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ABSTRACT
Proteins that modify the activity of transcription factors (TFs) are often called
modulators and play a vital role in gene transcriptional regulation. Alternative splicing
is a critical step of gene processing, and differentially spliced isoforms may have
different functions. Alternative splicing can modulate gene function by adding or
removing certain protein domains and thereby influence the activity of a protein. The
objective of this study is to investigate the role of alternative splicing in modulating the
transcriptional regulation in brain lower grade glioma (LGG), especially transcription
factor ELK1, which is closely related to various disorders, including Alzheimer’s disease
and Down syndrome. The results showed that changes in the exon inclusion ratio of
proteins APP and STK16 are associated with changes in the expression correlation
between ELK1 and its targets. In addition, the structural features of the twomodulators
are strongly associatedwith the pathological impact of exon inclusion. The results of our
analysis suggest that alternatively spliced proteins have different functions inmodifying
transcription factors and can thereby induce the dysregulation of multiple genes.

Subjects Bioengineering, Bioinformatics, Biotechnology, Genetics, Computational Science
Keywords Alternative splicing, Amyloid precursor protein, EST domain-containing protein
Elk-1, Serine/threonine kinase 16, Modulator, Lower grade glioma

INTRODUCTION
Alternative splicing (AS) is a key regulator of gene expression as it generates numerous
transcripts from a single protein-coding gene. In humans, more than 95% of multi-exonic
protein-coding genes undergo AS (Wang et al., 2008), and AS plays an important role
in cellular differentiation and organism development (Castle et al., 2008; Wang et al.,
2008). As AS affects numerous genes and is highly important for regulating the normal
expression and tissue specificity of a given gene, it is not surprising that changes in AS
are frequently associated with human disease, such as cancers (Kozlovski et al., 2017) and
neurodegenerative diseases (Scotti & Swanson, 2016). Recent genome-wide analyses of
cancer transcriptomes have demonstrated that splicing changes are often global rather than
gene specific (Jung et al., 2015). Undoubtedly, widespread splicing changes, such as altered
cassette exon inclusion ratios of proteins, influence the expression of numerous genes and
consequently cause aberrant gene regulation.
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Lower grade glioma (LGG) is a type of cancer that develops in the glial cells of the
brain. Tumors are classified into grades I, II, III or IV based on standards set by the World
Health Organization (Ostrom et al., 2013). Regardless of tumor grade, tumors compress
normal brain tissue as they grow, frequently causing disabling or fatal effects. The Cancer
Genome Atlas (TCGA) consortium has produced a comprehensive somatic landscape
of glioblastoma by combining molecular and clinical data that have become a valuable
resource for studying gene deregulation in LGG.

Modulators are proteins that modify the activity of transcription factors (TFs) and
influence the expression of their target genes. Our current knowledge of TF modulation
mainly comes from experimental studies that measure the expression levels of a few target
genes (Lachmann et al., 2010). The objective of this study is to explore the role of AS in
modulating the transcriptional activities of TFs in LGG. The modulated relationships
among TF-modulator-targets are inferred using a known probabilistic model named
GEM (Babur et al., 2010). EST domain-containing protein Elk-1 (ELK1) is one TF whose
regulation activity is most influenced by 162 splicing events corresponding to 123 AS
modulator proteins. Finally, amyloid precursor protein (APP) and serine/threonine kinase
16 (STK16), modulators whose exon inclusion ratios are associated with the activity of
ELK1, are analyzed in detail.

MATERIALS AND METHODS
Construction of triplets
We implemented the GEM algorithm (Babur et al., 2010) to predict (splicing modulator-
TF-target) triplets. There are four input types: gene expression profiles, gene splicing
profiles, modulator list and TF-target relations. The modulator hypothesis predicts that
the correlation between the expression levels of the TF and the target must change as the
splicing level of the modulator changes. The percentage of exon inclusion ratio (PSI) is
used to estimate the splicing level of a candidate modulator in LGG. We established a 5%
false discovery rate as the threshold to call the triplets.

Data processing and selection
RNA-Seq data were downloaded from the TCGA-LGG data portal as bam files. STAR
aligner (version 2.3.0) was used to align each file uniquely to the hg19 human genome.
We retained uniquely aligned reads with a minimum splice junction overhang of five
nucleotides using default parameters. The gene expression level was estimated using the
NGSUtils tool (version 0.5.9) (Breese & Liu, 2013) with default parameters for calling
gene expression. The splicing level (PSI) was estimated using a probabilistic model called
Mixture of Isoforms (MISO) (Katz et al., 2010). The TF-target relations were derived
from the ENCODE (The Encyclopedia of DNA Elements) project. The workflow of data
processing and selection is described in Fig. 1.

For the candidate modulators, we keep the splicing events where over 95% samples have
confidence interval (CI) less than 0.25 and only analyze predicted cassette exons that have
at least 10 reads supporting exon inclusion or exclusion in at least one sample. We fill the
missing PSI value of a sample with the median PSI value of that splicing event. Finally, AS
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Figure 1 Workflow for data processing and selection. The whole workflow including three parts: obtain
the transcriptional profile, expression and splicing calling and construct the modulated triplets.

Full-size DOI: 10.7717/peerj.4686/fig-1

events were selected based on candidate modulators whose PSI IQR (interquartile range)
were larger than 0.1 As the input data require sufficient variability, we filtered out genes
whose gene expression coefficient variation (CV) was less than 50% and kept genes in
which over 95% of samples had expression values.

Database and related software
The implementation of GEM is available through SourceForge (https://sourceforge.
net/projects/modulators). Statistical analysis and data processing were performed using
R version 3.0.1 (http://www.r-project.org). DAVID (Dennis Jr et al., 2003) and IPA
(Ingenuity Pathway Analysis) were used to perform gene function and pathway analysis.
Protein-protein interactions were predicted by the STRINGdatabase (http://string-db.org).

RESULTS
Global inferring modulators of all TFs
Weassume that all TFs have the potential ability to interact with theirmodulator candidates.
Seven hundred and sixty-five AS events were considered putative modulators, and 173,598
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Figure 2 The effect of transcription factor activity regulated by splice modulator proteins. Each row
represents a candidate modulator and each column indicates a transcription factor. The much darker
color means a much higher percent target of TF is influenced.

Full-size DOI: 10.7717/peerj.4686/fig-2

TF-target pairs composed of 74 TFs and 17,425 targets were used to infer modulated
triplets. The number of inferred splicing modulators varied across all TFs, and the percent
of influenced targets ranged from 0 to 33.5% for each TF (Fig. 2).

Figure 3 summarizes the number of modulators of 26 TFs whose influence targets over
10%. The number of inferred modulators ranges from 1 to 262. EST domain-containing
protein Elk-1 (ELK1) was one of the 26 TFs that had the greatest number of predicted
modulators. A total of 262 splicing events corresponding to 187 proteins were identified
as ELK1 modulators because their splicing outcomes highly correlated with changes in the
transcriptional activity of ELK1.

Gene function analysis of ELK1 modulators in LGG
ELK1 is a member of the ETS TF family, which is closely related to various disorders,
including Alzheimer’s disease, Down syndrome and breast cancer, in a dose-dependent
manner (Peng et al., 2017). ELK1 is a member of the Ets (T twenty-six) oncogene family
of TFs, which includes nuclear phosphoproteins involved in many biological processes,
such as cell growth, survival hematopoiesis, wound healing, cancer and inflammation
(Sharrocks, Yang & Galanis, 2000; Besnard et al., 2011). In addition, ELK1 can significantly
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Figure 3 Summarized counts of inferred modulators of TFs. The c-axis represents the transcription fac-
tor list, and the y-axis represents the counts of inferred modulators. The number on each TF indicates the
number of modulators of each TF that influence more than 10% of its targets.

Full-size DOI: 10.7717/peerj.4686/fig-3

regulate the expression of c-Fos, which is a key gene for cell proliferation and differentiation
(Chambard et al., 2007). In this study, we inferred 540 splicing events as ELK1 modulators.

Figure 4A summarizes the distribution of inferred modulators of ELK1. Two hundred
and sixty-twomodulators influence over 10% of ELK1’s targets, 49 modulators influence at
least 20%of its targets, and fivemodulators influencemore than 30%of its targets, including
‘chr2:39931221:39931334: +@chr2:39934189:39934326: +@chr2:39944150:39945104:
+’ (TMEM178A, Transmembrane protein 178A precursor); ‘chr2:74685527:74685798:
+@chr2:74686565:74686689: +@chr2:74686770:74686872: +’ (WBP1, WW domain bind-
ing protein 1); ‘chr2:36805740:36806008: -@chr2:36787928:36788008: -@chr2:36785581:
36785656: -‘ (FEZ2, Fasciculation and elongation protein zeta-2); and ‘chr5:175788605:
175788809: -@chr5:175786484:175786570: -@chr5:175782574:175782752:’ (KIAA1191,
Putative monooxygenase p33MONOX), ‘chr2:74685527:74685798: +@chr2:74686565:
74686679: +@chr2:74686770:74686872: +’ (WBP1).

As many inferred modulators may have similar or related protein functions, we
performed pathway and function enrichment analysis to explore the functions of these
modulated genes. We filtered modulators that influenced less than 10% of the targets, and
262 splicing events as modulators corresponding to 129 proteins remained as ELK1 final
modulators. After removing duplicated gene symbols and unannotated genes, 126 proteins
were mapped to the Ingenuity Knowledge Base and subjected to core analysis.

The results showed that more than 80% of the splicing proteins related to cancer
were enriched, and most of the enriched canonical pathways overlapped with certain
genes. As summarized in Table 1, these modulators were enriched in three types of
disease: neurological disease, organismal injury and abnormalities disease, and cancer.
Molecular and cellular function enrichment analysis showed that more than 20% of
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Figure 4 Statistical analysis of the modulators of ELK1. (A) Distribution of the number of ELK1 mod-
ulators. The x-axis represents the percentage of targets influenced by modulator proteins. The y-axis in-
dicates the percent of modulators of ELK1. The number noted on each column indicates the percent of
modulators in each classification. (B) IPA of ELK1 modulators that influenced over 10% of its targets. The
x-axis is the−log10 transformed p of each enriched pathway (y-axis).

Full-size DOI: 10.7717/peerj.4686/fig-4

the modulators were associated with cellular movement (28/123), cellular assembly and
organization (32/123), and cellular function and maintenance (26/123); 11% and 8%
of the modulators were highly enriched in cell morphology (14/123), and cell-to-cell
signaling and interaction process (10/123), respectively. The top five modulator-enriched
pathways (Fig. 4B) were highly (p< 0.05) associated with signaling processes, including
clathrin-mediated endocytosis signaling, CTLA4 signaling in the cytotoxic T lymphocyte
pathway, nNOS signaling in neurons, and calcium signaling pathways.
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Table 1 ELK1modulators protein function and disease enrichment (p < 0.001). Each number in the
table indicates the account of ELK1 modulators enriched in specific function or disease. The statistical
threshold is p< 0.001.

Molecular and Cellular Functions
Cellular assembly and organization 32 Cellular movement 28
Cellular function and maintenance 26 Cell morphology 14
Cell-to-cell signaling and interaction 10

Diseases and Disorders
Neurological disease 37 Organismal injury and abnormalities disease 113
Cancer 110

APP modulates ELK1 transcriptional activity
Amyloid precursor protein (APP) is one of the modulators of interest, and its analysis is
described in detail here. An interaction betweenAPP and ELK1 ismentioned in the STRING
database. Several AS isoforms of APP have been observed in humans. The isoforms range
in length from 639 to 770 amino acids, and certain isoforms are preferentially expressed
in neurons; changes in the neuronal ratio of these isoforms have been associated with
Alzheimer’s disease (Matsui et al., 2007).

One splicing event of APP detected as a modulator was ‘‘chr21:27354657:27354790:-
@chr21:27372330:27372497:-@chr21:27394156:27394358:-’’. Different inclusion ratios of
the alternatively spliced exon in APP protein influence 18.6% of the targets of ELK1, and
the seventh exon, which contains a vital domain named BPT/Kunitz inhibitor (BPTI)
(residues 291–341), is the alternatively spliced exon. The splice isoforms that contain the
BPTI domain possess protease inhibitor activity.

According to the GEM algorithm, unmodulated ELK1 activity was classified into three
categories according to the value of αf: activation if positive, inhibition if negative, and
inactive if zero. Similarly, by comparing α and β coefficents, modulators were classified
into three classes: enhancing, attenuating or inverting the activity of ELK1. Hence, there are
six possible categories of action. The APP modulation categories and their interpretations
are listed in Table S1.

As summarized in Table 2, without APP modulation of ELK1, unmodulated ELK1
inhibits 172 targets and activates 31 targets. However, when APP interacts with ELK1 as
a modulator, the original transcriptional activity of ELK1 changes: APP attenuates the
inhibitory role of ELK1 for 164 targets, inverts its inhibitory activity for eight targets, and
enhances activation for 14 targets. APP also dysregulates ELK1 activity on 31 targets by
inverting the activity for one target and attenuating the activity of 30 targets.

We randomly selected four targets (ANKRD34A, DDX27, DVL3 and HEATR1) of
ELK1 to explore the different activities of ELK1 under the modulation of differential
inclusion levels of APP protein. Ideally, the inclusion level of the splicing modulator and
expression of ELK1 should have high variance and low correlation in the samples. We
divided rank-ordered PSI values of APP splicing modulators, extracting ELK1 and its
target samples that were consistent with APP splicing modulator samples in upper/lower
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Table 2 Interpretation of the categories of APPmodulation, and the inequality constraints that the
category should satisfy. Each number in the table indicates the number of triplets in each classification.

Modulation
classification

Explanation #triplets γ αf βf βm αf +βm

Attenuates inhibition F, alone, inhibits T-M
attenuates F activity

164 + −

Enhances inhibition Modulated F inhibits T 0 − − − −

Inverts inhibition F, alone, inhibits T-M inverts
F activity

8 + − + + +

Inverts activation F, alone, activates T-M inverts
F activity

1 − + − − −

Enhances activation Modulated F activates T 14 + + + +
Attenuates activation F, alone, activates

T-M attenuates F
30 − +

Notes.
‘+’ and ‘−’ signs in the columns indicate significantly positive and negative values, respectively.

tertile. We then estimated the differences in correlation between ELK1 and its target using
Spearman’s correlation.

Figure 5A shows examples of APP-modulated ELK1 target genes and the corresponding
action modes. As shown in Fig. 5A, when the exon inclusion level of APP was in the
lower tertile, an increase in the gene expression level of ELK1 resulted in a significant
increase in the gene expression of its target ANKRD34A. Spearman’s correlation of gene
expression between ELK1 and ANKRD34A was 0.71 (p< 2.2e−16), which means that in
this condition, ELK1 plays an enhancement role on its target. However, when the PSI value
of the APP modulator is in upper tertile, the correlation decreased into 0.30 (p= 0.0085).
For the other two targets, DDX27 and DVL3, the correlations changed from −0.47 and
−0.53, respectively, to non-significant (p> 0.1). For these three cases, the APP modulator
attenuates the activation of ELK1. The opposite modulation occurs on target HEATR1.
When the exon is spliced out of the protein, ELK1 negative regulates the expression of
HEATR1 with a correlation as −0.38 (p= 0.0005); however, when the exon is excluded
from the mature mRNA, the APP modulator inverts the activation of ELK1 on its target
with a correlation of 0.70 (p< 2.2−16).

We evaluated the exon’s impact on APP protein using ExonImpact (Li et al., 2017b). The
results showed that the alternatively spliced exons of APP protein that we detected have a
high probability (0.57 and 0.48) of being associated with disease. This result indicates that
changes in the inclusion or exclusion level of spliced exons can lead to significant changes
with respect to APP protein function.

Figure 5B visualized the global effect of changing the inclusion ratios of alternately
spliced exons in APP and influences on the relationship between ELK1 and its target. The
two groups of samples are selected based on the seventh exon inclusion ratio of APP. The
high and low inclusion groups contain samples with the top and bottom 30% of PSI values.
The correlation patterns between ELK1 and its targets in the two groups are different,
clearly showing that different splicing levels of APP can modulate the transcriptional
activity of ELK1.
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Figure 5 APP is a modulator that influences the activity of ELK1 in LGG. (A) Examples of different cor-
relations between ELK1 and its targets under the modulation of APP with differential splicing levels. (B)
Visualization of how APP regulates the stability of ELK1 protein. Gene expression profiles are displayed
with genes in rows and samples in columns. Expression values of each gene are rank transformed, median
centered and rescaled between (−0.5, 0.5). Samples were partitioned based on the alternatively spliced
exon inclusion level of APP and sorted by the expression levels of ELK1 within each partition.

Full-size DOI: 10.7717/peerj.4686/fig-5

STK16 modulates ELK1 transcriptional activity
The AS event ‘‘chr2:220111379:220111598:+@chr2:220111835:220111968:+@chr2:
220112137:220112257:+’’ for protein serine/threonine kinase 16 (STK16) is another
interesting modulator that we identified. The inferred STK16-modulated triplets and their
modulation categories are listed in Table S2 . STK16 is a membrane-associated protein
kinase that phosphorylates on serine and threonine residues. An interaction between STK16
and ELK1 is inferred from the biochemical effect of one protein on another in the BioGrid
database. The alternatively spliced exon that acts as a modulator of SKT16 is the 4th exon
and is located in a region that encodes a kinase domain named Pkinase that is associated
with the protein’s proton acceptor.

Figure 6A shows the modulating effect of STK16 on ELK1, and TMEM60 is one of
targets we randomly detected. The samples in the two groups are selected using the same
method mentioned above. A negative correlation (−0.37,p= 0.0004) is only shown when
the exon is included in the final product. The exon’s impact in protein function analysis
(Li et al., 2017b) shows that this alternatively spliced exon has a high disease probability of
0.67, which indicates that changes in the exon inclusion or exclusion ratio might cause a
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Figure 6 STK16 is a modulator that affects the transcriptional activity of ELK1 in LGG. (A) Examples
of differential regulation activities of ELK1 on its target under the modulation of STK16 with differential
splicing levels. The spliced exon is excluded in the final production of STK16 in the first scenario, and the
exon is included in the final production of STK16 in the second scenario. (B) STK16 regulates the stability
of ELK1. See Fig. 3B for interpretation of this graph.

Full-size DOI: 10.7717/peerj.4686/fig-6

gain or loss in protein function. The specific alternatively spliced exon of STK16 encodes
a kinase domain, and thus it is not surprising that the loss of this exon will cause a change
in protein function and may ultimately influence numerous normal gene functions.

Figure 6B shows the global modulating effect of STK16 on ELK1. The low and high
inclusion groups contain samples with the top and bottom 30% of PSI values, which
indicate exon exclusion and inclusion in the final protein. A positive correlation between
ELK1 and its targets is clearly shown when the exon is excluded, whereas this correlation
becomes negative when the exon is included. This result suggests that the 4th cassette exon
in STK16 is important to final protein function and that changes in the splicing level of
STK16 are associated with the differential transcriptional activity of ELK1.
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DISCUSSION
In this work, a known probabilistic method, GEM, was used to infer alternative splicing-
modulated triplet relationships (Babur et al., 2010). The type of input data was gene
expression, and the method was built for discovering modulated regulation relationships
based on gene expression levels. Our preliminary work (Li et al., 2017a) built a regression
model to infer similar triplet relationships, but we focused on gene expression and the
splicing level.We changed the input data of GEM to gene expression and alternative splicing
values and compared the results of the twomethods for discoveringmodulated triplets. The
results showed that numerous overlapping triplets could be detected. While our previous
method has higher sensitivity, the GEM method is much more robust. Another reason we
used modified GEM is that the method classifies the modulator regulation mode into six
categories, which is helpful for understanding the modulation mechanisms.

Several alternative splicing isoform outcome-modulated triplets were detected in this
study. The most important TF we discovered was ELK1, whose activity was impacted by
many alternative splicing isoform outcomes, such as STK16 and APP. Previous studies
have shown that ELK1 phosphorylation can be modulated in various central nervous
system diseases (CNS diseases), such as Alzheimer’s’ disease, Huntington’s disease, Down
syndrome and depression (Besnard et al., 2011;Demir et al., 2011). The inferred modulator
STK16 is a Ser/Thr kinase, and STK16 exhibited protein kinase activity in both in vitro
and in vivo kinase assays. Some kinases, such as casein kinase II, have been reported to
interact with TFs (Yamaguchi et al., 1998), but how those kinases regulate the transcription
machinery remains unclear. In this study, we identified the fourth alternative spliced exon
as important for STK16. The fourth exon is located in a region that encodes a kinase
domain named Pkinase. Hence, the STK16 splice isoform with the kinase domain may play
a vital role in regulating transcription activity.

A preliminary study showed that STK16 exhibits an autophosphorylation pattern. STK16
also phosphorylates MBP and histone H1, both of which are often used as substrates for
Ser/Thr kinases, as well as the recombinant His-tagged ELK1 activation domain (Ohta et
al., 2000). The N-terminal third and central portions of STK16, which contain residues
essential for Ser/Thr kinase activity, are required for its transcriptional regulatory function
and therefore for DNA-binding ability (Besnard et al., 2011). Hence, different splicing
outcomes are associated with the phosphorylating activity of STK16 and may influence the
interactionwith TFs. Other preliminary studies have reported that STK16 strongly enhances
the ELK1 signal, suggesting that STK16 is involved in the phosphorylation of some nuclear
TFs. STK16 could activate the MAP kinase pathway, leading to ELK1 activation, similar to
the TGF-β signaling pathway. As the MAP kinase pathway has been reported to be involved
in one of the TGF-β signaling pathways (Hartsough & Mulder, 1995; Reimann et al., 1997),
STK16 may be a candidate linking the MAP kinase pathway to TGF-β signaling. This may
explain why STK16 could regulate the transcriptional activity of ELK1.

Another modulator, APP, encodes a cell surface receptor and transmembrane precursor
protein that is cleaved by secretases to form a number of peptides. Some of these peptides
are secreted and can bind to the acetyltransferase complex APBB1/TIP60 to promote
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transcriptional activation, while others form the protein basis of the amyloid plaques
found in the brains of patients with Alzheimer’s disease. Mutations in this gene have been
implicated in autosomal dominant Alzheimer’s disease and cerebroarterial amyloidosis.
Multiple transcript variants encoding several differential isoforms have been identified
for this gene. By searching the Integrated Interactions Database (IID) and restricting
the interaction partners to only those supported by experimental evidence, we obtained
protein-protein interaction evidence for APP and ELK1.

One splicing event of APP detected as a modulator was ‘‘chr21:27354657:27354790:- @
chr21:27372330:27372497:-@chr21:27394156:27394358:-’’. The alternatively spliced exon
was the seventh exon, which contains a vital domain named BPT/Kunitz inhibitor (BPTI).
The splice isoforms that contain the BPTI domain possess protease inhibitor activity
that induces an AGER-dependent pathway involving activation of p38 MAPK, resulting
in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in
cultured cortical neurons. ELK1 phosphorylation has been shown to be modulated in
various CNS diseases (Besnard et al., 2011). Hence, we conclude that the detected splice
isoform of APP with the BPT1 domain could influence the transcriptional activity of ELK1.

A previous study reported that Abeta, ELK1, PS1 and APP are associated. Tong et
al. (2004) showed that sublethal concentrations of Abeta interfere with BDNF-induced
activation of ELK1 in cultured cortical neurons and result in altered SRE-driven gene
regulation, which is likely to account for increased neuronal vulnerability. Pastorcic and
Das (Pastorcic & Das, 2003) defined ELK1 as a potent repressor of transcription of the
presenilin 1 gene (PS1), which encodes a protein required for the final protein (APP)
that produces highly amyloidogenic variants of Abeta. PSI is genetically linked to the
majority of cases of early-onset familial Alzheimer’s disease (FAD). Collectively, these data
highlight the intriguing link connecting Abeta, ELK1, PSI and APP and also show that APP
is associated with the activity of ELK1.

CONCLUSIONS
We globally dissected the role of AS in regulating the transcriptional activity of TFs in
LGG using TCGA-LGG data. ELK1, a member of the Ets oncogene family of TFs that
functions in neurons, was one of the key TFs discussed in detail in this study. Two
significant modulators, APP and STK16, were identified. The results showed that different
alternatively spliced isoforms of APP/STK16 are associated with the transcriptional activity
of ELK1 and play dual roles in CNS diseases. The presented results provide important
insights on the modulating role of AS in transcription regulation in LGG as well as the role
of signaling modules in neuronal survival in neurodegenerative processes.
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