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ABSTRACT
High-throughput phenotype assays are a cornerstone of systems biology as they allow
direct measurements of mutations, genes, strains, or even different genera. High-
throughput methods also require data analytic methods that reduce complex time-
series data to a single numeric evaluation. Here, we present the Growth Score, an
improvement on the previous Growth Level formula. There is strong correlation
between Growth Score and Growth Level, but the new Growth Score contains only
essential growth curve properties while the formula of the previous Growth Level was
convoluted and not easily interpretable. Several programs can be used to estimate the
parameters required to calculate the Growth Score metric, including our PMAnalyzer
pipeline.
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INTRODUCTION
Bacterial growth of homogenous cultures is commonly described through the Monod
growth phases (Monod, 1949). Specifically, the three major phases of growth are lag phase,
where growth rate is zero and bacterial density is constant at the initial measurement;
exponential phase, where growth rate is at its maximum value; and stationary phase, where
growth rate is zero and bacterial density is constant at its maximum yield. The Growth
Level (GL) has been used to quantitatively measure the amount of growth displayed by a
bacteria liquid culture (Cuevas & Edwards, 2017). In PMAnalyzer, an automated growth
curve analysis pipeline, GL is calculated following the least-squares fitting of the Zwietering
logistic model (Zwietering et al., 1990):

ŷ = y0+
A−y0

1+exp
[
4µ
A (λ− t )+2

] .
Here, y0 represents the starting absorbance, λ represents the lag time, µ represents the

maximum growth rate, A represents the biomass yield obtained during stationary phase, t
represents the time vector, and ŷ represents the modeled growth curve vector. Using ŷ , y0,
and A, Growth Level can be calculated as

GL=
n∑n
i
1
xi

,

where xi=
(
ŷi−y0

)
+amplitude=

(
ŷi−y0

)
+
(
A−y0

)
.
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GL is a variation on the harmonic mean where the logistic growth curve is weighted by
the amount of biomass the bacteria culture attained, or the difference in bacterial density,
during the course of the experiment (represented as amplitude in the GL formula). This
amplitude-weighted metric performs well for differentiating growing data from growth
curves that display no growth. The GL provides threshold values that can be used to ascribe
qualitative labels or classes to growth, ranging from no growth to very high growth.

There are several mathematical drawbacks of the GL formula. The harmonic mean
is commonly used to average values of rates; however, absorbance data are not rate
measurements. In addition, using the entire growth curve in GL is implicitly affected
by the lag time of the bacteria that is dependent on numerous biological properties
including ageing of cells, activation of enzymes, metabolic adaptation, and other regulatory
mechanisms (Monod, 1949; Robinson et al., 1998; Rolfe et al., 2012). The simplicity of the
three phase growth curve is lost in the GL calculation.

Here, we propose a new calculation to simplify the quantitative meaning of the level of
growth. The Growth Score,GS, is defined by three parameters of the Zwietering (Zwietering
et al., 1990) bacterial growth curve

GS=
(
A−y0

)
+0.25µ.

GS uses the starting absorbance, y0, biomass yield, A, and the maximum growth rate, µ,
to compute a score for a growth curve.Without any explicit dependency on the fitted values
or implicit dependencies on lag time, GS is clearly understood by its growth parameters.
In addition, GS performs similarly to GL, primarily because of GLs strong dependency
on yield in defining a quantitative measurement of growth. GS has been implemented in
the PMAnalyzer pipeline (https://edwards.sdsu.edu/pmanalyzer/) and is replacing the GL
metric.

SIMULATING GROWTH CURVES
A set of 1,000 growth curves were generated using a total time t = 240 h (10 days) and
the Zwietering logistic model. Uniformly-distributed random values were selected for each
growth curve parameter. Distribution ranges for each parameter were established to portray
realistic values: starting absorbance, y0= [0.05,0.10]; lag time, λ= [0,120]; biomass yield,
A= [0.1,1.2]; and maximum growth rate, µ= [A/t ,1.1A]. Growth rate range is limited
by the biomass yield to provide a realistic result. The first value represents an organism
achieving the biomass yield at the end of the experiment; when A is large this simulates
very slow growth. The second value represents a rate where yield is obtained within one
hour; when A is large this simulates very fast growth. For cases when A is small, growth
rate is negligible, therefore has minimal influence on GS.

COMPARISON OF GROWTH LEVEL AND GROWTH SCORE
Using the simulated growth curves, distributions of GL and GS are illustrated in the Fig. 1
histograms. The range for GL is much larger than GS. Both metrics demonstrate a slight
left-skewness but GL was slightly higher at 0.143 compared to GS at 0.078. The growth
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Figure 1 Growth Level and Growth Score correlation. The linear relationship results in a Pearson cor-
relation coefficient of 0.97. Distributions are plotted as marginal histograms for each metric. Point colors
represent the GL classes whereas dotted lines represent the proposed GS lower thresholds for each colored
class.

Full-size DOI: 10.7717/peerj.4681/fig-1

score should be left skewed because a low asymptote correlates with low growth rates and
results in a low growth score, but the reverse is not necessarily true, high growth score
values may result from high or low growth rates.

Differences in metrics are displayed in Fig. 1 with GL shown along the x-axis and the
corresponding GS value along the y-axis, along with a linear regression line, and growth
classes. A strong correlation is shown between GL and GS with a Pearson correlation
coefficient of 0.97 (p-value < 0.001) (Fig. 1). The qualitative classes are defined in
PMAnalyzer as value thresholds. Given these GL classes, GS class thresholds are also
indicated in Fig. 1 as horizontal dotted lines. A total of 191 out of the 1,000 growth curves
were classified differently between the two metrics, however, only 20 growth curves had a
change from ‘‘−’’ to ‘‘+’’ or vice versa.

To further demonstrate the separation of the growth data, all growth curves are plotted
according to their classification in Figs. 2 and 3. In Fig. 2, as growth class decreases from
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A)

B)

Figure 2 Simulated growth curves.Growth curve data stratified by GL and GS classes. Classes are orga-
nized in decreasing growth from left to right. (A) GL classes. (B) GS classes.

Full-size DOI: 10.7717/peerj.4681/fig-2

left to right, the curve height (biomass yield) also decreases. Interestingly while observing
biomass yield, GL (Fig. 2A) does not separate curves as well as GS (Fig. 2B)—there is more
overlap in curve height betweenGL classes. Figure 3 comprises of average growth curves per
growth class. Standard error intervals are included in graphs but are notably small. In Fig.
3, the ‘‘+++’’ and ‘‘++’’ classes show separation earlier in GS (Fig. 3B) than in GL (Fig. 3A).

To present more detail, Fig. 4 illustrates distributions between GL and GS classes per
growth curve parameter. The dependence on biomass yield and maximum growth rate is
further depicted. Again, biomass yield overlaps between classes much more in GL than in
GS. The widest distribution of yield lies in the highest growth class ‘‘++++’’. This provides
opportunity to define more classes of growth to minimize the variation here. Maximum
growth rate has less influence in defining higher growth classes, and lag time has no impact
on growth class.

Growth curves were generated using the Python 3.6 programming language (Python
Language Reference, version 3.6; Python Software Foundation, Wilmington, DE, USA.
Available at https://www.python.org), NumPy version 1.13.1 (http://www.numpy.org/)
(Walt, Colbert & Varoquaux, 2011), pandas version 0.20.3 (http://pandas.pydata.org)
(McKinney, 2010), and Seaborn version 0.8.1 (http://seaborn.pydata.org/). The ggplot2
library (Wickham, 2009, p. 2) in the R programming language (R Development Core Team,
2008) was used to generate growth curves in Fig. 2. See Supplemental Information 1 for
the Python code that generates the random curves, Supplemental Information 2 for the
Jupyter Notebook version, and Supplemental Information 3 for a PDF version of the
Jupyter Notebook.
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B)
GS class

Figure 3 Growth curves distributions. Average growth curves colored by GL and GS classes.+/− 1
standard error intervals are drawn around the average. (A) GL classes. (B) GS classes.

Full-size DOI: 10.7717/peerj.4681/fig-3

Biomass yield has been successful in discriminating growth from no growth using theGL
formula. However, that calculation lacked direct incorporation of the maximum growth
rate, a useful component in measuring fitness. Intuitively, faster growth rates should
indicate a bacteria that is more capable of consuming nutrients and proliferating. Yet a
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Figure 4 Growth curve parameter distributions. Box plots presenting the median and interquartile
ranges for each simulated growth curve parameter. Data are stratified by GL and GS classes along the
columns and by parameters along the rows. Plots demonstrate how each growth metric contains a strong
dependence on biomass yield (A) and growth rate (µ). Lag time and starting yield did not have strong
effects on growth class. (A) GL classes. (B) GS classes.

Full-size DOI: 10.7717/peerj.4681/fig-4

higher rate of growth does not solely demonstrate fitness, evidenced by the abundance
of slow-growing bacteria throughout the environment (e.g., r and K growth strategies
(Pianka, 1970)). Nor is it a strong feature to ultimately predict larger bacterial densities.
For example, two bacteria with the same phenotype can reach the same density, even if
one grows at half the rate of the other. Essentially, the ability to reach that potential at a
faster rate indicates some biological advantage but has less significance than yield. In GS
maximum growth rate is included at an amount of 25% in order for biomass accumulation
to result in the primary component of growth. Faster growth rates can occur within a short
time frame, resulting in low yield and high rate and, therefore, causing a disproportionate
GS if the magnitude of the growth rate was not reduced.

Here, we have introduced the Growth Score, a new parameter for describing bacterial
growth in 96-well phenotypic assays. The Growth Score provides three distinct advantages
over other metrics used to describe growth: First, it only uses growth curve properties (yield
and growth rate) in its calculation, in contrast our previous Growth Level was averaged over
time andwas thus heavily influenced by the length of the experiment. Second, Growth Score
can be used with results from other software that also performs growth curve modeling or
parameterization (DuctApe (Galardini et al., 2014), GCAT (Bukhman et al., 2015), grofit
(Kahm et al., 2010; Vaas et al., 2012), OmniLog Biolog Phenotype MicroArrays (Borglin
et al., 2012; Vaas et al., 2012) without the need for the raw data, whereas growth level
would at least need lag time and /or the raw spectrophotometry data. Finally, the time
independence of Growth Score is also a benefit over measurements like Area Under the
Curve (AUC) employed by some software. AUC is subject to similar biases as growth
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level–longer experiments directly affect how lag time and growth rate mathematically
influence the AUC calculation.
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