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ABSTRACT
The present study tested whether sport-specific implements facilitate motor imagery,
whereas nonspecific implements disruptmotor imagery.We asked a group of basketball
players (experts) and a group of healthy controls (novices) to physically perform
(motor execution) and mentally simulate (motor imagery) basketball throws. Subjects
produced motor imagery when they were holding a basketball, a volleyball, or nothing.
Motor imagery performance was measured by temporal congruence, which is the
correspondence between imagery and execution times estimated as (imagery time
minus execution time) divided by (imagery time plus execution time), as well as the
vividness of motor imagery. Results showed that experts produced greater temporal
congruence and vividness of kinesthetic imagery while holding a basketball compared
to when they were holding nothing, suggesting a facilitation effect from sport-specific
implements. In contrast, experts produced lower temporal congruence and vividness
of kinesthetic imagery while holding a volleyball compared to when they were holding
nothing, suggesting the interference effect of nonspecific implements. Furthermore,
we found a negative correlation between temporal congruence and the vividness
of kinesthetic imagery in experts while holding a basketball. On the contrary, the
implement manipulation did not modulate the temporal congruence of novices. Our
findings suggest that motor representation in experts is built on motor experience
associated with specific-implement use and thus was subjected to modulation of the
implement held. We conclude that sport-specific implements facilitate motor imagery,
whereas nonspecific implements could disrupt motor representation in experts.

Subjects Neuroscience, Kinesiology
Keywords Motor imagery, Temporal congruence, Implement, Facilitation, Interference

INTRODUCTION
Motor imagery is defined as the mental representation of movement with no concomitant
production of muscular activity (Jeannerod, 2001). Motor imagery has functional
equivalence to motor execution such that the two processes share partially overlapping
neural substrates (Jeannerod, 1994; Grezes & Decety, 2001; Holmes & Collins, 2001; Grèzes
et al., 2003). Motor imagery has been suggested to be effective in improving motor
performance (Jackson et al., 2003; Mulder et al., 2004; Allami et al., 2008; Mizuguchi et
al., 2012; Schack et al., 2014).
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Temporal congruence is the correspondence between the time of imagined movements
and that of actual movements which reflects the individual ability to preserve the temporal
organization of the actual performance during motor imagery (Guillot & Collet, 2005; O
& Hall, 2009; Guillot et al., 2012). The difficulty in achieving temporal congruence has
been taken as imagery impairment (Sirigu et al., 1996; Malouin et al., 2004; Guillot et al.,
2012) and associated with a worse performance improvement following motor imagery
training (Holmes & Collins, 2001; Guillot & Collet, 2005; Guillot & Collet, 2008; Louis et
al., 2008; Malouin et al., 2008). Temporal congruence is affected by a series of factors
including imagery speed (Decety & Jeannerod, 1995; O & Hall, 2009; Guillot et al., 2012),
expertise level (Reed, 2002; Louis, Collet & Guillot, 2011;Guillot et al., 2012), environmental
context (Holmes & Collins, 2001; Guillot, Collet & Dittmar, 2005; Guillot & Collet, 2008),
and so forth.

The acquirement of motor skills in most sports is accompanied with the use of sport-
specific implements. The specific implement is one of the fundamental but dispensable
‘‘basic action concepts’’ for building and optimizing mental representations of complex
sport movements to obtain promising mental practice efficacy (Schack, 2004; Schack et al.,
2014). Motor experience with a sport-specific implement has been suggested to influence
motor representation of complex sportmovement (Guillot, Collet & Dittmar, 2005; Fourkas
et al., 2008; Bisio et al., 2014; Wang et al., 2014). Our previous neurophysiological study
revealed increased corticospinal excitability in experts during motor imagery of badminton
serving while holding a badminton racket compared to that while holding a plastic bar
(Wang et al., 2014), suggesting that specific implement induced better motor imagery
performance compared to nonspecific implement. However, due to the absence of a
holding nothing condition, whether the difference resulted from a facilitation effect from
the sport-specific implement or an interference effect from a nonspecific implement is
unclear. In other words, comparing the performance of motor imagery with the sport-
specific implement, to that of when holding nothing enables us to examine the potential
facilitation effect of the specific implement; comparing the performance of motor imagery
with a nonspecific implement, to that of when holding nothing enables us to examine the
potential interference effect of a nonspecific implement.

To address these considerations, we asked a group of experienced basketball players
and a group of novices to perform motor execution and motor imagery of basketball
throw. Basketball throw was utilized as representative of complex sport movements.
Subjects produced motor imagery in three experimental conditions: holding a basketball
(HB, sport-specific implement), holding a volleyball (HV, nonspecific implement), or
holding nothing (HN). To assess the performance of motor imagery, the temporal
congruence between motor execution and motor imagery as well as the vividness of
motor imagery were evaluated. We examined the potential facilitation effect from the
sport-specific implement by comparing motor imagery performance of basketball throw
when subjects held a basketball (HB) to that of when they held nothing (HN); we examined
the potential interference effect from a nonspecific implement by comparingmotor imagery
performance of basketball throw when subjects held a volleyball (HV) to that of when they
held nothing (HN).
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Figure 1 Experimental design. (A) The decomposed movements for the basketball free throw task. The
onset movement is ball dribbling and the offset is the ball leaving the hand. The time for basketball free
throw is estimated as the duration between onset and offset. (B) Five locations (labeled with balls) for bas-
ketball free throw. The center location is the traditional location for a free throw. The other four locations
have the same distance to the basket as the center location.

Full-size DOI: 10.7717/peerj.4687/fig-1

MATERIALS & METHODS
Subjects
Twenty-four basketball players (mean age ± standard deviation [SD] = 19.7± 1.6 years,
age range 18–23 years), and 24 age-matched novices (healthy controls, mean age ± SD
= 20.1 ± 1.5 years, age range 17–23 years) were studied. All subjects were identified as
right-handed males (Oldfield, 1971). Elite players were national first and second level
players who competed frequently at the national and international levels. They trained on
average 10.7 ± 1.7 h (mean ± SD) per week for 10.8 ± 1.9 years (mean ± SD, ranged
8–14 years). Novices were university students who had no experience in professional
training in basketball or any other sports. The experimental procedure was approved
by the local ethics committee at the Shanghai University of Sport (No.2017106) and all
subjects gave written informed consent prior to the experiment.

Mental chronometry test
Basketball throw (shooting the basketball toward the basket after dribbling it in place three
times) was used as the motor task (Fig. 1A). Five locations on the court were prescribed for
basketball throw (Fig. 1B). The central location was at the traditional point for free throw
at the center. The other four lateral locations were located bilaterally to the first location.
All five locations had the same distance to the basket. The location setting is intended to
avoid possible fatigue or adaptation effect during motor execution or imagery from a single
location. Field training was applied to all subjects before the experiment to help subjects
understand the motor task used in the present study.

Motor execution. Subjects physically performed basketball throws on the court from
each of the 5 locations. The duration ofmotor executionwas defined as the time between the
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onset of the first dribble and the offset when the ball left the subject’s hand. Experimenters
recorded the duration of each trial with a stopwatch. Three trials were repeated at each
of the 5 locations (total 15 trials). The duration of motor execution for all 15 trials was
averaged and the mean value was defined as execution time.

Motor imagery. Subjects mentally rehearsed basketball throws, that is, dribbling and
shooting a basketball, while holding a basketball (HB), a volleyball (HV) or nothing (HN)
from each of the 5 locations on the court. Subjects were instructed to mentally rehearse
basketball throws with their eyes closed in a first-person perspective during motor imagery
(Wang et al., 2014) and in real-time speed as they did during motor execution (O & Hall,
2009). We measured the motor imagery time of basketball throws in the two groups when
subjects held a basketball (HB), a volleyball (HV) and held nothing (HN). Three trials at
each of the 5 locations (total 15 trials) were repeated for both the with-ball and without-ball
conditions. In each trial, subjects verbally indicated the onset and offset of motor imagery
by saying ‘‘start’’ and ‘‘stop’’ and the experimenter monitored durations with a stopwatch
(Bisio et al., 2014). The duration of motor imagery of the 15 trials each for with-basketball,
with-volleyball and without-ball conditions were averaged separately and the mean values
were defined as imagery time for the corresponding conditions.

Temporal congruence. To normalize the inter-individual differences, we calculated the
‘‘delta time’’ developed from the formula used inMeulen et al. (2014) to estimate temporal
congruence: delta = (imagery time − execution time)/(imagery time + execution time).
Therefore, the smaller the delta score, the greater the temporal congruence between
motor execution and motor imagery. Temporal congruence was calculated for the three
experimental conditions separately. Comparing the temporal congruence in different
conditions thus revealed the effect of somatosensory input on motor imagery.

Introspective reports
Immediately after subjects completed the motor imagery task, the quality of motor imagery
was evaluated with introspective reports via two questionnaires. The first questionnaire
tested the perspective subjects used for motor imagery and was developed from that used
in Wang et al. (2014). The test includes 4 introspective questions with a 5-point scale (5
being the most positive). The first question asks the subjects whether they used first-person
perspective during motor imagery; the second question asks the subjects whether the
first-person perspective motor imagery was easily controlled; the third question asks
whether the first-person perspective motor imagery was clear; the fourth question asks for
the difference between ease to perform first-person perspective motor imagery in different
experimental conditions. The second questionnaire tested the vividness of motor imagery
and was developed from that used in Fourkas et al. (2008). The second questionnaire
included 8 questions related to the kinesthetic and visual properties (4 for each) during the
motor imagery on a 7-point scale with 7 representing the greatest vividness during imagery.
The questions were adapted to be linked to the specificity of the experimental task and
condition. Four kinesthetic questions were about difficulty of imagery, sequence of muscle
contraction, muscle tension and throwing force during imagery. Four visual questions
were about clarity of the court, clarity of the ball, clarity of the basket and clarity of the
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basketball throw movements. Note that the use of first-person perspective was estimated
in overall regard while the vividness of motor imagery was rated under three experimental
conditions (HB, HV and HN), separately.

Data analysis
Temporal congruence
For temporal congruence, we carried out a two-way repeated measure analysis of variance
(ANOVA), with group (2 levels, experts and novices) as a between-subject factor and the
experimental condition (3 levels, HB, HV and HN) as a within-subject factor). We tested
for differences among the three conditions by performing post hoc t -tests with Bonferroni
correction.

Post-imagery questionnaires
The use of a first-person perspective during motor imagery was tested with unpaired
t -tests. The vividness of motor imagery data combining kinesthetic and visual properties
was also analyzed with a two-way repeated measures ANOVA in the same way as done for
temporal congruence. To further examine the effect of kinesthetic imagery, the vividness
of kinesthetic imagery was entered into a separate two-way repeated measures ANOVA.

Correlation analysis
As the distribution of vividness is not normal (for vividness ofmotor imagery, Kolmogorov–
Smirnov = .18, p= .049; for vividness of kinesthetic imagery, Kolmogorov–Smirnov =
.18, p= .055), nonparametric Spearman rank correlation was performed to explore the
relationship between objective measure (mental chronometry) and subjective measure
(vividness of motor/kinesthetic imagery) for experts during motor imagery in the with-
basketball condition.

RESULTS
Temporal congruence
The duration of motor execution and motor imagery was listed in Table 1. Two-way
repeated measures ANOVA on temporal congruence revealed significant main effects for
group, F(1,46)= 14.91, p < .0005, η2= .25, and experimental condition, F(2,92)= 12.08,
p< .0005, η2 = .21, as well as an interaction effect between group and experimental
condition, F(2,92)= 6.89, p= .002, η2 = .13 (Fig. 2). Post hoc t -tests with Bonferroni
correction confirmed that experts showed greater temporal congruence in all experimental
conditions compared to novices (mean ± stand error [SE] for HB: experts, .14 ± .03,
novices, .29 ± .02, p < .0005; HV: experts, .21 ± .02, novices: .3 ± .02, p= .004; HN:
experts, .17 ± .03, novices, .3 ± .03, p< .0005). For experts, motor imagery with a
basketball showed greater temporal congruence with motor execution than that with a
volleyball (p< .0005) and that without a ball (p = .034); motor imagery without a ball
showed greater temporal congruence with motor execution than that with a volleyball (p
= .006). No significant difference was found among experimental conditions for novices
(always p> .9).
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Figure 2 Temporal congruence. The ordinate shows temporal congruence. It is expressed as (imagery
time) minus (execution time) divided by (imagery time plus execution time). The smaller the ratio score,
the better the temporal congruence between motor execution and motor imagery. *, p < .05; **, p < .01;
***, p< .001. HB, holding a basketball; HV, holding a volleyball; HN, holding nothing. Error bars indicate
standard error.

Full-size DOI: 10.7717/peerj.4687/fig-2

Table 1 Mean± SE for motor execution time andmotor imagery time.

Group Motor execution Motor imagery

HB HV HN

Expert 2.87± .08 3.95± .24 4.51± .23 4.19± .23
Novice 2.49± .10 4.61± .20 4.73± .22 4.80± .26

Notes.
SE, standard error; HB, Holding a basketball; HV, Holding a volleyball; HN, Holding nothing.

Retrospective reports
Unpaired t -test using first-person perspective revealed no significant difference between
experts and novices using first-perspective during motor imagery (mean ± SE for experts,
14.91 ± .51, novices, 14.38 ± .48, t (46)= .78, p= .44, Cohen’s d = .23).

The scores for vividness of motor imagery were listed in Table 2. Two-way repeated
measures ANOVA on vividness of motor imagery combining kinesthetic and visual
properties revealed significant main effects of group, F(1,46)= 15.02, p< .0005, η2= .25)
and experimental condition, F(2,92)= 25.88, p< .0005, η2= .36), as well as an interaction
effect between group and experimental condition, F(2,92)= 4.69, p = .014, η2= .09 (Fig.
3A). Post hoc t -tests with Bonferroni correction confirmed that experts showed greater
vividness for motor imagery in all experimental conditions compared with novices (HB:
p< .0005; HV: p = .008; HN: p < .0005). For experts, vividness for motor imagery with
a basketball was higher compared to that with a volleyball (p < .0005) and that without
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Figure 3 Subjective evaluation of motor imagery. (A) Vividness of motor imagery. Vividness of motor
imagery is expressed as MIQ scores combining kinesthetic and visual properties. (B) Vividness of kines-
thetic imagery. *, p< .05; **, p< .01; ***, p< .001; #, marginal significance. Error bars indicate standard
error of the mean. (A) Vividness of motor imagery. Vividness of motor imagery combines kinesthetic and
visual properties. (B) Vividness of kinesthetic imagery. *, p < .05; **, p < .01; ***, p < .001; #, marginal
significance. HB, holding a basketball, HV, holding a volleyball, HN, holding nothing. Error bars indicate
standard error.

Full-size DOI: 10.7717/peerj.4687/fig-3

Table 2 Mean± SE for vividness of motor imagery.

Group HB HV HN

Expert
Kinesthetic 22.00± .36 20.08± .35 21.04± .47
Visual 21.25± .53 19.67± .47 19.71± .47
Total 43.25± .74 39.75± .75 40.75± .83

Novice
Kinesthetic 18.17± .92 17.75± .88 16.71± .91
Visual 18.46± .56 17.50± .66 17.50± .66
Total 36.63± 1.30 35.25± 1.43 34.20± 1.41

Notes.
SE, standard error; HB, Holding a basketball; HV, Holding a volleyball; HN, Holding nothing.

a ball (p = .001). However, no significant differences were found between the other two
experimental conditions (HV vs. HN, p = .12). For novices, vividness for motor imagery
with a basketball was higher than that without a ball (p= .001) and the difference between
vividness of motor imagery with a basketball and that with a volleyball tended to be
significant (p = .051). No significant difference was found between vividness of motor
imagery with a volleyball and that without a ball (p = .102).

For kinesthetic imagery, two-way repeated measures ANOVA also revealed significant
main effects of group, F(1,46)= 14.18, p< .0005, η2 = .24, experimental condition,
F(2,92)= 11.36, p < .0005, η2 = .2, as well as an interaction effect between group and
experimental condition, F(2,92)= 6.54, p= .003, η2 = .13 (Fig. 3B). Post hoc t -tests
with Bonferroni correction confirmed that experts showed higher vividness for kinesthetic
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Figure 4 Correlation between subjective and objective measures in experts. The abscissa shows subjec-
tive measure as expressed by vividness of kinesthetic imagery and the ordinate shows objective measure as
expressed by temporal congruence.

Full-size DOI: 10.7717/peerj.4687/fig-4

imagery in all experimental conditions comparedwith novices (HB: p< .0005;HV: p= .017;
HN: p < .0005). For experts, motor imagery with a basketball showed higher vividness
compared to that with a volleyball (p < .0005), and motor imagery without a ball tended to
show higher vividness compared to that with a volleyball (p= .06). However, no significant
differences were found between vividness of kinesthetic imagery with a basketball and that
without a ball (p= .11). For novices, motor imagery without a ball showed lower vividness
compared to that with a basketball (p = .006) and that with a volleyball (p = .039). No
significant difference was found between vividness of kinesthetic imagery with a basketball
and that with a volleyball (p = .791).

Correlation between vividness of motor imagery and temporal
congruence
For experts during motor imagery while holding a basketball, no significant correlation was
found between temporal congruence and vividness ofmotor imagery combining kinesthetic
and visual properties, r(24)= .12, p= .593; however, a significant negative correlation
between temporal congruence and kinesthetic imagery was found, r(24)=−.47, p= .019),
indicating that better temporal congruence was associated withmore vivid imagery (Fig. 4).

DISCUSSION
The aim of the present study was to assess the potential facilitation effect of the sport-
specific implement and the potential interference effect of a nonspecific implement on
motor imagery of complex sport movements. Our main results show that experts obtained
higher temporal congruence and, to a lesser degree, greater vividness of kinesthetic imagery
when holding a sport-specific implement compared to that when holding nothing, and
when holding nothing compared to when holding a nonspecific implement. These results
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demonstrate a facilitation effect for sport-specific implements and an interference effect
for nonspecific implements on motor imagery.

Prolonged duration of motor imagery
In all experimental conditions for both groups, the duration of motor imagery took longer
than that of motor execution (Table 1). This is consistent with the findings of a series of
previous studies (Bisio et al., 2014;Wang et al., 2014;Mizuguchi et al., 2015). During motor
imagery, the temporal assembly of movement components is a more voluntary process
that requires participants to not only pay attention to each movement component but also
to feel the kinesthetic sensation of the movements. This could be true for both experts
and novices. Specifically, for experts, sensory feedback is repressed during actual execution
to allow for fluent, automatic motor performance, which could result in a shorter motor
execution time (Oechslin et al., 2012). Novices showed even more prolonged duration
of motor imagery than experts, which seems reasonable as (perceived) task difficulty or
complexity is thought to influence the duration of mental representations of a movement
(Guillot & Collet, 2005; Bakker et al., 2007). It is very likely that the basketball throw task
appeared to be more difficult and complex for novices, taking it into consideration that
novices had no basketball training experience.

Influence of expertise level
We found that in all experimental conditions, the performance of motor imagery in experts
was superior than that in novices, as suggested by greater temporal congruence (Fig. 2)
and greater vividness of motor imagery (Fig. 3). The superior performance of motor
imagery in experts is well acknowledged (Guillot & Collet, 2005; Louis, Collet & Guillot,
2011; Guillot et al., 2012; Bisio et al., 2014; Wang et al., 2014). As experts have gained high
levels of automaticity from long-term repetitive training, they may be able to preserve the
actual temporal organization of the movements. However, preserving the temporal feature
is less likely to happen in novices as the lack of practice makes it unlikely for novices to
encode the kinematic movement sequences into their motor repertoire. This is in line with
the study of Bisio et al. (2014) who found more stereotyped motor pattern of forehand into
the wall in tennis players than in tennis novices.

Long-term utilization of a specific implement
Interestingly, the lowest temporal congruence and vividness of kinesthetic imagery
were observed in experts while holding a volleyball (Fig. 2 and Fig. 3B). Thus, the
significant differences between motor imagery performance associated to a basketball
and that associated to no ball indicated a facilitation effect for the basketball, and the
significant differences between motor imagery performance associated to a volleyball and
that associated to no ball indicated an interference effect for volleyball. The facilitation
effect from holding a basketball is not equivalent to the effect of a foam ball on imagery
of squeezing movements (Mizuguchi et al., 2009; Mizuguchi et al., 2011), as holding a
volleyball failed to induce similar effects. Unlike the simple squeezing movement with a
foam ball, the maturation of basketball motor skill required long-term intensive practice.
Therefore, it is likely that the facilitation effect from a basketball is associated to motor
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experience with the specific implement utilization during development of expertise skills.
Similar findings related to the modulation of specific implement in experts were also
found in studies on badminton (Wang et al., 2014), tennis (Fourkas et al., 2008; Bisio et
al., 2014) and table tennis (Guillot, Collet & Dittmar, 2005). The underlying mechanism
of interference effect from a nonspecific implement may come from divergence between
central representation and peripheral input (Saimpont et al., 2012; Mizuguchi et al., 2015).
It is likely that experts have built a well-definedmental representation dendrogram of sport-
specificmovements (Schack et al., 2012).Withoutmodification, this well-establishedmotor
representation dendrogram of sport movements is specifically associated to a basketball
and cannot be readily or effectively recruited by a volleyball.

The different experimental conditions failed to modulate temporal congruence in
novices (Fig. 2). This was consistent with previous findings (Bisio et al., 2014). Our findings,
together with evidence from previous studies (Bisio et al., 2014; Wang et al., 2014), suggest
that it is necessary to havemotor experience of using an implement to form its sensorimotor
representation, and consequently to make a difference on motor imagery performance.
However, novices did subjectively ‘‘feel’’ the motor imagery process to be more vivid when
they were holding a ball, whether basketball or volleyball, compared to the feeling when
they were holding nothing (Fig. 3B). We speculate this was because the tactile sensory input
per se from a ball facilitated their mental image. Unlike experts, novices did not have the
sport-specific motor experience associated to a basketball, thus the facilitation from tactile
sensory input of a ball (regardless sport-specific or not) may be similar to that found in
studies showing a facilitation of a foam ball on squeezing movements (Mizuguchi et al.,
2009;Mizuguchi et al., 2011).

Relationship between vividness of kinesthetic imagery and temporal
congruence
We found that, for experts, greater vividness of kinesthetic imagery predicted higher
temporal congruence when holding a basketball (Fig. 4). This finding is consistent with
those of previous studies (Sirigu et al., 1996;Mizuguchi et al., 2015). Thus, it is likely that the
compatibility between well-established internal representation built on motor experience
of using a specific implement (basketball), and external somatosensory input facilitates the
representation of basketball throws in experts.

Limitations
The present study has limitations. Subjects were instructed to physically perform basketball
throws onlywhile holding a basketball but not while holding a volleyball or holding nothing.
This design makes it unlikely to test the effect of somatosensory input on the imagery of
pure kinematics of basketball throw movements. However, sport-specific implements such
as rackets have been reported to feel like a hand extension (Fourkas et al., 2008; Bisio et
al., 2014; Wang et al., 2014). Moreover, sport-specific implements have been taken as a
fundamental unit for building mental movement representation during motor imagery
trainings (Schack, 2004; Schack et al., 2014). Therefore, it is reasonable to test the effect of
somatosensory input on the ‘‘kinematics+ basketball’’ entity as the motor task was defined
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in the present study. Besides, the design in this study is not eligible to infer whether the
observed effects from different implements on motor imagery apply to actual movements.
Future study with a full design is expected to address this unknown.

CONCLUSIONS
Previous studies demonstrated that motor representation of experts who developed motor
skills associated to implement-use is reliant on the implement used to practice movements
(Fourkas et al., 2008; Bisio et al., 2014; Wang et al., 2014). In line with the previous studies,
the present study found sport-specific implement facilitates motor representation during
motor imagery in experts but not novices. Further, the present study revealed interference
effect of nonspecific implement onmotor representation in experts duringmotor imagery.
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