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ABSTRACT
Thyroid cancer is one of themost common endocrinemalignancies. Multiple evidences
revealed that a large number of microRNAs and mRNAs were abnormally expressed
in thyroid cancer tissues. These microRNAs and mRNAs play important roles in
tumorigenesis. In the present study, we identified 72 microRNAs and 1,766 mRNAs
differentially expressed between thyroid cancer tissues and normal thyroid tissues
and evaluated their prognostic values using Kaplan-Meier survival curves by log-
rank test. Seven microRNAs (miR-146b, miR-184, miR-767, miR-6730, miR-6860,
miR-196a-2 and miR-509-3) were associated with the overall survival. Among them,
three microRNAs were linked with six differentially expressed mRNAs (miR-767 was
predicted to target COL10A1, PLAG1 and PPP1R1C; miR-146b was predicted to target
MMP16; miR-196a-2 was predicted to target SYT9). To identify the key genes in the
protein-protein interaction network , we screened out the top 10 hub genes (NPY,
NMU, KNG1, LPAR5, CCR3, SST, PPY, GABBR2, ADCY8 and SAA1) with higher
degrees. Only LPAR5 was associated with the overall survival. Multivariate analysis
demonstrated that miR-184, miR-146b, miR-509-3 and LPAR5 were an independent
risk factors for prognosis. Our results of the present study identified a series of
prognostic microRNAs and mRNAs that have the potential to be the targets for
treatment of thyroid cancer.

Subjects Bioinformatics
Keywords Meta-analysis, microRNA, Thyroid cancer, mRNA, LPAR5

INTRODUCTION
Thyroid cancer is a common endocrine malignancy which has increased rapidly worldwide
in the past decades. The analysis of the Surveillance, Epidemiology, and End Result cancer
registry data between 1975 and 2013 revealed that the incidence of thyroid cancer increased
by 211% (Lim et al., 2017). The improvements in diagnosis and treatment for thyroid
cancer substantially improve prognosis (Grigsby et al., 2006; Lang, Wong & Wan, 2013).
According to the histopathological features, thyroid cancer is classified into three major
categories: well-differentiated thyroid cancer (WDTC) which includes papillary thyroid
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cancer (PTC) and follicular thyroid cancer (FTC); poorly-differentiated thyroid cancer
(PDTC) and anaplastic thyroid cancer (ATC) (Zarkesh et al., 2017). WhileWDTC accounts
for the majority part of all cases (Yu et al., 2013), and its mortality rates were controlled
to less than 10% for 10 years, the mortality rates of PDTC and ATC were reported to be
38–57% and close to 100% respectively (Smallridge et al., 2012; Xu & Ghossein, 2016).

It has been widely accepted that different expression levels of specific genes are associated
with cancer initiation. During the past few years, molecular cytogenetics studies have been
used to investigate themolecular mechanisms of thyroid cancer. Multiple genes and cellular
pathways were reported to participate in the occurrence and development of thyroid cancer.
Alterations in the Ras-Raf-mitogen-activated protein kinase (MAPK) pathway are usually
observed in WDTC (Hou et al., 2007). BRAF mutations were found in 32.4% of PTC cases
and RAS mutations in 20–50% of FTC and 13 % of PTC cases (Nikiforova et al., 2003;
Sahpaz et al., 2015). In the ATC, BRAF and RAS alterations were detected in 29% and 23%
cases (Xu & Ghossein, 2016). Telomerase reverse transcriptase (TERT) promoter mutations
were detected in 10% of PTC and related to clinically aggressive behaviors. In addition,
mutations of both TERT promoter and BRAF/RAS have a tendency for co-occurrence
(Landa et al., 2016; Song et al., 2016). TP53 mutation is considered to be a genetic event
distinguishing WDTC from ATC. Several studies revealed that TP53 mutations were
detected in 59% of ATC cases, compared with in 10%WDTC cases (Kunstman et al., 2015;
Sykorova et al., 2015).

With the development of high-throughput technologies, expression profiling of multiple
genes is a useful way to find different expression levels of specific genes between normal
and tumor tissues. Altered expression levels usually indicate pathological conditions, and
proteins coded by these differentially expressed genes may involve in different molecular
pathways, biological process, and cellular behaviors during tumor progression. MicroRNAs
are small noncoding RNAs which participate in the post-transcriptional regulation of gene
expression (Chen & Kang, 2015). They function as negative regulators by binding to the
3′-untranslated region of candidate mRNAs, and repress the gene expression by inhibiting
protein translation or degrading mRNAs (Wang et al., 2010). Accumulating evidence
demonstrated that microRNAs could function as either oncogenes or tumor suppressors
in various types of malignancies and regulate different carcinogenic processes (Liang, Li
& Wang, 2017). In previous bioinformatic studies, a number of microRNAs and mRNAs
were identified as predictors for the prognosis of thyroid cancer (Table S1). Due to the
small sample sizes and different detection platforms, some results were controversial.
In the current study, we analyzed the public microRNA and mRNA sequencing data
from The Cancer Genome Atlas Project (TCGA, https://cancergenome.nih.gov/) and
identified the differentially expressed microRNAs and mRNAs between thyroid cancer
tissues and matched normal thyroid tissues. We then investigated the prognostic value of
these differentially expressed microRNAs. In addition, combined with microRNA-mRNA
interaction analysis, we analyzed the functions and pathways and constructed protein-
protein interaction (PPI) network of differentially expressed mRNAs to investigate the
underlying mechanisms of thyroid cancer occurrence and development.
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Figure 1 Workflow of the data selection.
Full-size DOI: 10.7717/peerj.4674/fig-1

MATERIALS AND METHODS
Data processing
We obtained the clinical information of thyroid and RNA sequencing data from TCGA
database (https://cancergenome.nih.gov/). A workflow of the data selection was shown
in Fig. 1. Using edgeR package in R language, we normalized the microRNA and mRNA
sequencing data and screened out differentially expressedmicroRNAs andmRNAs between
thyroid cancer and normal tissues (Robinson, McCarthy & Smyth, 2010). Cut-off criteria of
adjusted p-value< 0.01 and |log2 fold-change (FC)| > 2 were considered to be statistically
significant.

Clinical information of thyroid cancer patients included sex (female and male), age
at diagnosis (<45 or ≥45 years), race (White, Black, Asian and other), histological type
(classical papillary thyroid cancer, follicular variant of papillary thyroid cancer, tall cell
papillary thyroid cancer and other) and tumor-node-metastasis (TNM) stage. Using
Kaplan–Meier survival curves by log-rank test, we evaluated the prognostic value of each
differentially expressed microRNA with a threshold of p-value < 0.05. The microRNAs
significantly associated with the overall survival were considered as prognostic microRNAs.
A Cox proportion hazards model was used to evaluate the relative risk of these prognostic
microRNAs on OS. Hazard ratios (HR) with 95% confidence intervals were obtained, any
HR > 1.0 showed an increased risk of death. A P value < 0.05 was considered statistically
significant and all tests were two-sided.
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Gene ontology and pathway enrichment analysis of differentially
expressed mRNAs
DAVID (http://david.abcc.ncifcrf.gov/) is a database for annotation, visualization and
integrated discovery (Huang da, Sherman & Lempicki, 2009a; Huang da, Sherman &
Lempicki, 2009b). Gene Ontology (GO) and KEGG pathway analysis of differentially
expressed mRNAs were carried out using DAVID (version 6.8) online tools: functional
annotation. The ontology contains three categories: biological process (BP), molecular
function (MF) and cellular component (CC). Enriched GO terms and KEGG pathways
were identified according to the cut-off criterion of P-value < 0.001.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) is a computational method that determines whether
the members of a gene set S are randomly distributed throughout the entire reference gene
list L or are found primarily at the top or bottom of L. We performed GSEA using the Java
GSEA implementation (supported by Java 8) to validate the enrichment analysis. Annotated
gene sets c2.cp.kegg.v6.1.symbols.gmt, c5.bp.v6.1.symbols.gmt, c5.cc.v6.1.symbols.gmt,
c5.mf.v6.1.0:0symbols.gmt (Version 6.1 of theMolecular Signatures Database) were chosen
as the reference gene sets. FDR < 0.05 was set as the cut-off criteria.

Construction of protein-protein interaction network
In order to investigate the interactive relationships among the differentially expressed
mRNAs, we constructed the physical protein-protein interactions of these genes
using STRING database (version 10.5) (Szklarczyk et al., 2017). PPIs of differentially
expressed mRNAs were selected with confidence score >0.7. Cytoscape software
(http://www.cytoscape.org/) was used to visualize and analyze the PPI network. According
to the degree of importance, significant modules of PPI network were screened out using
Molecular Complex Detection (MCODE) with the degree cutoff = 2, node score cutoff =
0.2, k-core = 2 and max depth = 100. CytoHubba was then applied to identify the hub
proteins in the PPI network which was widely used explore important nodes in biological
networks (Chin et al., 2014). Kaplan–Meier survival curves by log-rank test was used to
evaluate the prognostic value of each hub gene, a p-value < 0.05 was set as the cut-of
criterion.

The target genes of prognostic microRNAs
The target genes of prognostic microRNAs were predicted using miRTarBase (version
6.0) (http://mirtarbase.mbc.nctu.edu.tw/php/index.php), miRDB (version 5.0) (http:
//www.mirdb.org/miRDB/) and TargetScan (version 7.1) (http://www.targetscan.org/)
databases. The overlapping target genes were identified to further enhance the reliability of
bioinformatics analysis. The overlapping target genes with differentially expressed mRNAs
were then compared, and the microRNA-mRNA network was visualized by cytoscape
software.
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Figure 2 Volcano plot of differentially expressed microRNAs andmRNAs. The red dots represent up-
regulated genes, and green dots represent down-regulated genes. (A) microRNA; (B) mRNA.

Full-size DOI: 10.7717/peerj.4674/fig-2

RESULTS
Identification of differentially expressed microRNAs and mRNAs in
thyroid cancer
A total of 573 samples with microRNA sequencing data and 568 samples with mRNA
sequencing data were analyzed. The microRNA sequencing data included 514 thyroid
cancer samples and 59 matched normal samples; and the RNA sequencing data included
510 thyroid cancer samples and 58 matched normal samples. Based the cut-off criteria
(P < 0.01 and |log2FC| > 2.0), a total of 72 differentially expressed microRNAs and
1766 differentially expressed mRNAs were identified between thyroid cancer tissues and
matched normal tissues, including 67 up-regulated and five down-regulated microRNAs;
1,370 up-regulated and 396 down-regulated genes. The results were presented as Volcano
plot (Fig. 2).

Association between differentially expressed microRNAs and
clinical features
To identify the potential prognostic microRNAs correlated with the overall survival of
thyroid cancer patients, we investigated the associations between miRNAs expression
and patient survival using Kaplan–Meier curve and Log-rank test. Seven microRNAs
were related to the overall survival. While five of them (miR-146b, miR-184, miR-767,
miR-6730 and miR-6860) were positively correlated with the overall survival, the other two
microRNAs (miR-196a-2 and miR-509-3) were negatively related to the overall survival
(Fig. 3). In the multivariate Cox analysis, only miR-184, miR-146b and miR-509-3 were
significantly associated with overall survival when controlling for the remaining variables:
age at diagnosis, sex, stage, tumor size, lymph nodes metastases, distant metastases and
other diagnostic genes revealed by Kaplan–Meier curve (Table 1). Interestingly, all of the
seven microRNAs were up-regulated in the tumor samples. MiR-146b, miR-509-3 and
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Figure 3 SevenmicroRNAs and 1mRNAwere associated with the overall survival in thyroid cancer
patients using Kaplan–Meier survival curves by log-rank test. The patients were stratified into high-level
group and low-level group according to median expression. (A) miR-146b; (B) miR-184; (C) miR-767;
(D) miR-6730; (E) miR -6860; (F) miR-196a-2; (G) miR-509-3; and (H) LPAR5.

Full-size DOI: 10.7717/peerj.4674/fig-3
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Table 1 Cox proportional hazards regressionmodel analysis of factors associated with overall sur-
vival.

Variable Multivariate
hazard ration

95%CI *P-value

mir-767 expression
High vs. Low

0.316 0.071–1.412 0.131

mir-6730 expression
High vs. Low

0.370 0.081–1.685 0.199

mir-184 expression
High vs. Low

0.201 0.045–0.901 0.036

mir-6860 expression
High vs. Low

0.729 0.142–2.749 0.706

mir-146b expression
High vs. Low

0.251 0.065–0.970 0.035

mir-196a-2 expression
High vs. Low

2.864 0.065–4.881 0.147

mir-509-3 expression
High vs. Low

4.534 2.281–9.923 0.002

LPAR5 expression
High vs. Low

0.043 0.012–0.453 0.005

Notes.
*P values calculated by multivariate Cox analysis (adjusted for age at diagnosis, sex, stage, tumor size, lymph nodes metastases
and distant metastases).
CL, confidence interval.

miR-6730 were significantly associated with tumor stage and lymph node metastases; only
miR-509-3 was related to tumor size (Fig. 4).

Gene ontology and pathway enrichment analysis
Through GO analysis, the enriched go terms were classified into BP, MF and CC. Our
results showed that themost significantly enriched GO terms corresponded to up-regulated
genes were extracellular matrix (ECM) organization (BP), calcium ion binding (MF) and
proteolysis (CC). While the down-regulated genes were mainly enriched in receptor
localization to synapse (BP), heparin binding (MF) and proteinaceous extracellular matrix
(CC) (Table 2). According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, up-regulate genes were significantly enriched in neuroactive ligand–receptor
interaction, protein digestion and absorption, pancreatic secretion, complement and
coagulation cascades, salivary secretion, ECM-receptor interaction, nicotine addiction, cell
adhesion molecules and morphine addiction. Down-regulate genes were mainly enriched
in complement, coagulation cascades and drug metabolism—cytochrome P450 (Table 3).

Gene set enrichment analysis
Based on the cut-off criteria FDR < 0.05, only three functional gene sets were enriched:
‘‘Notch signaling pathway’’ ‘‘Glycosaminoglycan degradation’’ and ‘‘P53 signaling
pathway’’ (Fig. 5).

Protein-protein interaction and mircoRNA-target network analysis
To predict protein interactions, the 1,766 differentially expressed genes were submitted to
the Search Tool for the Retrieval of Interacting Gene (STRING) database. The PPI network
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Figure 4 Correlations between the expression levels of prognostic genes and tumor pathology. (A)
miR-146b and tumor stage; (B) miR-509-3 and tumor stage; (C) miR-6730 and tumor stage; (D) LPAR5
and tumor stage; (E) miR-509-3 and tumor size; (F) LPAR5 and tumor size; (G) miR-146b and lymph
nodes metastases; (H) miR-509-3 and lymph nodes metastases; (I) miR-6730 and lymph nodes metastases;
(J) LPAR5 and lymph nodes metastases.

Full-size DOI: 10.7717/peerj.4674/fig-4
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Table 2 The top 5 enriched gene ontology terms of differentially expressed genes.

Expression Category Term Gene count Adjust P value

;Up-regulated GOTERM_BP GO:0030198∼extracellular matrix organization 38 1.01E−13
; GOTERM_BP GO:0030574∼collagen catabolic process 20 2.87E−11
; GOTERM_BP GO:0008544∼epidermis development 22 1.23E−10
; GOTERM_BP GO:0007155∼cell adhesion 52 2.77E−09
; GOTERM_BP GO:0006508∼proteolysis 54 6.99E−09
; GOTERM_MF GO:0005509∼calcium ion binding 75 9.53E−12
; GOTERM_MF GO:0004252∼serine-type endopeptidase activity 38 2.02E−10
; GOTERM_MF GO:0005198∼structural molecule activity 34 1.58E−08
; GOTERM_MF GO:0008201∼heparin binding 26 4.01E−08
; GOTERM_MF GO:0004869∼cysteine-type endopeptidase inhibitor activity 12 1.39E−07

; GOTERM_CC GO:0006508∼proteolysis 209 5.72E−46
; GOTERM_CC GO:0005615∼extracellular space 170 4.03E−35
; GOTERM_CC GO:0005578∼proteinaceous extracellular matrix 44 5.86E−13
; GOTERM_CC GO:0005887∼integral component of plasma membrane 117 3.75E−10
; GOTERM_CC GO:0031012∼extracellular matrix 36 2.73E−07
;Down-regulated GOTERM_BP GO:0097120∼receptor localization to synapse 4 1.02E−04
; GOTERM_BP GO:0035418∼protein localization to synapse 4 3.36E−04
; GOTERM_BP GO:0097114∼NMDA glutamate receptor clustering 3 0.001
; GOTERM_BP GO:0023041∼neuronal signal transduction 3 0.002
; GOTERM_BP GO:0097119∼postsynaptic density protein 95 clustering 3 0.002
; GOTERM_MF GO:0008201∼heparin binding 7 0.006
; GOTERM_MF GO:0005509∼calcium ion binding 16 0.007
; GOTERM_CC GO:0005578∼proteinaceous extracellular matrix 14 7.32E−06
; GOTERM_CC GO:0005615∼extracellular space 34 7.77E−06
; GOTERM_CC GO:0005576∼extracellular region 37 2.11E−06
; GOTERM_CC GO:0030141∼secretory granule 6 0.001
; GOTERM_CC GO:0043025∼neuronal cell body 11 0.002

Notes.
BP, biological process; MF, molecular function; CC, cellular component.
P value< 0.01 was considered as threshold values of significant difference.

consisted of 483 nodes and 1,437 edges. The target genes of prognostic microRNAs were
compared with these differentially expressed genes, and six target genes regulated by three
microRNAs were identified in the network (miR-767 was predicted to target COL10A1,
PLAG1 and PPP1R1C; miR-146b was predicted to target MMP16; miR-196a-2 was
predicted to target SYT9) (Fig. S1). Moreover, the network complex was further analyzed,
and the most significant module was screened out using MCODE, which contained 26
nodes and 325 edges (Fig. 6). Then we performed KEGG pathway analysis of these 26 genes,
our results demonstrated that they were mainly involved in neuroactive ligand–receptor
interaction, chemokine signaling pathway and cAMP signaling pathway. We screened out
the top 10 hub nodes with higher degrees using the plug-in CytoHubba in Cytoscape.
These hub genes included neuropeptide Y (NPY), neuromedin U (NMU), kininogen 1
(KNG1), lysophosphatidic acid receptor 5 (LPAR5), C–C motif chemokine receptor 3
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Figure 5 Gene set enrichment analysis. (A) Glycosaminoglycan degradation pathway. (B) Notch signaling pathway. (C) P53 signaling pathyway.
Full-size DOI: 10.7717/peerj.4674/fig-5

Table 3 KEGG pathway analysis of differentially expressed genes.

Expression Pathway Gene count Adjust P value

;Up-regulated hsa04080: Neuroactive ligand–receptor interaction 33 7.78E−07
; hsa04974: Protein digestion and absorption 15 3.53E−05
; hsa04972: Pancreatic secretion 15 6.62E−05
; hsa04610: Complement and coagulation cascades 11 9.91E−04
; hsa04970: Salivary secretion 12 0.002
; hsa04512: ECM-receptor interaction 12 0.002
; hsa05033: Nicotine addiction 8 0.002
; hsa04514: Cell adhesion molecules (CAMs) 15 0.005
; hsa05032: Morphine addiction 11 0.008
;Down-regulated hsa04610: Complement and coagulation cascades 6 8.62E−04
; hsa00982: Drug metabolism—cytochrome P450 5 0.006

Notes.
P value< 0.01 was considered as threshold values of significant difference.

(CCR3), somatostatin (SST), pancreatic polypeptide (PPY), gamma-aminobutyric acid
type B receptor subunit 2 (GABBR2), adenylate cyclase 8 (ADCY8) and serum amyloid
A1 (SAA1). Survival analysis of the 10 hub genes demonstrated that only LPAR5 was
significantly correlated with the overall survival (Fig. 3H). Multivariate Cox analysis
demonstrated that LPAR5 was an independent risk factors for overall survival (Table 1).
And the expression of LPAR5 was associated with tumor stage, size and lymph node
metastases (Fig. 4).

Validation using GEO database
To validate the results, we screened out the differentially expressed genes using GSE3467
and GSE73182. GSE3467 was an expression microarray dataset and GSE73182 was a
miRNA expression microarray dataset. Based on the same cut-off criteria, 130 differentially
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Figure 6 The significant module consists of 26 nodes and 325 edges. The red nodes represent up-
regulated genes, and blue nodes represent down-regulated genes.

Full-size DOI: 10.7717/peerj.4674/fig-6

expressed mRNAs and five differentially expressed miRNAs were identified. The
overlapping genes (95 mRNAs and four miRNAs) were shown in Fig. S2.

DISCUSSION
As one of the most common endocrine malignancies, it is important to investigate the
molecularmechanisms of thyroid cancer occurrence and development. In the current study,
we investigated potential microRNAs and mRNAs correlated with thyroid tumorigenesis
using bioinformatics analysis. A total of 72 differentially expressed microRNAs and 1,766
differentially expressed genes were identified from TCGA database, including 67 up-
regulated and five down-regulated microRNAs;1370 up-regulated and 396 down-regulated
genes. MiR-146b, miR-184, miR-767, miR-6730, miR-6860, miR-196a-2, miR-509-3
and LPAR5 were correlated with the overall survival of thyroid cancer patients. GSEA
analysis demonstrated that the gene sets ‘‘Notch signaling pathway’’ ‘‘Glycosaminoglycan
degradation’’ and ‘‘P53 signaling pathway’’ were significantly enriched in thyroid cancer
samples.

In the last decade, microRNAs have been revealed to modulate multiple processes
of cancer development, including cancer cell proliferation, differentiation, apoptosis,
migration and invasion. However, the studies of microRNAs’ effects on cancer prognosis
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was limited due to the small sample size, different detection platforms and the lack
of long-term follow-up. To investigate the potential prognostic microRNAs of thyroid
cancer, we analyzed the high-throughput data from TCGA database and identified seven
prognostic microRNAs associated with the clinical outcome of thyroid cancer patients.
Geraldo et al. stated that miR-146b-5p was highly expressed in papillary thyroid cancer and
considered as a relevant diagnostic marker for this type of thyroid cancer. MiR-146b-5p
was reported to promote the migration and invasion of papillary thyroid cancer cells
via downregulating ZNRF3 and upregulating Wnt/catenin signaling pathway, and to
promote thyroid follicular cell growth via downregulating TGF- β pathway by binding to
the 3′-untranslated region of SMAD4 (Chou, Liu & Kang, 2017; Deng et al., 2015; Geraldo,
Yamashita & Kimura, 2012). Inversely, the expression levels of miR-146b was positively
related to the overall survival of patients with thyroid cancer. The expression levels of
miR-509-3 were lower in multiple cancers, and miR-509-3-5P downregulation promoted
the migration and invasion of gastric cancer cells by targeting PODXL. Overexpression of
miR-509-5p markedly inhibited the proliferation, migration and invasion of non-small
lung cancer cells via targeting YWHAG (Peng, Yu & Fu, 2016; Zhang et al., 2017). While
miR-509-3 was overexpressed in thyroid cancer and negatively related to the overall
survival, miR-184 was considered as a potential oncogenic microRNA of squamous cell
carcinoma via promoting cancer cell proliferation. Inversely, miR-184 was down-regulated
in aggressive human glioma and breast cancer cells, and inhibited cancer cell proliferation
and invasion (Emdad et al., 2015; Feng & Dong, 2015). In the present study, miR-184 was
positively related to the overall survival of patients with thyroid cancer. MiR-767 was
reported to represses TET1/3 (two tumor suppressor genes) and identified as a hallmark of
cancer (Loriot et al., 2014). The molecular mechanisms are still to be investigated. Previous
studies have identified a number of miRNAs involved in thyroid carcinogenesis (Table S2).
MiR-146b, miR-221 and miR-222 were the most three frequent miRNAs reported in
thyroid cancer, they appeared to associated with high-risk features such as extrathyroidal
extension, lymph node metastasis, distant metastasis and BRAFV600E mutation. While in
our present study, the results were partly different from the previous: miR-221, miR-222
and some other miRNAs were not identified. This might because of the following reasons:
different study types (RT-PCR, array, high throughput sequencing), different platforms,
different ways for normalization, different ways for DEG screening, and the cut-off criteria
(in our study P < 0.01 and |log2FC| > 2.0). In our validation datasets GSE3467 and
GSE73182, 130 differentially expressed mRNAs and five differentially expressed miRNAs
were identified, among them, 95 differentially expressed mRNAs and 4 differentially
expressed miRNAs were overlapping with TCGA dataset.

Through integrated bioinformatics analysis, we identified the most significant module
which contained 26 nodes and 325 edges, and these genes were mainly enriched in
neuroactive ligand–receptor interaction, chemokine signaling pathway and cAMP signaling
pathway. The top 10 hub genes with higher degrees wereNPY,NMU,KNG1, LPAR5, CCR3,
SST, PPY, GABBR2, ADCY8 and SAA1. NPY encodes a neuropeptide which influences
multiple physiological processes through G protein-coupled receptors (GPCRs) and
MAPK. NPY was reported to promote inflammation-induced tumorigenesis via PI3-K/Akt
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pathway and miR-375-dependent apoptosis (Jeppsson, Srinivasan & Chandrasekharan,
2016). NMU was associated with increased breast cancer aggression (Martinez et al.,
2017) and its overexpression induced regional metastasis of head and neck squamous
cell carcinoma (Wang et al., 2016). KNG1 was identified as a potential marker of early
colorectal cancer stages (Quesadacalvo et al., 2017). LPAR5 is a member of the rhodopsin
class GPCRs. In our study, it was positively corrected with the overall survival of thyroid
cancer patients. LPAR5 was down-regulated in primary undifferentiated nasopharyngeal
carcinoma and promoted the LPA-induced migration of nasopharyngeal carcinoma cell
lines (Yap et al., 2015). Additionally, LPAR5 negatively regulated cell motile and invasive
activities of human sarcoma cell lines (Dong et al., 2014). CCR3 belongs to family 1
of the GPCRs, which enhance cellular proliferation, invasion, and migration through
ERK and JNK signaling pathway (Dong et al., 2014). CCRs was reported to correlated
with improved distant relapse-free survival in breast cancer (Gong et al., 2016). SST is
a neuropeptide which affects neurotransmission, secretion and cell proliferation. The
receptor of SST was reported to be a predictor of better response to therapy in medullary
thyroid carcinoma (Kendler et al., 2017). In radiation-induced papillary thyroid cancer
from chernobyl pediatric patients, GABBR2 was highly expressed (Stein et al., 2010), and
related to tumor occurrence. ADCY8 is a membrane bound enzyme which is differentially
expressed in endometrial cancer (Orchel et al., 2012). SAA1 is highly expressed in response
to tissue injury and inflammation, and its highly expression is associated with chronic
inflammation, lipid metabolism and tumor pathogenesis (Sun & Ye, 2016). SAA1 has been
used as a non-invasive biomarker for the prognosis of many cancers, including stomach,
breast, liver and lung neoplasms (Knebel et al., 2017; Upur et al., 2015).

CONCLUSION
In conclusion, our study identified the crucial microRNAs and mRNAs in thyroid cancer,
and constructed the regulatory network between microRNAs and mRNAs through
bioinformatics analysis. A total of 72 differentially expressed microRNAs and 1,766
differentially expressed genes were screened out. Among them, seven microRNAs were
correlated with the overall survival. Among the hub genes identified from PPI network,
LPAR5 may play important roles in thyroid cancer. Multivariate analysis demonstrated
that miR-184, miR-146b, miR-509-3 and LPAR5 were an independent risk factors for
prognosis, and they have the potential to be the targets for treatment of thyroid cancer.
However, further experimental research is still required to confirm the functions of
identified genes.
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