapid development of genomic technologies, such
as genome sequencing and microarray technologies, which will provide novel insights
into potential molecular mechanisms involved in the VGR program. Ironically, high
throughput data associated with VGR are extremely scarce. The main goal of the
current study was to explore potential crucial genes and pathways associated with
VGR and to provide valid biological information for further investigation of VGR.
A comprehensive bioinformatics analysis was performed using high throughput gene
expression data. Differentially expressed genes (DEGs) were identified using the R and
Bioconductor packages. After functional enrichment analysis of the DEGs, protein–
protein interaction (PPI) network and sub-PPI network analyses were performed.
Finally, nine potential hub genes and fourteen pathways were identified. These hub
genes may interact with each other and regulate the VGR program by modulating
the cell cycle pathway. Future studies focusing on revealing the specific cellular and
molecular mechanisms of these key genes and pathways involved in regulating the
VGR program may provide novel therapeutic targets for VGR inhibition.
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INTRODUCTION
Occlusive artery disease is a major cause of morbidity and mortality worldwide (Bansilal,
Castellano & Fuster, 2015). Despite development of novel treatments in past decades,
coronary artery bypass graft (CABG) surgery remains the standard of care for patients with
left main coronary artery disease (CAD) and three-vessel CAD (Serruys et al., 2009). In
contrast, most patients with late-stage peripheral artery occlusive disease are treated with
peripheral artery bypass graft surgery (Weintraub et al., 2012). Due to their advantages
in availability and length, veins are the most commonly used conduits in coronary and
peripheral artery vascular surgeries (Goldman et al., 2004). However, one major issue that
has dominated the field for many years is that autologous veins are especially prone to
failure. Although data have shown that the patency rates of vein grafts diminish from 98%
immediately after surgery to <88% within the first month post-surgery and to 60% at
10 years after surgery. To date, no unequivocally effective treatments are available for vein
graft failure (Elmore et al., 2016). Thus, clarifying the cellular and molecular mechanisms
involved in VGR and identifying potential novel therapeutic targets for the prevention of
restenosis are significant goals.

At present, vein grafts are thought to undergo an adaptation process in new arterial
environments during which intimal thickening and structural vessel wall remodeling
appear (Buccheri et al., 2016; De Vries et al., 2016). However, the cellular and molecular
mechanisms underlying intimal hyperplasia and the vascular remodeling process are
largely unknown. Several studies have identified individual genes involved in restenosis;
for instance, early growth response protein 1 (Egr-1) was suggested to promote endothelial
cell(EC) proliferation and induce vein graft restenosis by up-regulating ICAM-1 expression
(Zhang et al., 2013). Tumor necrosis factor alpha-stimulated gene 6 (TSG-6) was indicated
to suppress restenosis of vein grafts in rats by inhibiting the inflammatory response
(Zhang et al., 2017). Despite the rapid development of genome sequencing and microarray
technologies, very few studies have characterized genes and pathways associated with
VGR at the transcriptome level, which may be partly due to the challenge of obtaining
appropriate samples and establishing animal models.

Kalish et al.(2004) identified the transcriptome responses of canine vein bypass grafts
using transcriptional profiling and defined the individual contributions of ECs and VSMCs
in a cell-specific vein graft transcriptome analysis (Bhasin et al., 2012). However, a main
weakness of the former study was the unavailability of canine-specific gene arrays in 2004, as
mentioned by the authors (Bhasin et al., 2012). The most important limitation of the latter
study lies in the fact that only the role of ECs and VSMCs were taken into consideration.
However, other cells and molecular components, such as inflammatory cells and immune
cells, also play pivotal roles in mediating VGR (De Vries et al., 2016).

The purpose of the current study was to determine potential crucial genes and pathways
involved in VGR. A bioinformatics analysis was performed with gene expression data from
our previous study (Wang et al., 2016), which avoided the limitations of the aforementioned
microarray data. After screening differentially expressed genes (DEGs) and performing a
functional enrichment analysis, protein-protein interaction (PPI) networks of the DEGs
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were constructed and visualized. The present study makes notable contributions to our
understanding of the molecular mechanisms involved in VGR and provides valuable
biological information for further exploration of potential candidate biomarkers and
therapeutic targets for the prevention of VGR.

MATERIALS & METHODS
Microarray data
The gene expression data used in this study were based on the Agilent GPL7083 platform
(Agilent Rabbit 4x44K Gene Expression Microarrays). The whole rabbit genome oligo
microarray provides a broad view by representing all known genes and transcripts in the
rabbit genome. Sequences were compiled from a broad source survey and then verified
and optimized by alignment to the assembled rabbit genome. As previously described,
significant vascular wall thickening and a high level of cell proliferation were observed,
whereas cell apoptosis was at the lowest level, in seven days after surgery group (Wang
et al., 2016). Hence, seven days after surgery was considered a key time point for vein
graft restenosis. Based on these observations, we compared the day 7 group with the
control group as the best choice to identify DEGs involved in VGR. Raw microarray data
(GSE110398) produced in our previous study were remodeled and further analyzed. A
total of 10 samples were extracted from our previous dataset (Wang et al., 2016), including
six vein graft samples (C1, C2, C3, C4, C5, and C6) removed seven days after surgery and
four vein graft samples (O1, O2, O3, and O4) obtained from the sham surgery group (data
can also be found in the Supplemental File). Herein, samples obtained seven days after
surgery were defined as the surgery group, and samples obtained from the sham surgery
group were defined as the control group.

Identification of DEGs
The raw signal intensities were normalized with the quantile method by GeneSpring GX
v11.5, and low intensity genes were filtered. The probe quality control was determined using
principal component analysis (PCA) inGeneSpring. The statistical softwareR (version 3.4.1;
R Core Team, 2017) and the linear models for microarray data package (limma) (Ritchie
et al., 2015) in Bioconductor (http://www.bioconductor.org/) were applied to identify
DEGs by comparing expression values between samples in the surgery and control groups.
An empirical Bayes method was used to select significant DEGs based on the ‘‘limma’’
package in Bioconductor. In this study, we were interested in determining which genes were
expressed at different levels between the control and surgery groups. In our analysis, linear
models are fitted to the data with the assumption that the underlying data are normally
distributed. Therefore, a design matrix was set up with the vein graft tissue information.

Enrichment analyses of DEGs
The Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8
is an integrated functional annotation tool for investigators to examine the biological
meanings underlying a large list of genes (Huang, Sherman & Lempicki, 2009). GO (gene
ontology) (Gene Ontology Consortium, 2006) and KEGG (Kyoto Encyclopedia of Genes and
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Figure 1 Volcano plot of DEGs.
Full-size DOI: 10.7717/peerj.4704/fig-1

Genomes) (Kanehisa & Goto, 2000) pathway enrichment analyses of DEGs were performed
using the authoritative online tool DAVID (https://david.ncifcrf.gov/). An adjusted p-value
<0.05 and count ≥2 were considered to have achieved significant enrichment.

PPI network construction
The Search Tool for the Retrieval of Interacting Genes (STRING) database is an online tool
designed to provide a critical assessment and integration of protein-protein interactions,
including both direct (physical) and indirect (functional) associations (Szklarczyk et al.,
2014). To evaluate the potential relationships among DEGs, we mapped the DEGs into
STRING; only experimentally validated interactions with a combined score >0.4 were
considered significant. Moreover, the Molecular Complex Detection (MCODE) app was
used to identify modules of the PPI network in Cytoscape (Shannon et al., 2003) with a
degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and max. depth = 100. MCODE
scores >3 and a number of edges >40 were set as the cut-off criteria. Pathway analysis of
genes in each module was performed using the online tool DAVID, and p-values <0.05
were considered significant.

RESULTS
Identification of DEGs
The statistical analysis software R (version 3.4.1; R Core Team, 2017) was used to identify
differentially expressed genes using an adjusted p-value <0.05 and |log2FC (fold change)|≥1
(Fig. 1) as criteria. A PCA plot was generated using normalized data. The PCA plot shows
clear separation between the surgery and control group samples (Fig. 2). A total of 858
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Figure 2 PCA plot.
Full-size DOI: 10.7717/peerj.4704/fig-2

up-regulated and 817 down-regulated DEGs were obtained in the surgery vein graft group
compared with the control group. Hierarchical clustering analysis of the top 100 DEGs is
shown in Fig. 3.

GO term enrichment analysis
The GO functional enrichment analysis showed that the up-regulated genes were
significantly enriched in biological processes (BPs), including immune response,
inflammatory response and innate immune response (Table 1). The down-regulated
DEGs were significantly enriched in positive regulation of the ERK1 and ERK2 cascades,
positive regulation of the apoptotic process, and chondrocyte differentiation (Table 2). For
the cellular component (CC) category, the up-regulated DEGs were significantly enriched
in extracellular exosome, extracellular space and membrane (Table 1). Interestingly,
the down-regulated DEGs were also enriched in extracellular exosome, cytoplasm, and
extracellular space (Table 2). For the molecular function (MF) category, the up-regulated
DEGswere enriched in ATP binding, transmembrane signaling receptor activity, and kinase
activity (Table 1), whereas the down-regulated DEGs were mainly enriched in calcium ion
binding, heparin binding, and protein tyrosine phosphatase activity (Table 2).

KEGG pathway analysis
In the KEGG pathway enrichment analysis, a total of 60 up-regulated pathways and 26
down-regulated pathways were obtained using the functional annotation tool DAVID.
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Figure 3 Hierarchical clustering analysis of top 100 DEGs.
Full-size DOI: 10.7717/peerj.4704/fig-3

However, some enriched pathways evidently had no associations with VGR. For example,
the most significant down-regulated pathway is pathways in cancer. Hence, a total of 14
potential key pathways were selected from these enriched pathways by literature review
and general experience (Table 3); most of these pathways are involved in regulating cell
proliferation, apoptosis, vascular smooth muscle contraction, and cell adhesion, which are
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Table 1 The top 5 enriched GO terms of the up-regulated DEGs.

Category ID Term Gene count P value

BP GO:0006955 immune response 29 2.18E−08
GO:0006954 inflammatory

response
20 1.87E−04

GO:0045087 innate immune
response

19 6.05E−06

GO:0043123 positive regulation of
I-kappaB kinase/NF-
kappaB signaling

14 0.014345

GO:0010628 Positive regulation of
gene expression

14 0.048003

CC GO:0070062 extracellular exosome 183 3.16E−13

GO:0005615 extracellular space 78 2.95E−10
GO:0016020 membrane 54 0.017266
GO:0005829 cytosol 48 0.037259
GO:0005783 endoplasmic

reticulum
34 0.002373

MF GO:0005524 ATP binding 81 0.001476
GO:0004197 cysteine-type

endopeptidase
activity

9 2.26E−04

GO:0030246 carbohydrate binding 9 0.031484

GO:0004888 transmembrane
signaling receptor
activity

7 0.006525

GO:0016301 kinase activity 6 0.009682

Notes.
GO, gene ontology; BP, biological process; MF, molecular function; CC, cellular component.
p-value < 0.05 was considred as threshold values of significant differences.

processes that may be highly associated with VGR. Moreover, the 164 DEGs contained in
these 14 key pathways were extracted and defined as the ‘‘KEGG genes’’ gene list.

PPI network analysis
Based on the information in the STRING database, the PPI network consists of 695 nodes
and 2,098 interactions. The top 34 hub nodes with more than 20 degrees were screened
and defined as the ‘‘PPI hub genes’’ gene list. Moreover, nine hub genes obtained from
the intersection of the ‘‘KEGG genes’’ and ‘‘PPI hub genes’’ gene lists (Fig. 4) are listed in
Table 4. In addition, a comprehensive PPI network was constructed by merging the 9 PPI
networks of the nine hub genes and visualized using the Cytoscape software (Fig. 5). A
total of 695 nodes and 2,098 edges were analyzed using the plug-in MCODE, and the top
three significant modules were screened (Fig. 6).

To further lend somemore validity to the analysis results, the day 7 versus day 1 compari-
sonwas served as a control relative to day 7 versus sham surgery comparison. The expression
of these nine hub genes in three groups (day 1, day 7 and control) is shown in Fig. 7. As
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Table 2 The top 5 enriched GO terms of the down-regulated DEGs.

Category ID Term Gene
count

P value

BP GO:0070374 positive regulation of ERK1 and ERK2 cascade 12 0.024691
GO:0043065 positive regulation of apoptotic process 12 0.027999
GO:0002062 chondrocyte differentiation 8 3.70E−04
GO:0006874 cellular calcium ion homeostasis 8 0.002072
GO:0007224 smoothened signaling pathway 8 0.018141

CC GO:0070062 extracellular exosome 123 0.002059
GO:0005737 cytoplasm 118 0.013056
GO:0005615 extracellular space 44 0.028228
GO:0005925 focal adhesion 25 0.005367
GO:0009986 cell surface 23 0.018489

MF GO:0005509 calcium ion binding 38 0.001071
GO:0008201 heparin binding 13 1.59E−04
GO:0004725 protein tyrosine phosphatase activity 9 0.037067
GO:0008144 drug binding 7 0.003298
GO:0017046 peptide hormone binding 4 0.00765

Notes.
GO, gene ontology; BP, biological process; MF, molecular function; CC, cellular component.
p-value < 0.05 was considred as threshold values of significant differences.

expected, most hub DEGs identified in day 7 versus sham surgery group, are also differ-
entially expressed in day 7 versus day 1 group, which may due to the influence of surgery
hit, and all hub DEGs are also differentially expressed in day 1 versus sham surgery group.

DISCUSSION
Improving understanding of the cellular and molecular mechanisms underlying VGR is
critically significant for reducing the rates of vein graft failure. In the present investigation,
an integrated bioinformatics analysis was performed to identify potential key genes and
pathways involved in regulating VGR. In summary, a total of 858 up-regulated and
817 down-regulated DEGs were screened. A total of 14 potential crucial pathways were
selected from the functional annotation enrichment analysis. In the PPI network analysis,
a comprehensive PPI network of the 9 hub genes was constructed. Furthermore, three
significant modules were screened from the PPI network by module analysis.

All nine hub genes showed higher degrees in the PPI network analysis and were
involved in potential key pathways. Several previous studies demonstrated that fibroblast
growth factor receptor 1 (FGFR1) activated the Akt/mTOR pathway (Chen & Friesel,
2009) and regulated phenotypic modulation of vascular smooth muscle cells (VSMCs)
(Chen & Friesel, 2009; Chen, Simons & Friesel, 2009). As described in our previous study,
the mTOR signaling pathway was indicated to play a major role in the arterialization of
vein grafts (Wang et al., 2016). Moreover, a fibroblast growth factor receptor antagonist
was validated to block growth factor-mediated VSMC proliferation by inhibiting binding
of fibroblast growth factor 2 (FGF2) to VSMCs and soluble FGFR1 (Segev et al., 2002).

Liu et al. (2018), PeerJ, DOI 10.7717/peerj.4704 8/18

https://peerj.com
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0070374
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0043065
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0002062
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006874
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007224
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0070062
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005737
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005615
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005925
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009986
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005509
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0008201
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0004725
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0008144
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0017046
http://dx.doi.org/10.7717/peerj.4704


Table 3 Potential key pathways selected out from KEGG pathway enrichment analysis of DEGs.

Category Term Count P Value Genes

Up-regulated Cytokine-cytokine receptor interaction 32 4.04E−06 CSF2, IL1R2, TNFRSF21, TNF, CCL2, CCR1, CXCL8,
IL15, IL7R, CCL4, IL17RA, CXCL10, TNFRSF11B, CXCR4,
IFNG, IL1B, FAS, XCR1, LTB, IFNGR2, IL1A, IL4, IL18R1,
IL6, TNFSF4, LTBR, TGFBR1, LOC100348776, CCR8,
TNFSF10, TNFSF13B, CCR2

TNF signaling pathway 19 1.11E−05 PIK3CG, CSF2, IL18R1, IL6, CCL2, TNF, MMP9, CREB1,
IL15, MMP3, BIRC3, CXCL10, VCAM1, NOD2, MAPK14,
IL1B, CREB3L1, FAS, TRAF3

Cell cycle 19 3.93E−04 CDC6, CDK1, TTK, CHEK1, RB1, MCM4, YWHAE,
MCM6, CCNE2, CCNE1, YWHAG, CCNB2, MCM7,
MAD2L1, PCNA, BUB1B, ORC6, CCNA2, BUB3

Toll-like receptor signaling pathway 15 5.71E−04 PIK3CG, IL6, TNF, LY96, TLR2, LOC100348776, CXCL8,
TLR4, CCL4, CXCL10, IKBKE, CD80, MAPK14, IL1B,
TRAF3

DNA replication 8 0.002306 POLD3, MCM7, SSBP1, POLE, PCNA, MCM4, RPA3,
MCM6

Chemokine signaling pathway 19 0.007327 PIK3CG, LOC100008716, CCL2, VAV3, NCF1, HCK,
CCR1, STAT5B, CXCL8, LOC100348776, CCL4,
CXCL10, CCR8, CXCR4, CCR2, GNB4, XCR1, PLCB2,
LOC100349255

Cell adhesion molecules (CAMs) 16 0.017244 CADM1, SELL, NECTIN1, LOC100351865, VCAM1,
ALCAM, CD80, RLA-DRB1, ICOS, ITGB7, CD274,
LOC100350168, CD2, VCAN, LOC100343144, CD226

Down-regulated cGMP-PKG signaling pathway 16 0.003361 ROCK1, GNAI1, MYLK3, MRVI1, ATP1A2, PRKG1,
MYL9, AGTR1, EDNRB, KCNJ8, PLN, PDE5A, GUCY1A2,
GUCY1B3, MYLK, PIK3R1

TGF-beta signaling pathway 11 0.003933 BMP4, BMP2, LTBP1, ROCK1, ZFYVE9, LOC100008826,
BMPR1B, MYC, BMP5, TGFB2, ACVR1C

MAPK signaling pathway 20 0.004435 EGFR, FGFR1, MRAS, CACNB1, DUSP10, CACNB2,
FGF10, CACNB3, FGF12, MECOM, TGFB2, MAP3K6,
FOS, RASGRP3, DUSP1, MAP3K1, MYC, FGF2,
GADD45A, CACNA1A

Renin-angiotensin system 5 0.00852 AGTR1, AGTR2, ACE, ACE2, MME
Vascular smooth muscle contraction 12 0.012552 AGTR1, ACTG2, ROCK1, MYLK3, CALD1, MRVI1,

GUCY1A2, GUCY1B3, PRKG1, PLA2G2D, MYLK, MYL9
Focal adhesion 16 0.01614 EGFR, CAV2, COL4A2, ROCK1, MYLK3, ITGA2, CAPN2,

COL4A5, MYL9, VEGFC, ITGA6, ITGB8, PIK3R1, MYLK,
THBS3, SHC4

PI3K-Akt signaling pathway 22 0.016374 EGFR, FGFR1, COL4A2, RBL2, EFNA1, ITGA2, FGF10,
FGF12, COL4A5, VEGFC, ITGA6, PRLR, ITGB8, EPOR,
MTCP1, PPP2R2B, MYC, ANGPT2, FGF2, PIK3R1,
THBS3, GHR

VSMC proliferation was also thought to play a critical role in the pathophysiology of
restenosis. The second hub gene PIK3CG (phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit gamma) was shown to be involved in three key pathways: the TNF
signaling pathway, Toll-like receptor signaling pathway, and chemokine signaling pathway
(Table 4). CDK1 (cyclin-dependent kinase 1) is a protein-coding gene that plays a key role
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Figure 4 Venn diagram. 9 hub genes obtained from the intersection of gene list ‘‘KEGG gens’’ and ‘‘PPI
hub genes’’.

Full-size DOI: 10.7717/peerj.4704/fig-4

Table 4 9 hub genes appearing higher degrees and involved in key pathways associated with VGR.

Gene Degree KEGG pathway logFC P Value

FGFR1 21 MAPK signaling pathway, PI3K-Akt signaling pathway −1.59 5.13E−07
PIK3CG 24 TNF signaling pathway, Toll-like receptor signaling

pathway, Chemokine signaling pathway
2.52 1.42E−13

CDK1 29 Cell cycle 4.34 9.07E−12
YWHAE 34 Cell cycle 1.36 2.57E−12
YWHAG 35 Cell cycle 1.89 1.41E−10
CCNB2 21 Cell cycle 3.70 2.87E−10
MAD2L1 21 Cell cycle 2.25 2.08E−13
PCNA 30 Cell cycle, DNA replication 1.16 2.51E−12
GNB4 20 Chemokine signaling pathway 1.91 5.52E−16

in regulating the eukaryotic cell cycle by modulating the centrosome cycle and mitotic
onset and thus cell proliferation. Cell proliferation requires the expression of CDKs, and
CDKs are considered a proliferation signaling cascade of VSMCs (Schad et al., 2011).
Evidence indicated that radiation inhibited VSMC proliferation via cell cycle arrest by
enhancing p21 expression and suppressing CDK1 and 2 (Kim et al., 2004). Consistently,
a derivative of the CDK inhibitor roscovitine was validated to potently induce G1 phase
arrest and therefore inhibit VSMC proliferation (Sroka et al., 2010). YWHAE (tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase activation protein epsilon) has 34 degrees
in the PPI network and is also included in the cell cycle pathway. Moreover, YWHAE
belongs to the 14-3-3 family of proteins that induce signal transduction by binding to
phosphoserine-containing proteins. Intriguingly, a recent study provided evidence that
up-regulation of YWHAB in endothelial cells played a pivotal role in intimal hyperplasia
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Figure 5 A comprehensive PPI network were constructed by merging nine PPI networks of the nine
hub genes respectively. Each node corresponds to a DEG, and edges represent the interactions between
DEGs. DEGs with higher degrees appear larger size. The gradual color from blue to red represents the
changing process from down-regulation to up-regulation.

Full-size DOI: 10.7717/peerj.4704/fig-5

following carotid artery injury via enhancing endothelial cell proliferation and migration
(Feng et al., 2017). YWHAG knockdown in zebrafish was reported to reduce the brain size
and increase the diameter of the heart tube (Komoike et al., 2010). CCNB2 (cyclin B2) is a
member of the cyclin family, specifically the B-type cyclins. Evidence indicated that IL-18
promoted cell proliferation via NF-κB and the p38/ATF2 pathway by targeting CCNB2
(Zhang et al., 2015). Down-regulation of MAD2L1 was demonstrated to be involved in
suppressing the proliferation, migration, invasion, apoptosis induction and cell cycle arrest
of cancer cells (Li, Bai & Zhang, 2017). PCNA (proliferating cell nuclear antigen) is a

Liu et al. (2018), PeerJ, DOI 10.7717/peerj.4704 11/18

https://peerj.com
https://doi.org/10.7717/peerj.4704/fig-5
http://dx.doi.org/10.7717/peerj.4704


Figure 6 Significant modules identified from the whole PPI network by usingMCODE app in
Cytoscape. (A) module1, (B) module2, (C) module3. The gradual color from blue to red represents the
changing process from down-regulation to up-regulation.

Full-size DOI: 10.7717/peerj.4704/fig-6

molecular marker for proliferation due to its role in replication and is involved in both the
cell cycle pathway and DNA replication; PCNA had 30 degrees in the PPI network. Previous
studies showed that PCNA expression was correlated with stent-induced in-stent restenosis
(Gao et al., 2013) and proposed that PCNAmight be a potential future target (Wang, 2014).
Guanine nucleotide-binding protein subunit beta-4 (GNB4) was involved in the chemokine
signaling pathway and showed 20 degrees in the PPI network. Surprisingly, we noted that
six of the nine hub genes (CDK1, YWHAE, YWHAG, CCNB2, MAD2L1, and PCNA) were
involved in the cell cycle pathway, which further supported the enormous significance
of this pathway in regulating VGR (Table 4). The key role of the cell cycle pathway in
regulating VGR has been established (Sriram & Patterson, 2001); Hierarchical clustering
analysis of DEGs in cell cycle pathways was shown in Fig. 8. However, the underlying
molecular mechanisms remain largely unknown. Based on the abovementioned evidence,
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Figure 7 Expression of hub genes among 3 group. * denotes P > 0.05; ns denotes no statistical signifi-
cance; all other comparisions : P < 0.001.

Full-size DOI: 10.7717/peerj.4704/fig-7

these hub genes may potentially interact with each other and regulate the VGR program by
modulating the cell cycle pathway. Future studies focusing on revealing the specific cellular
and molecular mechanisms involved in regulating the VGR program may provide novel
therapeutic targets for VGR inhibition.

Over the past few decades, many powerful research tools in genomic technologies have
advanced rapidly, such as genome sequencing and microarray technologies. Microarray
technology has enhanced our ability to screen samples for thousands of genes at once,
which may provide novel insights into potential molecular mechanisms involved in
regulating the VGR program. Unfortunately, high throughput data associated with VGR
are extremely scarce at present. ‘‘Restenosis’’ was used as a search term to search in the
GEO (Gene Expression Omnibus) database (https://www.ncbi.nlm.nih.gov/geo/), and
only 7 datasets were returned; this lack may be partly due to the challenge of obtaining
appropriate samples in vivo and establishing a VGR animal model. Hence, we suggest that
collaborations between clinicians and basic researchers may accelerate our understanding
of the cellular and molecular mechanisms involved in VGR and therefore improve the
clinical efficacy of occlusive artery disease.

Due to the extreme lack of high throughput data associated with VGR, more research is
required to screen key genes and pathways involved in this process. Further experimental

Liu et al. (2018), PeerJ, DOI 10.7717/peerj.4704 13/18

https://peerj.com
https://doi.org/10.7717/peerj.4704/fig-7
https://www.ncbi.nlm.nih.gov/geo/
http://dx.doi.org/10.7717/peerj.4704


Figure 8 Hierarchical clustering analysis of DEGs involved in cell cycle pathway.
Full-size DOI: 10.7717/peerj.4704/fig-8

investigations are needed to estimate the role of these candidate genes and pathways.
However, there are certain limitations in the present study, the aforementioned results,
including the gene expression levels and their functions, were needed to be validated by
experiments, which would be carried out in our further studies.

CONCLUSIONS
In conclusion, this study provides a set of potential therapeutic targets for future
investigations into the molecular mechanisms involved in VGR. However, we acknowledge
that there were certain limitations in this study. The aforementioned results, including
the expression level of genes and the definite functions of potential hub genes and key
pathways, were needed to be validated by experiments, which would be conducted in our
further studies.
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