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A new large-bodied thalattosuchian crocodyliform from the

Lower Jurassic (Toarcian) of Hungary, with further evidence of

the mosaic acquisition of marine adaptations in

Metriorhynchoidea

Attila Ősi Corresp.,   1, 2  ,  Mark T Young  3  ,  András Galácz  1  ,  Márton Rabi  4, 5 

1 Department of Paleontology, Eötvös University, Budapest, Hungary
2 Department of Paleontology and Geology, Hungarian Natural History Museum, Budapest, Hungary
3 School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
4 Central Natural Science Collections, Martin-Luther Universität Halle-Wittenberg, Halle, Germany
5 Department of Earth Sciences, University of Turin, Torino, Italy

Corresponding Author: Attila Ősi
Email address: hungaros@gmail.com

Based on associated and three-dimensionally preserved cranial and postcranial remains, a

new thalattosuchian crocodyliform Magyarosuchus fitosi gen. et sp. nov. from the Lower

Jurassic (Upper Toarcian) Kisgerecse Marl Formation, Gerecse Mountains, Hungary is

described here. Phylogenetic analyses using three different datasets indicate that M. fitosi

is the sister taxon of Pelagosaurus typus forming together the basal-most sub-clade of

Metriorhynchoidea. With an estimated body length of 4.67–4.83 meter M. fitosi is the

largest known non-metriorhynchid metriorhynchoid. Besides expanding Early Jurassic

thalattosuchian diversity, the new specimen is of great importance since, unlike most

contemporaneous estuarine, lagoonal or coastal thalattosuchians, it comes from an

"ammonitico rosso" type pelagic deposit of the Mediterranean region of the Tethys. A

distal caudal vertebra having an unusually elongate and dorsally projected neural spine

reveals its strengthening role within a hypocercal tail fin that could have resulted in a

slight ventral displacement of the distal caudal vertebral column in this basal

metriorhynchoid. The combination of retaining heavy dorsal and ventral armors and having

a slight hypocercal tail is unique, further highlighting the mosaic manner of marine

adaptations in Metriorhynchoidea.
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Based on associated and three-dimensionally preserved cranial and postcranial remains, a 

new thalattosuchian crocodyliform, Magyarosuchus fitosi gen. et sp. nov. from the Lower 

Jurassic (Upper Toarcian) Kisgerecse Marl Formation, Gerecse Mountains, Hungary is described 

here. Phylogenetic analyses using three different datasets indicate that M. fitosi is the sister taxon 

of Pelagosaurus typus forming together the basal-most sub-clade of Metriorhynchoidea. With an 

estimated body length of 4.67–4.83 meter M. fitosi is the largest known non-metriorhynchid 

metriorhynchoid. Besides expanding Early Jurassic thalattosuchian diversity, the new specimen is

of great importance since, unlike most contemporaneous estuarine, lagoonal or coastal 

thalattosuchians, it comes from an "ammonitico rosso" type pelagic deposit of the Mediterranean 

region of the Tethys. A distal caudal vertebra having an unusually elongate and dorsally projected

neural spine reveals its strengthening role within a hypocercal tail fin that could have resulted in a

slight ventral displacement of the distal caudal vertebral column in this basal metriorhynchoid. 

The combination of retaining heavy dorsal and ventral armors and having a slight hypocercal tail 

is unique, further highlighting the mosaic manner of marine adaptations in Metriorhynchoidea.
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The Early Jurassic was a critical period in the initial development of marine adaptation in 

crocodylomorphs (Wilberg, 2015). Whereas the small-bodied, cursorial protosuchians existed on 

land (Colbert and Mook, 1951) and the nearshore to fluvial environments were inhabited by 

semi-aquatic goniopholidids (Tykoski et al., 2002), the first thalattosuchians appeared with the 

basal-most forms already showing a high number of anatomical traits suitable for a 

predominantly marine lifestyle (Young et al., 2010, Wilberg, 2015, Bronzati et al., 2015). 

Thalattosuchians are composed of two major groups, the teleosauroids and metriorhynchoids 

(Buffetaut, 1980; Young and Andrade, 2009; Young et al., 2010). Although teleosauroids were not

as well-adapted to marine habitats as metriorhynchoids, their reduction in limb size and 

osteoderms (Buffetaut, 1980, 1982a; Young et al., 2016) coupled with a gracile and streamlined 

body, that had a relatively rigid skeleton capable of sub-undulatory swimming (Massare, 1988, 

Hua and Buffetaut, 1997), clearly shows that they were efficient swimmers. Metriorhynchoids, 

and especially metriorhynchids, on the other hand, became even more adapted to a marine 

lifestyle, evolving paddle-like limbs, hypocercal tail fin, enlarged preorbital salt glands, and 

osteoporotic-like bone tissues (Fraas, 1902, Andrews, 1913, Hua and Buffrénil, 1996, Young et 

al., 2010, Wilberg, 2015).

In the summer of 1996, a partial skeleton of a thalattosuchian crocodyliform from the 

Lower Jurassic Kisgerecse Marl Formation of northwestern Hungary was discovered (Kordos, 

1998; Ősi et al. 2010). We present a detailed osteological work and a series of extensive 

phylogenetic analyses of this fossil and assign it to a new genus and species. Besides expanding 

Early Jurassic thalattosuchian diversity, the new specimen is of great interest since, unlike most 

contemporaneous estuarine, lagoonal or coastal thalattosuchians it comes from an "ammonitico 

rosso" type pelagic deposit. 

This new taxon shows striking morphological similarities with the genus Pelagosaurus. 

However, the differences are enough to establish a new taxon, Magyarosuchus fitosi gen. et sp. 
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nov., based on autapomorphies and a unique combination of characters. Our three phylogenetic 

analyses support Magyarosuchus fitosi being the sister taxon to Pelagosaurus. However, the 

characters uniting these two taxa are unknown in other basal metriorhynchoids, and we cannot 

discount the possibility that they have a wider distribution, although they are absent in 

teleosauroids and metriorhynchids. The presence of Magyarosuchus fitosi in the Mediterranean 

Lower Jurassic increases the known range of morphological variation for basal metriorhynchoids.

Not only is it the largest known non-metriorhynchid metriorhynchoid, but it has evidence of a 

slight ventral displacement of the distal caudal vertebral column. The combination of retaining 

dorsal and ventral osteoderms and having a slight hypocercal tail is unique, and further highlights

the mosaic manner of marine adaptations in Metriorhynchoidea.

Insoiouoional abbreviaoions—BRLSI M, Moore Collection of the, Bath Royal Literary 

and Scientific Institute, Bath, UK; GPIT, Paläontologische Sammlung der Eberhard Karls 

Universität Tübingen, Tübingen, Germany; MTM, Hungarian Natural History Museum, 

Budapest, Hungary; NHMUK PV, vertebrate palaeontology collection of the Natural History 

Museum, London, UK (OR, old register; R, reptiles); SMNS, Staatliches Museum für 

Naturkunde, Stuttgart, Baden-Württemberg, Germany; UH, Urweltmuseum Hauff 

Holzmaden.

GEOLOGICAL SETTING AND PALEOENVIRONMENT

Specimen was collected in one of the northwestern quarries of the Nagy-Pisznice Hill, close to 

Békás-Canyon (GPS coordinates: 47°42'09.4"N, 18°29'40.0"E), eastern Gerecse Mountains, 

northwestern Hungary (Fig. 1).

 The remains of this large-bodied crocodyliform came from a fossiliferous limestone with a well-

constrained stratigraphy (Galácz et al., 2010). These beds also yielded diagnostic ammonites, 

including Grammoceras thouarsense (d’Orbigny, 1844) which is an index fossil of the Upper 
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Toarcian (Lower Jurassic) Grammoceras thouarsense ammonite Zone. In lithostratigraphic terms,

the bed yielding the vertebrate remains (Bed 13) corresponds to the uppermost section of the 

Kisgerecse Marl Formation (Fig. 2), a red, nodular clayey limestone widely distributed in the 

Gerecse Mountains (Császár et al., 1998). The overlaying beds belong to the Tölgyhát Limestone 

Formation, representing the uppermost Toarcian and the Aalenian-Bajocian in the Eastern 

Gerecse (Cresta and Galácz, 1990). The Kisgerecse Marl and the Tölgyhát Limestone Formations

are members of the Jurassic calcareous sequence that is interrupted only by a few meters of 

siliceous radiolarite in the Middle Jurassic (Fodor and Főzy, 2013a; Fig. 2). The locality is in the 

eastern part of the Gerecse Mountains, which was a deeper, basinal area east to the Jurassic – 

Early Creataceous submarine high (the ‛Gorba High’) in the western part of the mountains (see 

Vörös and Galácz, 1998).

The Jurassic of the Gerecse Mountains belongs to the Transdanubian Range of the Alpaca 

unit within the Alp-Carpathian framework (Fodor and Főzy, 2013b). The whole Jurassic sequence

of the Gerecse is built up by pelagic carbonates which form a succession of reduced thickness 

and incomplete stratigraphic representation. This means that some stratigraphic units of subzonal 

or zonal rank may be missing in sections and these hiati are indicated by so-called hard grounds, 

suggesting interruptions in sedimentation. All these phenomena are characteristic in these 

carbonate sequences of the Meditarranean region of the Mesozoic Tethys, where the dominant 

rocks are the so-called rosso ammonitico limestones and marls. These sequences are interpreted 

as deposited in the pelagic realm, on deeply submerged continental slope, far away from 

continental land masses, thus free of clastic material influx (see Bernoulli and Jenkyns, 2009). 

Pelagic envionment with a comparatively deep-water depth is indicated also by the faunal 

composition of the ammonitico rosso type rocks: elements of benthic invertebrates are 

represented in insignificant amount (sporadic bivalves and brachiopods), and the single frequent 

group is of the nectonic cephalopods. The cephalopods, dominated by ammonoids, appear in 
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associations where the major groups are the phylloceratids and lytoceratids. These ammonite 

faunal compositions clearly indicate open marine environments with oceanic water depths with at

least a few hundred meters (Westermann, 1990; Lukeneder, 2015).

MATERIAL, PRESERVATION AND METHODS 

Maoerial. The vertebrate material consists of a partial skeleton of a large-sized thalattosuchian 

crocodyliform including both cranial and postcranial remains. All the specimens are housed in the

Vertebrate Collection of the Department of Paleontology and Geology of the Hungarian Natural 

History Museum (MTM). Unfortunately, detailed information on the circumstances of the 

fieldwork is not available. A very rough sketch of the specimen has been drawn during the work, 

but is not applicable for taking precise measurements.

Preservaoion. Since many Early Jurassic thalattosuchians (such as those of Steneosaurus 

bollensis and Pelagosaurus typus; e.g. Westphal, 1962) are known from flattened specimens 

preserved in laminated limestone, the three-dimensional preservation makes the new specimen 

particularly important. Furthermore, in many cases the finest details of skeletal anatomy, such as 

the shallow crest-like edges of the attachment surface of the cartilage on the epiphyses have been 

also preserved by the hard limestone matrix. On the other hand, due to the very slow 

sedimentation rate of these highly condensed Lower Jurassic rocks (Bernoulli and Jenkyns, 

2009), some of the bone surfaces were partially dissolved, as seen for example, on the femoral 

mid-shafts. Dissolution of fossils from these strata, however, is not rare: ammonite shells are 

frequently found to have a complete lower side and a partially or completely dissolved upper 

side.  

Meohods. Specimens have been prepared both mechanically and chemically. Vibro-tool has been 

used for clearing the bones from the larger pieces of matrix. In some cases, chemical preparation 

using acetic acid was applied for a better cleaning of the bone surfaces. 
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The electronic version of this article in Portable Document Format (PDF) will represent a 

published work according to the International Commission on Zoological Nomenclature (ICZN), 

and hence the new names contained in the electronic version are effectively published under that 

Code from the electronic edition alone. This published work and the nomenclatural acts it 

contains have been registered in ZooBank, the online registration system for the ICZN. The 

ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed

through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The 

LSID for this publication is: [urn:lsid:zoobank.org:pub:3623D096-C737-4B69-A491-

ABC0F50FF4D4]. The online version of this work is archived and available from the following 

digital repositories: PeerJ, PubMed Central and CLOCKSS.

SYSTEMATIC PALEONTOLOGY

CROCODYLOMORPHA Hay, 1930 (sensu Nesbitt, 2011)

THALATTOSUCHIA Fraas, 1901 (sensu Young and Andrade, 2009)

METRIORHYNCHOIDEA Fitzinger, 1843 (sensu Young and Andrade, 2009)

MAGYAROSUCHUS gen. nov.

urn:lsid:zoobank.org:act: [XXXXXX]

Type species—Magyarosuchus fitosi gen. et sp. nov. (type by monotypy).

Eoymology—‘Hungarian crocodile’. Magyaro referring to the Hungarian people, and suchus is 

the Latinized form of the Greek soukhos (σο χος), meaning crocodile.ῦ

Diagnosis—Same as the only known species (monotypic genus).
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MAGYAROSUCHUS FITOSI, gen. et sp. nov.

urn:lsid:zoobank.org:act: [XXXXXX]

Holooype—middle third of left dentary (V.97.2A), posterior third of left dentary (V.97.2B), 

mandible fragment (V.97.2C), angular-surangular fragment (V.97.40); 21 teeth (V.97.1., V.97.4., 

V.97.53., V.97.5., V.97.24., V.97.37., V.97.29., V.97.55., V.97.56.); three dorsal vertebrae 

(V.97.26., V.97.30.); two sacral vertebrae (V.97.30.); two proximal caudal vertebrae (V.97.29., 

V.97.30.); six mid-caudal vertebrae (V.97.27. V.97.28.); twelve distal caudal vertebrae (V.97.19., 

V.97.21., V.97.22., V.97.27., V.97.31.); twenty-eight dorsal rib fragments (V.97.16., V.97.14., 

V.97.46., V.97.15., V.97.8., V.97.17., V.97.47., V.97.67., V.97.51., V.97.52., V.97.54., V.97.64., 

V.97.68, V.97.48., V.97.38); sacral ribs (V.97.37., V.97.27.); coracoideum (V.97.7.); radius 

(V.97.42.); right ilium (V.97.44.); left ilium (V.97.34.); left ischium (V.97.36.); left pubis 

(V.97.49.); right pubis (V.97.35.); left femur (V.97.13.), right femur (V.97.33.); right tibia 

(V.97.9.); left tibia (V.97.69.); fibulae? (V.97.41., V.97.43.); four metapodial elements (V.97.10., 

V.97.11., V.97.38., V.97.45.); phalanges (V.97.61.); other limb bones (V.97.15.); four dorsal 

osteoderms (V.97.59., V.97.60); twelve ventral osteoderms (V.97.18., V.97.38, V.97.65.); twenty-

seven fragmentary osteoderms (V.97.4., V.97.53., V.97.24., V.97.60., V.97.56.); other fragmentary

elements: V.97.49., V.97.50., V.97.58., V.97.60.). Note that in some cases, the same catalogue 

number belongs to different bones or teeth because blocks of rock contain more than one element

and these blocks have been assigned to catalogue numbers. Measurements of the bones are listed 

in Table 1.

Eoymology—‘Fitos’s Hungarian crocodile’. The name refers to Attila Fitos, discoverer of the 

specimen for thanking his donation of the fossil to science.
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Type localioy— one of the northwestern quarries of the Nagy-Pisznice Hill, close to Békás-

canyon (GPS coordinates: 47°42'09.4"N, 18°29'40.0"E), eastern Gerecse Mountains, 

northwestern Hungary.

Type horizon—Bed 13, Kisgerecse Marl Formation, Transdanubian Central Range. 

Grammoceras striatulum ammonite Subzone, Grammoceras thouarsense ammonite Zone, upper 

Toarcian, Lower Jurassic (Galácz et al., 2010).

Diagnosis—Metriorhynchoid thalattosuchian with the following unique combination of 

characters [proposed autapomorphic characters are indicated by an asterisk (*)]: large body size 

(estimated body length: in the range of 4.67–4.83 m); tooth crown carinae development variable, 

being well-developed apically, beginning to develop mid-crown and absent in the basal region; 

enamel ornamentation is composed of ridges that differ in arrangement on the labial and lingual 

surfaces, being more widely spaced on the labial surface than the lingual surface, with the lingual

surface having tightly packed apicobasal ridges basally which apically become shorter and 

discontinuous, and the apical lingual ridges on the mesial and distal margins bend towards the 

carinae (but do not contact them)*; abrupt change in centrum shape of the distal caudal vertebrae,

with strong mediolateral compression (i.e. distal vertebrae are clearly heteromorphic); dorsal 

osteoderms have irregularly shaped pits (including circular, ellipsoid, bean-shaped, triangular and

quadrangular shapes), with an extreme variation in size (from small to very large), with elongate 

pits present on the ventrolateral surface running from the keel to the lateral margin*; dorsal 

osteoderms have an anterolateral process that is ‘indistinct, no longer being distinctly ‘peg-like’, 

as their lateral margin is contiguous with that of the osteoderm ventrolateral surface*.

Characteristics shared with Pelagosaurus. Magyarosuchus fitosi shares the following two 

synapomorphies with Pelagosaurus: (1) the surangulodentary and angulodentary grooves are 

parallel and positioned close to one another ventral to the dentary rami tooth row; and (2) the 

presence of a distinct anterior acetabular flange on the ilium, created by the anterior acetabular 
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margin projecting anteriorly such that it is anterior to the iliac anterior margin. However, these 

two characters are currently unknown in all other basal metriorhynchoids and their distribution is 

therefore unknown. However, they are absent in teleosauroids and metriorhynchids (e.g. Fraas, 

1902; Andrews, 1913; Johnson et al., 2017).

Metriorhynchoid characteristics shared. Magyarosuchus fitosi has the following two 

metriorhynchoid synapomorphies: (1) a coracoid with both the proximal and distal ends convex, 

and (2) the femur posteromedial tuber is present and the largest of the proximal tubera.

DESCRIPTION AND COMPARISONS

Cranial elemenos

Mandible. Three fragments (MTM V.97.2.) of the left mandible are preserved. Based on the 

mandibular proportions of Pelagosaurus typus (BRLSI M1413, Pierce and Benton, 2006) the first

fragment (MTM V.97.2.A, Fig. 3A-B) most probably represents the middle third of the dentulous 

part of the dentary. There is no indication of any post-dentary bones preserved on this element. It 

has a dorsoventrally high profile. The ventral side is eroded and the medial side is covered with 

hard matrix, thus it is not clear whether this part formed already the symphyseal region. Laterally,

it possesses two anteroposteriorly extending grooves parallel with each other, a feature that is 

also present in Pe. typus (BRLSI M1413, MTM M 62 2516). On the dorsal or laterodorsal side of

the bone, six large (diameter: 10 mm) alveoli can be observed. They have an oblique, 

anterolabial-posterolingual orientation suggesting that the teeth oriented anterolabially or slightly 

dorsolabially instead of pointing simply dorsally. Interalveolar septa are anteroposteriorly thick 

(ca. 7-10 mm) reflecting widely spaced teeth in this part of the tooth row. Some pits as part of the

lateral ornamentation can be observed, but it is not clear how developed this ornamentation was 

on the lateral side since this surface has been slightly dissolved due to diagenetic processes.
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The second fragment (MTM V.97.2.B, Fig. 3C-E) is the posterodorsal segment of the left 

dentary. Although there is no direct connection preserved with the dentary fragment described 

above, this second piece is apparently the posterior continuation of that element. Anterodorsally, 

it bears the last three alveoli which show a similar orientation and widely spaced configuration as

those seen on the first fragment. Posterior to the last alveolus, the dentary becomes slightly 

elevated to form the shallow lateral side of the coronoid process. Medially, the anterodorsal part 

of the deeply concave mandibular adductor fossa can be observed. The ventral side of the 

specimen is missing (Fig. 3E). The lateral surface is generally smooth, but on the ventral part 

some pits as part of the sculpture are present. In Pe. typus (BRLSI M1413) this part of the 

mandible was formed by the surangular and the dentary (Pierce and Benton, 2006, MTM M 62 

2516, pers. obs. ). However, in Magyarosuchus fitosi the dentary-surangular suture cannot be 

detected. On the dorsal side, posterior to the last alveolus a shelf is present that has a slightly 

elevating medial side.

The third block (MTM V.97.40., Fig. 3F-I) preserved from the left mandible represents the

dorsal and ventral margins of the mandibular fenestra. The dorsal part is the middle portion of the

surangular and the posterior process of the dentary and the ventral piece is the middle portion of 

the angular. On the dorsal piece, the dentary-surangular suture is observable. The lateral surface 

of the bones is smooth being completely avoid of the pitted ornamentation. Medially, they are 

concave forming the dorsal, lateral and ventral margins of the mandibular adductor fossa. 

Ventrally, the angular is widened forming a massive ventral bar of the postdentary part of the 

mandible. On its posteroventral surface, some grooves can be observed which, according to 

Iordansky (1973) and Mueller-Töwe (2006), should have served as the insertion of Musculus 

pterygoideus posterior.

A fourth element (MTM V.97.2.C; Fig. 3J-L) is probably from the right post-dentary part 

of the mandible. It is too fragmentary to tell more details on it position.
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Teeoh. Twenty-one teeth or tooth fragments have been preserved associated with the skeleton. 

These have conical and generally massive crowns (Fig. 4) being much more robust than the teeth 

of Pelagosaurus. They have a circular or sub-circular cross-section and some teeth are quite 

elongated with a crown height/width ratio over three (Fig. 4A, B), whereas others are stockier 

with a ratio of two or less (Fig. 4C-F). In contrast to Pe. typus (MTM M 62 2516) but similar to 

Zoneait nargorum (Wilberg, 2015), all teeth bear mesial and distal unserrated carinae which 

disappear towards the base of the crown (Fig. 4E-I). Crown surface is ornamented by longitudinal

enamel wrinkles on all sides (Fig. 4H-I) that are more prominent than those in Steneosaurus 

bollensis (MTM M 69 242). Morphology of the posterior teeth are generally similar to those of 

Lemmysuchus obtusidens (Johnson et al., 2017), but they are devoid of any type of serration and 

enamel wrinkles apically are not anastomosing as in the latter taxon. Roots are preserved in most 

of the teeth and are two to three times longer than the crowns, and together with the crowns they 

are strongly curved lingually (Fig. 4C-F). Wear pattern due to tooth-tooth contact cannot be 

observed on the tooth crowns.

Poso-cranial axial skeleoon

The vertebral column is not complete, represented only by three dorsal, two sacral, and 20 caudal 

vertebrae. All the vertebrae are platy- or slightly amphycoelous, and are devoid of pneumatic 

foramina. Neural arches are fully fused to the centra in all elements. Cervical vertebrae seem to 

be not preserved in the material.

Dorsal veroebrae. The centrum of dorsal vertebrae (MTM V.97.26., MTM V.97.30) is higher 

than wide, moderately concave laterally and ventrally (Fig. 5A-C). Its ventral surface is devoid of

any grooves or crests. Anterior and posterior articulation surfaces are oval to slightly trapezoid in 

shape. Transverse processes emerge from the lateral side of the neural arch. The neural spine is 

rectangular in lateral view and its height is approximately three-fourth of that of the centrum. 
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Sacral veroebrae. Sacral vertebrae (MTM V.97.30.) are preserved in a complex with the last 

lumbar and the first caudal vertebrae (Fig. 5D-E). There are two true sacral vertebrae, as is the 

norm for thalattosuchians (e.g. Fraas, 1902; Andrews, 1913; Westphal, 1962), and in contrast to 

machimosaurin teleosauroids which have three due to the sacralisation of the first caudal vertebra

(Andrews, 1913; Hua, 1999; Young et al., 2014; Johnson et al., 2017). Since a thin layer of 

sediment can be observed between the vertebrae, they were supposedly not co-ossified. The two 

sacral vertebrae are quite similar to each other in having lateromedially wide and ventrally 

concave centra. Sacral ribs are not fused to the centra in contrast to the condition seen in 

Steneosaurus bollensis (MTM M 69 242). Their articulation surface on the centra are large, 

anteroposteriorly elongated, oval shaped surfaces among which those of the anterior sacral are in 

an anterior and those of the posterior are in a posterior position. Whereas the neural arches seem 

to be fused, the neural spines are separated, short processes.

Caudal veroebrae. The first caudal, being fused to the second sacral (MTM V.97.30., (Fig. 5D-

E), is longer than wide and as wide as high being ventrally very slightly concave, and the broken 

transverse processes are in an anterior position on the side of the centrum. The neural spine is 

shallow, having ca. half of the height of the centrum. The more posterior caudal vertebrae are 

more elongate and lateromedially slightly compressed with moderately concave lateral and 

ventral sides (Fig. 5F-G). Articular surfaces are oval in the mid-series caudal vertebrae, whereas 

they are rounded or slightly rectangular in the distal caudals. Transverse processes are positioned 

close to the centrum-neural arch fusion and posteriorly they become gradually shorter, laterally 

projecting processes. Similar to the 11th to the 22nd caudal vertebrae of Pelagosaurus typus 

(MTM M 62 2516), the neural spines of two of the preserved caudals of Magyarosuchus fitosi 

(MTM V.97.31) are divided into a smaller, triangular, dorsally or anterodorsally projecting 

process and a larger, posterodorsally oriented process (Fig. 5H-J).
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The distal-most preserved caudal (MTM V.97.19., Fig. 5K-P) is the posterior half or two-

third of the complete vertebra. Here, the neural spine is an anteroposteriorly wide, relatively 

massive, plate-like element. Its preserved part is as high as the centrum but is broken both 

anteriorly (Fig. 5N) and dorsally (Fig. 5O) indicating that it was originally much higher. In Pe. 

typus (MTM M 62 2516) and Steneosaurus bollensis (MTM M 69 242), the distal caudals have 

only a posterodorsally projecting, anteroposteriorly narrow spine that emerges only on the 

posterior half of the centrum. The posterior articular surface of the centrum is close to 

quadrangular in shape and slightly concave. 

Ribs. Numerous fragmentary ribs and rib fragments are preserved and they are generally similar 

to those of extant crocodylians. Two of them are interpreted as dorsal ribs in having an elongate, 

anteroposteriorly wide capitulum and a relatively short tuberculum. In cross-section they are 

close to oval shaped, but they bear a shallow crest on the posterior side of their proximal half that

disappears distally.

Three of the sacral ribs are preserved (Fig. 6C-F). All of them are short and massive with 

oval shaped (in MTM V.97.37. slightly rugose) articular surface. In anteroposterior view, they are

triangular in shape with a slightly lateroventrally bent distal end. MTM V. 97.37 is the largest, has

a convex crest-like dorsal margin and probably represents the first sacral rib. The third specimen 

(97.27) is strongly eroded but the vertebral articulation is partly preserved.

Appendicular skeleoon

Coracoid. From the pectoral girdle elements only the right coracoid (MTM V.97.7.) is preserved 

in two pieces (Fig. 6G-H). It has the same bow-tie morphology as that of Pelagosaurus typus 

(Pierce and Benton, 2006) and Steneosaurus bollensis (Westphal, 1962) with concave anterior 

and posterior margins and a convex ventral articulation surface. The medial surface is concave 

and partly resorbed due to diagenetic processes, whereas the lateral surface is smooth with a 
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marked, oval-shaped coracoid foramen piercing it. The glenoid is a slightly convex surface. The 

distal half is strongly flattened and divergent ending dorsally in a convex edge. 

Radius. From the forelimbs, only the proximal end of one radius (MTM V.97.42.) is preserved 

(Fig. 7A-B). The radius slightly widens towards the articular region and has a concave articular 

surface being similar to that of Steneosaurus bollensis (MTM M 69 242) and Platysuchus 

multiscrobiculatus (SMNS 9930, Westphal, 1962).

Ilium. Both ilia (MTM V.97.34., MTM V.97.44.) are preserved (Fig. 6I-M). The left one (MTM 

V.97.34) is more complete and only its medial side with the articulation of the sacral ribs is 

covered with sediment (Fig. 6I-L). In general, the ilium is very similar to that of Steneosaurus 

bollensis (MTM M 69 242) and Pelagosaurus typus (MTM M 62 2516) in having a rhomboidal 

form in lateral view with a large circular and deep acetabulum. Posteroventrally, its articulation 

surface for the ischium is not straight as in S. bollensis but slightly concave as that of Pe. typus. 

Dorsally, a massive and straight iliac crest is present with a pointed anterior process reaching the 

anterior, crested margin of the acetabulum. This process is relatively more developed than that of 

Lemmysuchus obtusidens (Johnson et al., 2017). Posteriorly, the iliac crest ends in a massive 

triangular boss with a slightly convex posteroventral edge as in Pe. typus. The pubic process of 

the ilium can be observed only from the medial side of the right ilium that is a ventrally projected

massive process, but the articulation surface is not preserved. 

Ischium. Only the distal half of the left ischium (MTM V.97.36) is preserved. It is a bard-shaped 

element with developed, radially oriented, elongate grooves and shallow crests on its lateral 

surface for muscle attachments (Fig. 6P). Whereas its ventral edge is slightly convex, the 

posterodorsal one is slightly concave. Its anterior process is broken. The posterior process is 

strongly pointed similar to that of Pelagosaurus typus (BSGP 1890 I 509/11, MTM M 62 2516) 

or Steneosaurus bollensis (UH 13, Mueller-Töwe, 2006).
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Pubis. Both pubes are preserved. From the right one (MTM V.97.49.) is only the distal half 

preserved, whereas the left one (MTM V.97.35.) is complete (Fig. 6N-O) but can only be studied 

in lateral view. It is an elongate, rod-like element with slightly widened proximal end having an 

oval shaped, articular surface. Whereas the posteroventral margin is almost straight, in contrast to

that of Platysuchus multiscrobiculatus (SMNS 9930, Westphal, 1962), the anterodorsal one is 

slightly concave resulting in a widened distal end. The lateral surface of the distal end is 

ornamented by radial grooves for muscle attachments. The pubis of Magyarosuchus fitosi differs 

from that of Pelagosaurus typus (MTM M 62 2516) in having a marked upward bending of the 

distal end and from that of Steneosaurus bollensis where it bends rather downward (Mueller-

Töwe, 2006). It also differs from the pubis of Pl. multiscrobiculatus in having a strongly convex 

distal margin.

Femur. Both femora (MTM V.97.13. left, MTM V.97.33. right) are complete but their shafts are 

broken and slightly dissolved due to diagenetic events (Fig. 7D-I). In general, the femur of 

Magyarosuchus fitosi shows the typical crocodylomorph conservative shape with the shaft 

bending anteriorly and the proximal third of the bone curving slightly medially. The proximal end

has a smooth, rounded articulation surface with dorsomedially oriented femoral head (Fig. 7H). 

The fourth trochanter cannot be observed. The distal end has well developed, rounded medial and

lateral condyles bordering a marked intercondylar groove. The femur of M. fitosi is very similar 

to that of Steneosaurus bollensis, Platysuchus multiscrobiculatus or Pelagosaurus typus, but Pl. 

multiscrobiculatus has proportionally slightly shorter femur (Westphal, 1962; Mueller-Töwe, 

2006).

Tibia. Both tibiae (MTM V.97.9., MTM V.97.69.) are preserved and complete with the left one 

(MTM V.97.9.) being intact (Fig. 7J-O). It is a straight, slightly anteriorly bowing element with 

moderately widened proximal and distal ends as seen in Pelagosaurus typus (MTM M 62 2516) 

and Steneosaurus bollensis (Westphal, 1962; Mueller-Töwe, 2006). It clearly differs from the 
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tibia of Lemymsuchus obtusidens in having a more gracile shaft (Johnson et al., 2017). Planes of 

proximal and distal ends have an angle of approximately 135° as typically seen in sauropsid 

tibiae. The proximal end shows two flat to very slightly concave platforms to accept the distal 

condyles of the femur. The cnemial crest is wide and massive projecting anteriorly. The distal end

is oval shaped and slightly rounded (Fig. 7O). The length of the tibia (210 mm) is 58% of the 

femur length (360 mm). This proportion is more similar to that of Steneosaurus bollensis (MTM 

M 69 242: 59%, MTM uncatalogued 1: 56%, MTM uncatalogued 2: 58%) and Platysuchus 

multiscrobiculatus (SMNS 9930: 60% Mueller-Töwe, 2006) than that of Pelagosaurus typus 

(MTM M 62 2516: 50%) or Lemmysuchus obtusidens (NHMUK PV R 3168: ~50%).

Fibula. The two proximal halves (MTM V.97.15., MTM V.97.41., Fig. 7P-R) and one of the 

distal parts (MTM V.97.43., Fig. 7S-T) of the fibulae are preserved. The proximal end is slightly 

divergent proximally and bowed in the anteroposterior plane. The proximal articular surface is 

oval shaped, and slightly convex. The distal end is straight and less divergent distally than the 

proximal end. The distal articular surface is convex and slightly obliquely oriented relative to the 

longitudinal axis of the bone. The preserved parts of the fibulae of Magyarosuchus fitosi are 

similar to those of Steneosaurus bollensis and Pelagosaurus typus (Mueller-Töwe, 2006).

Asoragalus. The left astragalus (MTM V.97.12.) is one of the best preserved elements of the 

skeleton showing all articulation surfaces (Fig. 8A-F). It is a cubic element as typically seen in 

archosauromorphs (Schaeffer, 1941; Parrish, 1987; Sereno and Arcucci, 1990). The 

dorsomedially positioned tibial articular surface is anteroposteriorly as long as mediolaterally and

has a concave surface. The fibular articulation is a short block, being not as elongated as that of 

Simosuchus clarki (Sertich and Groenke, 2010), and the articulation surface is a well developed, 

tetragonal and concave surface as seen in e.g. Proterosuchus species or in extant crocodylians 

(Cruickshank, 1979; Parrish, 1987; Sereno and Arcucci, 1990). Dorsally the tibial and fibular 

articulation surfaces are separated by an anteroposteriorly short but well developed crest. 
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Anteroventrally, the slightly convex surface is present for the metatarsal I. In posterior view, 

ventral to the fibular articulation, a deep groove extends lateromedially separating the dorsal part 

from the ventral, astragalar trochlea. This groove continues medioventrally and contains two 

small nutritive foramina. The astragalar trochlea ends laterally in the calcaneal peg that fitted in 

the socket-like articular surface of the calcaneum. This morphology indicates a ‛crocodile-

normal’ (‛CN’ of Chatterjee, 1978) crurotarsal ankle type in M. fitosi, similar to that of 

Steneosaurus bollensis, Pelagosaurus typus and Platysuchus multiscrobiculatus (Westphal, 1962;

Mueller-Töwe, 2006). Articulation surfaces and tendon attachment areas appear to be more 

complex in M. fitosi than in Lemmysuchus obtusidens (Johnson et al., 2017). The astragali of 

metriorhynchids are even less complex, being mediolaterally compressed and rounded (Fraas, 

1902; Andrews, 1913). The astragalus of M. fitosi was obviously freely movable relative to the 

tibia in contrast to that of Orthosuchus species (Nash, 1968).

Meoapodium. Three of the metatarsals (MTM V.97.10., MTM V.97.11., MTM V.97.45.) are 

preserved. Based on the length/width proportions compared to Steneosaurus bollensis (MTM M 

69 242) and Pelagosaurus typus (MTM M 62 2516), one of them (MTM V.97.10) represents one 

of the third metatarsals (Fig. 8G-J). The second one (MTM V.97.11.) is the two-third of the 

second or third metatarsals. They show the same morphology as the second and third metatarsals 

of basal thalattosuchians (Delfino and Dal Sasso, 2006; Mueller-Töwe, 2006), in having a long, 

straight shaft, oval to slightly rectangular cross-section, and a slightly widened distal articular 

end. Distal condyles are moderately developed and separated by a shallow intercondylar groove. 

The third specimen (MTM 97.45.) is too fragmentary to determine its more precize position.

Phalanges. A single phalanx (MTM V.97.61.) is preserved (Fig. 8K-L). It is two times longer 

than wide and has an hour-glass shape. Articular surfaces are poorly preserved. Compared to the 

phalanges of Steneosaurus bollensis or Platysuchus multiscrobiculatus (Westphal, 1962; Mueller-

Töwe, 2006), it is most similar to the first phalanx of the first manual digit of these taxa.
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Unidenoified limb bones. The material consists of two fragmentary limb bones. One element 

might represent one of the metacarpals or the ulnare (MTM V.97.38, Fig. 6C) in having a robust 

shaft and massive articulations proximally and distally. The other element is perhaps the distal 

end of the other fibula (Fig. 8S-T).

Dermal ossificaoions

Forty-three dorsal and ventral osteoderms are preserved. Many of these (MTM V.97.4., MTM 

V.97.24., MTM V.97.53., MTM V.97.56.) are still in matrix and only a small piece or the cross-

section of them can be observed thus their position is unknown. Nevertheless, osteoderm 

morphology differs from those of other thalattosuchians and diagnoses Magyarosuchus fitosi.

Dorsal armor. Four osteoderms (MTM V.97.59., MTM V.97.60.) can be certainly referred to the 

dorsal armor. They are large rectangular to slightly rounded elements with an anteroposteriorly 

extending dorsal keel dividing the osteoderm into a greater medial and a smaller lateral part (Fig. 

9A-F). The anterior margin of the osteoderms is  smooth and oblique  to overlap the posterior 

surface of the anteriorly following osteoderm. Whereas two dorsal osteoderms are flat or very 

slightly concave ventrally (Fig. 9A-D), the two others are strongly bent dorsally (Fig. 9E-F). 

More prominent in these strongly bent osteoderms, but also present in the case of the two other 

dorsal osteoderms, is the anteroposterior keel that extends into a well-developed triangular 

anterolateral process (Fig. 9A, D, E). This anterolateral process is present in all basal 

thalattosuchians, including Pelagosaurus typus (as the mid-posterior dorsal osteoderms, which 

are typically in articulation, bear this process; MNHN.F RJN 463), but in these taxa it is more 

pronounced having a quite angular medial margin (Westphal, 1962) in contrast to that of 

Magyarosuchus fitosi. The shape of this process in M. fitosi is more reminiscent of the mid-

posterior dorsal osteoderms of the Middle Jurassic teleosauroids Lemmysuchus obtusidens and 

Steneosaurus edwardsi (Andrews, 1913; Adams-Tresman, 1987; Johnson et al., 2017). 
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Ornamentation is also unique in M. fitosi. Dorsal surface is ornamented by the proportionally 

largest pits among thalattosuchians, thus the margin between the pits is frequently very thin. Pits 

are usually not circular but oval, triangular or rhomboidal in shape.  

Venoral armor. Twelve elements (MTM V.97.38.) can be referred to the ventral armor. Some of 

them form complex, fused blocks (Fig. 9G-I). The largest among these contains six fragmentary 

osteoderms (Fig. 9G). Ventral osteoderms are lateromedially wider than their anteroposterior 

length. Anteriorly they bear a smooth, oblique surface for the articulation of the overlapping 

anterior element, as seen on the dorsal osteoderms. They are avoid of any processes on their 

margins and dorsally they do not bear crests. Their ventral surface is ornamented by large pits 

morphologically similar to those of the dorsal osteoderms.

PHYLOGENETIC ANALYSIS

Meohods

Three phylogenetic analyses were conducted to assess the evolutionary relationships of 

Magyarosuchus fitosi gen. et sp. nov. within Thalattosuchia. The character scoring for M. fitosi 

was based on first-hand examination of the holotype by MTY, MR and AŐ. Three datasets were 

employed to conduct these analyses, two of which were first presented in Ristevski et al. (2018) 

and are also in an ‘in review’ manuscript.  However, both of these datasets have been extensively 

updated herein as they form the basis of the ongoing Crocodylomorph SuperMatrix Project. The 

first dataset is a merged matrix combining the two datasets originally published by Young et al. 

(2016), which was then subsequently revised and expanded, hereafter we refer to it as the 

Hastings + Young matrix (or H+Y matrix); whilst the second is an updated and expanded version 

of the dataset originally by Andrade et al. (2011), hereafter referred to as the modified Andrade 

matrix (or mA matrix). The third and final dataset used herein is that of Wilberg (2017). All data 

are summarized in Supplementary data files DataS1-S6.
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The first parsimony analysis presented here employs the H+Y matrix. The two parent 

matrices for the H+Y matrix were presented in Young et al. (2016): dataset 1 (the Hastings 

matrix), contained 37 operational taxonomic units (OTUs) scored for 120 morphological 

characters; whilst dataset 2 (the Young matrix), contained 103 OTUs scored for 298 characters. 

Mark Young, Alexander Hastings and Thomas Smith merged the matrices in 2016-2017. This 

resulted in extensive re-examination of all characters, re-scoring of characters to ensure a 

common and agreed philosophical approach to character construction, ensuring the OTUs from 

both datasets were scored for all characters, and the addition of characters from Andrade et al. 

(2011) and Nesbitt (2011). Some OTUs were revised and new ones added (see Ristevski et al., 

2018 and Smith et al. in review for full details). This resulted in the current iteration of the H+Y 

matrix containing a total of 140 OTUs scored for 454 characters. Excluding M. fitosi, seven of the

140 OTUs are basal metriorhynchoids, forty-two are metriorhynchids, and eighteen are 

teleosauroids. 25 characters representing morphoclines were treated as ordered (7, 28, 36, 49, 57, 

98, 164, 166, 174, 205, 225, 228, 234, 264, 274, 330, 357, 362, 372, 407, 410, 420, 421, 423, 

435). For the H+Y matrix, Postosuchus kirkpatricki Chatterjee, 1985 was used as the outgroup 

taxon.

The second parsimony analysis presented here employs the mA matrix: a modified 

version of the character and taxon list first published by Andrade et al. (2011), which originally 

included 104 OTUs scored for 486 characters. As per the recommendations of Andrade et al. 

(2011), Halliday et al. (2013), and Puértolas-Pascual et al. (2015), the putative goniopholidid 

Denazinosuchus kirtlandicus (Lucas and Sulivan, 2003), and the Asian taxon “Goniopholis” 

phuwiangensis Buffetaut and Ingavat, 1983 OTUs, along with the composite “G.” phuwiangensis

+ Siamosuchus terminal (ALTSiamosuchus), were excluded due to their instability and, in the 

case of the latter, inapplicability. Following Halliday et al. (2013) and Ristevski et al. (2018) the 

putative goniopholidids Kansajasuchus extensus Efimov, 1975, Sunosuchus shartegensis Efimov,
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1988 and Turanosuchus aralensis Efimov, 1988 were excluded due to their instability. In total, 

the analysis of the mA matrix presented here included 110 OTUs scored for 570 characters. 

Excluding M. fitosi, one of the 110 OTUs are basal metriorhynchoids, ten are metriorhynchids, 

and three are teleosauroids. 31 characters representing morphoclines were treated as ordered (6, 

9, 32, 71, 72, 125, 146, 153, 158, 216, 218, 222, 245, 271, 297, 302, 303, 326, 355, 378, 379, 

446, 467, 471, 481, 523, 526, 536, 537, 539, 551). For the mA matrix, Gracilisuchus 

stipanicicorum Romer, 1972 was the outgroup taxon. 

For both the H+Y and mA datasets the primary differences between our analyses and 

those presented by Ristevski et al. (2018) are: (1) the continued merging of the two datasets as 

part of the Crocodylomorph SuperMatrix Project, which has been the primary cause of the 

general increase in character number of both datasets; (2) the addition of M. fitosi into both 

datasets; (3) revision of current characters based on those from Nesbitt (2011), Narváez et al. 

(2015), Buscalioni (2017), Leardi et al. (2017) and Nesbitt and Desojo (2017), and the addition of

new ones from those papers; and (4) the creation of new characters to help explore some 

morphofunctional complexes (such as the hypocercal tail in metriorhynchoids).

The Wilberg dataset (hereafter W matrix), is largely the same as that presented in Wilberg 

(2017). The only differences are: (1) the addition of M. fitosi; (2) the addition of two characters 

from the two merged datasets (the mandibular parallel grooves character and the flange-like ilium

anterior margin character); and (3) some minor rescoring of teleosauroids based on personal 

observations by MTY (see Online Supplementary). This resulted in the current iteration of the W 

matrix containing a total of 98 OTUs scored for 408 characters. Excluding M. fitosi, five of the 

98 OTUs are basal metriorhynchoids, twelve are metriorhynchids, and ten are teleosauroids. 40 

characters representing morphoclines were treated as ordered (26, 51, 58, 59, 61, 64, 83, 128, 

148, 151, 163, 202, 203, 208, 210, 220, 224, 240, 255, 261, 263, 265, 270, 296, 304, 311, 316, 
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342, 344, 345, 346, 362, 366, 373, 375, 384, 386, 393, 394, 399). For the W matrix, 

Gracilisuchus stipanicicorum was used as the outgroup taxon.

The cladistic analyses were conducted following the methodology implemented by Young

et al. (2016), using TNT v1.5, Willi Hennig Society Edition (Goloboff and Catalano, 2016). 

Memory settings were increased with General RAM set to 900 Mb and the maximum number of 

trees to be held set to 99,999. In the analysis of each matrix, cladogram space was searched using 

the advanced search methods in TNT (sectorial search, ratchet, drift and tree fusion) for 1000 

random addition replicates. The default settings of the advanced search methods were modified to

increase the number of iterations of each method per analysis replicate (except for tree fusion, 

which was kept at 3 rounds). For the sectorial search, 1000 drifting cycles were applied for 

selections of above 75 with 1000 starts, and trees were fused 1000 times for those below 75. TNT

also conducted 1000 rounds of consensus sectorial searches (CSS) and 1000 rounds of exclusive 

sectorial searches (XSS). The analysis included 1000 ratchet iterations with the cease 

perturbation phase reached when 1000 substitutions were made or 99% of swapping was 

completed. The program incorporated 1000 drift cycles within the analysis, which also reached 

the cease perturbation phase at 1000 substitutions made or 99% of swapping completed.

Resulos

The first phylogenetic analysis that utilised the H+Y matrix recovered 84 most-parsimonious 

cladograms (MPCs) with 1477 steps (ensemble consistency index, CI = 0.417; ensemble 

retention index RI = 0.842; rescaled consistency index RC = 0.351; ensemble homoplasy index 

HI = 0.583). Overall, the strict consensus topology recovered from this analysis (Fig. 10A) is 

very similar to the ones presented in Ristevski et al. (2018) and Smith et al. (in review). The only 

difference within Thalattosuchia is the addition of Magyarosuchus fitosi, which is found to be the
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sister taxon of Pelagosaurus typus (Fig. 10A). The overall picture of crocodylomorph 

interrelationships found herein are the same as those found in previous iterations of this merged 

dataset (Ristevski et al., 2018; Smith et al. in review): the rauisuchian Postosuchus kirkpatricki 

lies outside the clade that unites all other taxa (i.e. Crocodylomorpha), with ‘sphenosuchians’ 

forming a grade of more derived taxa. Protosuchidae and the shartegosuchid Fruitachampsa 

callisoni Clark, 2011 are recovered as basal crocodyliforms. The remaining taxa comprise 

Mesoeucrocodylia, which includes a clade formed by Eopneumatosuchus colberti Crompton and 

Smith, 1980 + Thalattosuchia, and the other clade being Metasuchia. Metasuchia contains two 

sub-clades, Notosuchia and Neosuchia. Within Thalattosuchia, both Teleosauroidea and 

Metriorhynchoidea are recovered as monophyletic. Pelagosaurus typus is found to be a basal 

metriorhynchoid, and Metriorhynchidae, Metriorhynchinae, Rhacheosaurini, Geosaurinae and 

Geosaurini are all found to be monophyletic (Fig. 10A).

The second phylogenetic analysis that utilised the mA matrix yielded 16 MPCs with 2472 

steps (CI = 0.305; RI = 0.764; RC = 0.233; HI = 0.695). Overall, the strict consensus topology 

recovered from this analysis is very similar to the ones presented in Ristevski et al. (2018) and 

Smith et al. (in review). The only differences within Thalattosuchia are: (1) the addition of M. 

fitosi, which is found to be the sister taxon of Pe. typus; (2) teleosauroids are no longer in a 

polytomy, but now Steneosaurus bollensis is the sister taxon to a clade S. heberti + Platysuchus 

multiscrobiculatus; and (3) Metriorhynchus superciliosus is no longer the sister taxon to 

Geosaurini (but in a trichotomy with Geosaurini and Rhacheosaurini) (Fig. 10B). The overall 

picture of crocodylomorph interrelationships found herein are the same as those found in 

previous iterations of this dataset: gracilisuchid Gracilisuchus stipanicicorum lies outside the 

clade that unites all other taxa (i.e. Crocodylomorpha), with ‘sphenosuchians’ forming a grade of 

more derived taxa. Protosuchidae, Gobiosuchus and Hsisosuchus are recovered as successively 

more derived basal crocodyliforms. The remaining taxa comprise Mesoeucrocodylia, which 
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contains two sub-clades, Notosuchia and Neosuchia. Thalattosuchia is recovered within 

Neosuchia, as the sister taxon to Tethysuchia. Within Thalattosuchia, both Teleosauroidea and 

Metriorhynchoidea are recovered as monophyletic. Pelagosaurus typus is found to be a basal 

metriorhynchoid, and Metriorhynchidae, Rhacheosaurini and Geosaurini are all found to be 

monophyletic (Fig. 10B).

The final phylogenetic analysis, utilising the W matrix, recovered six MPCs with 1777 

steps (CI = 0.306; RI = 0.733; RC = 0.224; HI = 0.694). The strict consensus topology recovered 

from this analysis is almost identical to the analysis by Wilberg (2017), the only difference is the 

addition of M. fitosi (which is found to be the sister taxon of Pe. typus). The overall picture of 

crocodylomorph interrelationships found herein are the same as that found in Wilberg (2017): the

gracilisuchid Gracilisuchus stipanicicorum and rauisuchian Postosuchus kirkpatricki lies outside 

the clade that unites all other taxa (i.e. Crocodylomorpha), with ‘sphenosuchians’ forming a grade

of more derived taxa. Thalattosuchians are found to be the sister taxon to Crocodyliformes (Fig. 

11). Within Crocodyliformes there are two sub-clades: Mesoeucrocodylia, and one formed by 

Protosuchidae, Shartegosuchidae, Gobiosuchidae and Hsiosuchus, The remaining taxa comprise 

Mesoeucrocodylia, which contains two sub-clades, Notosuchia and Neosuchia. Within 

Thalattosuchia, both Teleosauroidea and Metriorhynchoidea are recovered as monophyletic. 

Pelagosaurus typus is found to be a basal metriorhynchoid, and Metriorhynchidae, Geosaurinae 

and Geosaurini are all found to be monophyletic (Fig. 11).

Although the three phylogenetic analyses do not recover Thalattosuchia in the same 

region of the crocodylomorph tree, there are many aspects they do agree upon:

1. The monophyly of Thalattosuchia
2. The separation of Thalattosuchia into two clades: Teleosauroidea and Metriorhynchoidea
3. That Pelagosaurus typus is a basal metriorhynchoid
4. The sister group relationship between P. typus and Magyarosuchus fitosi, which forms the 

basal-most sub-clade of Metriorhynchoidea
5. The monophyly of Metriorhynchidae
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6. The monophyly of Geosaurini

This suggests that the newer, larger, phylogenetic datasets being compiled on thalattosuchian 

internal relationships are becoming less sensitive to where in Crocodylomorpha Thalattosuchia is 

recovered. Although all three datasets do have interesting internal differences in the arrangement 

of Teleosauroidea and the monophyly or not of Metriorhynchinae, there is a growing consensus 

between them. The recovery of Steneosaurus gracilirostris as the basal-most teleosauroid in the 

H+Y and W matrices (Fig. 10A, 11) is especially interesting, as it polarises laterally oriented 

orbits as being symplesiomorphic for Thalattosuchia (with the dorsal orientation being a 

convergence between derived teleosauroids and neosuchians).

Given that, except for Pelagosaurus tpyus, the postcranial anatomy of basal metriorhynchoids is 

poorly known, we tested whether this species is the sole responsible taxon for pulling the mostly 

postcranial-based Magyarosaurus fitosi among basal metriorhynchoids. The exclusion of P. typus 

from the mA matrix retains Magyarosaurus fitosi at the base of Metriorhynchoidea. Excluding P. 

typus from the W and H+Y matrices finds M. fitosi close but unresolved relative to other basal 

metriorhynchoids (in the case of the H+Y matrix only when the highly fragmentary 

Peipehsuchus teleorhinus is removed from the consensus tree) although few of the alternative 

positions are supported by synapomorphies. The absence of common synapomorphies is due to 

the lack of P. typus and the inclusion of few basal

metriorhynchoids in the H+Y/W matrices, all of which lack post-crania and therefore cannot be 

commonly scored for the post-cranial characters that could unite M. fitosi with

other metriorhynchoids. The metriorhynchoid affinity of M. fitosi is therefore rather reasonable 

(e.g., presence of enlarged femoral medial tuber; coracoid with convex proximal and distal ends; 

oval-shaped sacral vertebral centrum) but we cannot exclude that it may be more derived within 

the group because little is known about character evolution at the base of the clade. 
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DISCUSSION

Thalaooosuchian marine adapoaoions

Postcranial elements in basal thalattosuchians (especially in metriorhynchoids Young et al., 2010)

are poorly known, thus the early phases of their adaptation to a fully aquatic lifestyle is still 

speculative. Wilberg (2015) listed a number of skeletal adaptations thought to be linked to an 

increasingly marine lifestyle in thalattosuchians, such as: 1) the reorientation of the orbit from 

dorsal to laterally directed (Hua and Buffrénil, 1996), 2) development of hypertrophied nasal 

exocrine glands (Fernández and Gasparini, 2008; Gasparini et al., 2000; Gandola et al., 2006), 3) 

humerus mediolateral flattening and a reduction in diaphysis length (both in Teleosauroidea and 

Metriorhynchoidea), 4) reduction of relative tibia and ulna length, 5) reduction and loss of 

osteoderm cover, 6) modification of the pelvis, 7) development of a hypocercal tail with a distinct

regionalisation of the distal caudal vertebrae (Fraas, 1902; Andrews, 1913; Hua and Buffetaut, 

1997; Young et al., 2010).

Magyarosuchus sheds new light on the early evolutionary history of marine adaptations in

Thalattosuchia. Most of the elements in Magyarosuchus seem to indicate a body-plan similar to 

basal teleosauroids:  in having elongated limb bone diaphyses with well-developed proximal and 

distal epiphyses, a “primitive” pelvis construction (robust iliac peduncles, retention of iliac 

postacetabular process), and the presence of complex and heavy dorsal and ventral osteoderm 

cover. The astragalus is very complex with well-developed articulation surfaces for the tibia, 

fibula, and metatarsal I, and with the presence of the calcaneal peg it shows the typical 

‛crocodile-normal’ (‛CN’ of Chatterjee, 1978) crurotarsal ankle joint. These features suggest that 

adaptation to marine habitats in Magyarosuchus could have been similar to that of the Early 

Jurassic teleosauroids Steneosaurus bollensis, ‘Steneosaurus’ gracilirostris and Platysuchus 

multiscrobiculatus (Westphal, 1962).
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One caudal vertebra (Fig. 5K-P), however, reveals some features still unknown in these 

teleosauroids or in basal metriorhynchoids. This vertebra is the smallest and distal most element 

(Fig. 5K-P, 12I) among the preserved caudals. According to the proportion of vertebral centrum 

height between the dorsal vertebrae and distal caudal vertebrae measured in Pelagosaurus typus 

(MTM M 62 2516), the distal-most preserved caudal of M. fitosi represents one of the last 10-15 

elements in the caudal series. In Steneosurus bollensis (MTM M 69 242; Westphal, 1962) and 

Pelagosaurus typus (MTM V.52.2516), these caudals have only reduced, anteroposteriorly short, 

and slightly posteriorly projected neural spines (Fig. 12E-H). The small caudal of 

Magyarosuchus, on the other hand, possesses an anteroposteriorly long and dorsally projecting, 

elongate neural spine (Fig. 12I). Although the dorsal end of the neural spine and the anterior end 

of the centrum  is missing (Fig. 5N, O), it clearly differs from the distal-most vertebrae of basal 

teleoasuroids or P. typus. We suggest that this vertebra represents the bending zone of the distal 

end of the caudal series to strengthen a still low and primitive tail fin. Tail fins are present e.g. in 

the metriorhynchids Metriorhynchus superciliosus (GPIT RE 9405), ‘Metriorhynchus’ 

brachyrhynchus (NHMUK PV R 3804), Gracilineustes leedsi (NHMUK PV R 3014), 

Rhacheosauus gracilis (NHMUK PV R 3948) and Cricosaurus suevicus (SMNS 9808). An 

isolated bending zone caudal vertebra is also known for Torvoneustes carpenteri (Wilkinson et 

al., 2008). In these forms three to four vertebrae of the bending zone have at least two to three 

times longer neural spines than the previous caudals and the centra are slightly bent with shorter 

ventral marign (Fraas, 1902; Andrews, 1913). The small caudal of M. fitosi is missing its anterior 

part, but, based on the shape of the posterior articulation of the centrum it might have not been as 

bended as that e.g. in Metriorhynchus superciliosus. It seems that in M. fitosi the distal tail was 

still not as ventrally deflected as in metriorhynchids; the neural spines, however, became 

elongated to stiffen a small, caudal fin. Moreover, these bending zone caudals in metriorhynchids 
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(and M. fitosi) have a centrum that is mediolaterally compressed relative to the pre-bending 

vertebrae.

This remarkable feature fits well with the mosaic evolution of marine adaptations in 

thalattosuchians proposed by Wilberg (2015). Since the skull is unknown in M. fitosi, no other 

skeletal modifications refers to a pelagic habit in this form, except for this modified distal caudal.

This suggests that a caudal fin supported by a ventrally bended row of distal caudals and a few 

distal caudals with elongated neural spines should have occurred by the later part of the Early 

Jurassic, much earlier in thalattosuchian history than the presently available record shows (later 

part of the Middle Jurassic, Callovian; Young et al., 2010). 

Body lengoh

As there is no complete skull, the only metric to establish a body length estimate was femoral 

length. However, based on teleosauroids, Young et al. (2016) found femoral length to be the more

reliable metric for estimating total length of those thalattosuchians. Both femora of 

Magyarosuchus fitosi are broken and partial dissolved. Taking the raw measurements of the 

femora and using the femoral length vs body length equations of Young et al. (2011, 2016) we get

a range of body length values: 4.6–4.8 m. This is based on: 1) difference in size between the left 

and right femora due to preservation, and 2) the uncertainty of whether to use the metriorhynchid 

equation from Young et al. (2011) or the two teleosauroids equations of Young et al. (2016). 

(Note that Young et al. [2016] had two equations: first based on a complete skeleton sample of 

12, and a slightly larger sample of 16 with added some less complete skeletons.)

If we assume M. fitosi had a scaling ratio similar to teleosauroids, and only use the more 

complete right femur, this yields a body length estimate of 4.67–4.74 m. However, if M. fitosi had

a scaling ratio similar to metriorhynchids, and we only use the more complete right femur, this 

gives a body length estimate of 4.83 m. Interestingly, Young et al. (2016) found using the 

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

PeerJ reviewing PDF | (2018:02:23877:0:1:NEW 9 Feb 2018)

Manuscript to be reviewed



metriorhynchid body length equations to more reliably estimate the size of two Pelagosaurus 

typus skeletons. This suggests that basal metriorhynchoids may have had a scaling ratio more 

similar to metriorhynchids than teleosauroids. However, as the sample was only of two P. typus 

specimens this conclusion remains untested.

Regardless of which equation is correct, a body length of 4.67–4.83 m makes M. fitosi the 

largest known non-metriorhynchid metriorhynchoid. It is substantially larger than the only other 

Early Jurassic metriorhynchoid P. typus, which is typically 2–3 m in length. Furthermore, the 

fragmentary material of other basal metriorhynchoids all suggest taxa closer in size to P. typus 

than M. fitosi , or perhaps reaching 3.5 m (see Eudes-Deslongchamps, 1867–1869; Collot, 1905; 

Mercier, 1933; Gasparini et al., 2000; Wilberg, 2015; NHMUK PV R 2681, NHMUK PV R 

3353). Moreover, these length estimates also mean M. fitosi was larger than most metriorhynchid 

specimens estimated by Young et al. (2011), as few metriorhynchid species exceeded 4.5 m in 

length, and those that did were the larger-bodied macrophagous taxa.

Compared to known Early Jurassic teleosauroids, M. fitosi was within the size range of 

the larger-bodied species. Few Early Jurassic thalattosuchians are known to exceed 4.5 m, with 

species such as Platysuchus multiscrobiculatus and ‘Steneosaurus’ gracilirostris typically in the 

2–3 m range (see Westphal, 1962; NHMUK PV OR 14792, SMNS 9930). The holotype of 

‘Steneosaurus’ brevior (NHMUK PV OR 14781) is that of a large skull and lower jaw, with an 

approximate length of 88.3 cm. Using the cranial to body length questions of Young et al. (2016),

it has an estimated body length of 4.47-4.58 m. However, there are specimens, which albeit are 

rare, of Steneosaurus bollensis reaching, and even exceeding, 5 m (see Westphal, 1962; Young et 

al., 2016). Therefore, the largest Early Jurassic thalattosuchians, and crocodylomorphs, were 

most likely teleosauroids. This trend continues into the Middle Jurassic and on into the Early 

Cretaceous with teleosauroids reaching greater body lengths than metriorhynchoids (see Young et

al., 2016).
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CONCLUSIONS

Here, we describe a new crocodylomorh taxon, Magyarosuchus fitosi get. et sp. nov., based on a 

new skeleton from the Gerecse mountains of Hungary. Despite being incomplete and lacking the 

cranium, we demonstrate that this late Lower Jurassic taxon shows remarkable similarities with 

the iconic Lower Jurassic genus Pelagosaurus. Magyarosuchus and Pelagosaurus are found to be

sister taxa in all three phylogenetic analyses undertaken herein, although the two characters 

uniting this arrangement are not known from other basal metriorhynchoids (due to poor 

preservation of taxa such as Teleidosaurus, Eoneustes and Zoneait). Therefore, we cannot be 

certain that the sister relationship between Magyarosuchus and Pelagosaurus is natural, or due to 

incomplete information. Regardless, both are found to be basal metriorhynchoids, near the start 

of the radiation that yielded dolphin-like crocodyliforms. Interestingly, M. fitosi is the oldest 

known thalattosuchian discovered from an "ammonitico rosso" type pelagic deposit (rather than 

the usual estuarine, lagoonal or coastal ecosystems Lower Jurassic thalattosuchians are 

discovered from). The pelagic depositional environment and neritic associated cephalopod fauna 

are both consistent with the inferred open-marine adaptation of M. fitosi, namely a mediolaterally

compressed distal caudal vertebra with an usually elongated and dorsally projected neural spine 

which suggests the presence of a distal tail structure that could have been a hypocercal fin, or a 

precursor to it. The unique combination of retaining heavy dorsal and ventral armor, while having

a slight hypocercal tail, on the other hand, highlights the mosaic manner of marine adaptations in 

Metriorhynchoidea. Furthermore, it underscores how little is still known about the timing and 

tempo of metriorhynchoid pelagic adaptations and their early radiation.
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Figure and oable capoions:

Figure 1. Locality map of the new thalattosuchian crocodyliform, Magyarosuchus fitosi gen. et 

sp. nov. from the Toarcian of the Gerecse Mountains, Hungary. Red point marks the fossil site.

Figure 2. Shematic geological section of the locality at the Nagy-Pisznice Hill, close to Békás-

Canyon (GPS coordinates: 47°42'09.4"N, 18°29'40.0"E), eastern Gerecse Mountains, 

northwestern Hungary. The Upper Toarcian fossiliferous bed (Bed 13) produced the remains of 

the new thalattosuchian Magyarosuchus fitosi gen. et sp. nov. 

Figure 3. Mandibular elements of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the 

Gerecse Mountains, Hungary. A, left dentale fragment (MTM V.97.2.A), middle portion in 
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lateral; B, dorsal views. C, left dentale fragment (MTM V.97.2.B), posterior portion in lateral; D, 

dorsal; E, medial views. F, dorsal (dentale+surangular) and ventral (angular) margins of the 

mandibular fenestra of the left mandible (MTM V.97.40) in dorsal; G, medial; H, lateral; I, 

ventral views. Note that the upper and lower margins were compressed to each other preventing 

to outline the external mandibular fenestra. J, Right? mandible fragment (MTM V.97.2.C) in 

dorsal; K, ventral; L, lateral views. Abbreviations: al, alveolus; an, angular; emf, external 

mandibular fenestra. gr, groove; maf, mandibular adductor fossa; sa, surangular; sh, shelf. 

Figure 4. Teeth of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the Gerecse 

Mountains, Hungary. A, anterior tooth with root fragment in labial view. B, anterior or middle 

tooth with rooth in mesial/distal view. C, posterior tooth (MTM V.97.1) with root in labial; D, 

lingual; E, ?mesial; F, distal views. G, Middle or posterior tooth in mesial/distal views. H-I, 

details of the ornamentation and the unserrated carina. Abbreviations: c, carina; ec, end of the 

carina; wr, wrinkle.

Figure 5. Axial elements of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the 

Gerecse Mountains, Hungary. A, dorsal vertebra (MTM V.97.26) in right lateral; B, ventral; C, 

anterior views. D, sacrum with the last dorsal (lumbar) and the first caudal vertebra (MTM 

V.97.30) in right lateral; E, ventral views. F, middle caudal vertebra (MTM V.97.28)  in right 

lateral; G, anterior; H, ventral views. I, distal caudal vertebra (MTM V.97.31) in anterior, J, right 

lateral views. K, distal caudal vertebra (MTM V.97.19.) with massive neural spine in right lateral;

L, left lateral; M, posterior; N, anterior; O, dorsal; P, ventral views. Abbreviations: ansp, anterior 

process of the neural spine; ca1, first caudal vertebra; ld, last dorsal vertebra; nc, neural canal; 

nsp, neural spine; pnsp, posterior process of neural spine; prz, prezygapophysis; sa1-2, sacral 

vertebrae 1-2; sra1-2, articulation for sacral ribs 1-2; trp, transverse process.
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Figure 6. Appendicular elements of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of 

the Gerecse Mountains, Hungary. A, fragmentary dorsal rib (MTM V.97.8) in anterior; B, 

posterior views. C, sacral rib (MTM V.97.37) in anterior/posterior; D, medial views. , E, sacral 

rib (MTM V.97.39) in anterior/posterior; F, medial views. G, coracoid (MTM V.97.7) in ventral 

view. H, glenoid of the coracoid (MTM V.97.7). I, left ilium (MTM V.97.34) in anterior; J, 

laterodorsal; K, posterior; L, lateral views. M, right ilium (MTM V.97.44) in medial view. N, left 

pubis (MTM V.97.35) in anterodorsal; O, lateral views. P, distal half of the left ischium (MTM 

V.97.36) in lateral view. Abbreviations: ac, acetabulum; as, articulation surface; ca, capitulum; cf,

coracoid foramen; gl, glenoid; ic, iliac crest; isa, articulation surface for ischium; prp, 

preacetabular process; pop, postacetabular process; sra, articulation surface for sacral rib; t, 

tuberculum.

Figure 7. Limb elements of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the 

Gerecse Mountains, Hungary. A, proximal end of radius (MTM V.97.42) in ?lateral; B, ?medial 

views. C, a short limb bone (?metacarpal or ?ulnare) with distal articular surface (left) associated 

with a dorsal rib (central) and a third bone fragment (right) (MTM V.97.38). D, left femur (MTM 

V.97.13) in lateral; E, medial; F, posterior; G, anterior; H, proximal; I, distal views. J, left tibia 

(MTM V.97.9.) in posterior; K, medial; L, lateral; M, anterior; N, proximal; O, distal views. P, 

proximal end of fibula (MTM V.97.15) in medial; Q, lateral; R, proximal views. S, distal end of 

fibula (MTM V.97.43) in lateral; T, medial views. Abbreviations: as, articular surface; cnc, 

cnemial crest; dr, dorsal rib fragment; fh, femoral head; mco, medial condyle; lco, lateral 

condyle; mx, matrix; pra, proximal articulation surface.
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Figure 8. Limb elements of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the 

Gerecse Mountains, Hungary. A, left astragalus (MTM V.97.12) in posterior; B, anterior; C, 

dorsal; D, ventral; E, lateral; F, medial views. G, metatarsal III (MTM V.97.10) in proximal; H, 

distal; I, posterior; J, lateral/medial views. K, phalanges (MTM V.97.61) in dorsal; K, ventral 

views. M, unidentified limb bone element (?distal end of fibula?). Abbreviations: amt1, 

articulation surface for metatarsal I; cap, calcaneal peg; fia, fibular articulation surface; fo, 

foramen; tia, tibial articulation surface.

Figure 9. Osteoderms of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the Gerecse 

Mountains, Hungary. A, dorsal osteoderm (MTM V.97.59) in dorsal; B, posterior; C, 

posteromediodorsal views. D, dorsal osteoderm (MTM V.97.60) in dorsal view. E, dorsal 

osteoderm (MTM V.97.60) in dorsal; F, posterior views. G, block of six ventral osteoderms 

(MTM V.97.38) in ventral; H, anteroventral views. I, block of two ventral osteoderms (MTM 

V.97.38) in ventral view. Abbreviations: aar, anterior articulation surface; alp, anterolateral 

process; lcr, lateral crest; su, suture.

Figure 10. Results of the phylogenetic analyses. A, Strict consensus of 84 most parsimonious 

cladograms based on the Hastings + Young matrix (Young et al., 2016), showing the phylogenetic

relationships of Magyarosuchus fitosi gen. et sp. nov. within Metriorhynchoidea. B, Strict 

consensus of 16 most parsimonious cladograms based on the modified Andrade matrix (Andrade 

et al., 2011), showing the phylogenetic relationships of Magyarosuchus fitosi gen. et sp. nov. 

within Metriorhynchoidea.
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Figure 11. Strict consensus of six most parsimonious cladograms based on the Wilberg matrix 

(Wilberg, 2017), showing the phylogenetic relationships of Magyarosuchus fitosi gen. et sp. nov. 

within Metriorhynchoidea.

Figure 12. Comparison of thalattosuchian bony tails and the distal caudal vertebrae within the 

bending zone. A-B, Cricosaurus suevicus from Nusplingen (GPIT RE 7322); C-D, 

Metriorhynchus superciliosus (GPIT RE 9405); E-F, Steneosaurus bollensis (MTM M 69 242) ; 

G-H, Pelagosaurus typus (MTM M 62 2516); I, Magyarosaurus fitosi gen. et sp. nov. distal 

caudal (MTM V.97.19.) with the interpreted original outline of the vertebra.

Table 1. Measurements of the bones of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian 

of the Gerecse Mountains, Hungary.
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Figure 1(on next page)

Locality map of the new thalattosuchian crocodyliform, Magyarosuchus fitosi gen. et sp.

nov. from the Toarcian of the Gerecse Mountains, Hungary.

Red point marks the fossil site.
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Figure 2(on next page)

Shematic geological section of the locality at the Nagy-Pisznice Hill, close to Békás-

Canyon (GPS coordinates: 47°42'09.4"N, 18°29'40.0"E), eastern Gerecse Mountains,

northwestern Hungary.

The Upper Toarcian fossiliferous bed (Bed 13) produced the remains of the new

thalattosuchian Magyarosuchus fitosi gen. et sp. nov.
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Figure 3

Mandibular elements of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the

Gerecse Mountains, Hungary.

A, left dentale fragment (MTM V.97.2.A), middle portion in lateral; B, dorsal views. C, left

dentale fragment (MTM V.97.2.B), posterior portion in lateral; D, dorsal; E, medial views. F,

dorsal (dentale+surangular) and ventral (angular) margins of the mandibular fenestra of the

left mandible (MTM V.97.40) in dorsal; G, medial; H, lateral; I, ventral views. Note that the

upper and lower margins were compressed to each other preventing to outline the external

mandibular fenestra. J, Right? mandible fragment (MTM V.97.2.C) in dorsal; K, ventral; L,

lateral views. Abbreviations: al, alveolus; an, angular; emf, external mandibular fenestra. gr,

groove; maf, mandibular adductor fossa; sa, surangular; sh, shelf.
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Figure 4

Teeth of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the Gerecse

Mountains, Hungary.

A, anterior tooth with root fragment in labial view. B, anterior or middle tooth with rooth in

mesial/distal view. C, posterior tooth (MTM V.97.1) with root in labial; D, lingual; E, ?mesial; F,

distal views. G, Middle or posterior tooth in mesial/distal views. H-I, details of the

ornamentation and the unserrated carina. Abbreviations: c, carina; ec, end of the carina; wr,

wrinkle.
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Figure 5

Axial elements of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the

Gerecse Mountains, Hungary.

A, dorsal vertebra (MTM V.97.26) in right lateral; B, ventral; C, anterior views. D, sacrum with

the last dorsal (lumbar) and the first caudal vertebra (MTM V.97.30) in right lateral; E, ventral

views. F, middle caudal vertebra (MTM V.97.28) in right lateral; G, anterior; H, ventral views.

I, distal caudal vertebra (MTM V.97.31) in anterior, J, right lateral views. K, distal caudal

vertebra (MTM V.97.19.) with massive neural spine in right lateral; L, left lateral; M, posterior;

N, anterior; O, dorsal; P, ventral views. Abbreviations: ansp, anterior process of the neural

spine; ca1, first caudal vertebra; ld, last dorsal vertebra; nc, neural canal; nsp, neural spine;

pnsp, posterior process of neural spine; prz, prezygapophysis; sa1-2, sacral vertebrae 1-2;

sra1-2, articulation for sacral ribs 1-2; trp, transverse process.
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Figure 6

Appendicular elements of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the

Gerecse Mountains, Hungary.

A, fragmentary dorsal rib (MTM V.97.8) in anterior; B, posterior views. C, sacral rib (MTM

V.97.37) in anterior/posterior; D, medial views. , E, sacral rib (MTM V.97.39) in

anterior/posterior; F, medial views. G, coracoid (MTM V.97.7) in ventral view. H, glenoid of the

coracoid (MTM V.97.7). I, left ilium (MTM V.97.34) in anterior; J, laterodorsal; K, posterior; L,

lateral views. M, right ilium (MTM V.97.44) in medial view. N, left pubis (MTM V.97.35) in

anterodorsal; O, lateral views. P, distal half of the left ischium (MTM V.97.36) in lateral view.

Abbreviations: ac, acetabulum; as, articulation surface; ca, capitulum; cf, coracoid foramen;

gl, glenoid; ic, iliac crest; isa, articulation surface for ischium; prp, preacetabular process;

pop, postacetabular process; sra, articulation surface for sacral rib; t, tuberculum.
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Figure 7

Limb elements of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the

Gerecse Mountains, Hungary.

A, proximal end of radius (MTM V.97.42) in ?lateral; B, ?medial views. C, a short limb bone

(?metacarpal or ?ulnare) with distal articular surface (left) associated with a dorsal rib

(central) and a third bone fragment (right) (MTM V.97.38). D, left femur (MTM V.97.13) in

lateral; E, medial; F, posterior; G, anterior; H, proximal; I, distal views. J, left tibia (MTM

V.97.9.) in posterior; K, medial; L, lateral; M, anterior; N, proximal; O, distal views. P, proximal

end of fibula (MTM V.97.15) in medial; Q, lateral; R, proximal views. S, distal end of fibula

(MTM V.97.43) in lateral; T, medial views. Abbreviations: as, articular surface; cnc, cnemial

crest; dr, dorsal rib fragment; fh, femoral head; mco, medial condyle; lco, lateral condyle;

mx, matrix; pra, proximal articulation surface.
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Figure 8

Limb elements of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the

Gerecse Mountains, Hungary.

A, left astragalus (MTM V.97.12) in posterior; B, anterior; C, dorsal; D, ventral; E, lateral; F,

medial views. G, metatarsal III (MTM V.97.10) in proximal; H, distal; I, posterior; J,

lateral/medial views. K, phalanges (MTM V.97.61) in dorsal; K, ventral views. M, unidentified

limb bone element (?distal end of fibula?). Abbreviations: amt1, articulation surface for

metatarsal I; cap, calcaneal peg; fia, fibular articulation surface; fo, foramen; tia, tibial

articulation surface.
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Figure 9

Osteoderms of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian of the Gerecse

Mountains, Hungary.

A, dorsal osteoderm (MTM V.97.59) in dorsal; B, posterior; C, posteromediodorsal views. D,

dorsal osteoderm (MTM V.97.60) in dorsal view. E, dorsal osteoderm (MTM V.97.60) in dorsal;

F, posterior views. G, block of six ventral osteoderms (MTM V.97.38) in ventral; H,

anteroventral views. I, block of two ventral osteoderms (MTM V.97.38) in ventral view.

Abbreviations: aar, anterior articulation surface; alp, anterolateral process; lcr, lateral crest;

su, suture.

PeerJ reviewing PDF | (2018:02:23877:0:1:NEW 9 Feb 2018)

Manuscript to be reviewed



PeerJ reviewing PDF | (2018:02:23877:0:1:NEW 9 Feb 2018)

Manuscript to be reviewed



Figure 10(on next page)

Results of the phylogenetic analyses.

A, Strict consensus of 84 most parsimonious cladograms based on the Hastings + Young

matrix (Young et al., 2016), showing the phylogenetic relationships of Magyarosuchus fitosi

gen. et sp. nov. within Metriorhynchoidea. B, Strict consensus of 16 most parsimonious

cladograms based on the modified Andrade matrix (Andrade et al., 2011), showing the

phylogenetic relationships of Magyarosuchus fitosi gen. et sp. nov. within Metriorhynchoidea.
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Figure 11(on next page)

Strict consensus of six most parsimonious cladograms based on the Wilberg matrix

(Wilberg, 2017), showing phylogenetic relationships of Magyarosuchus fitosi gen. et sp.

nov. within Metriorhynchoidea.

PeerJ reviewing PDF | (2018:02:23877:0:1:NEW 9 Feb 2018)

Manuscript to be reviewed



Dakosaurus maximus
Dakosaurus andiniensis
Geosaurus grandis
Geosaurus giganteus

Torvoneustes coryphaeus

Metriorhynchus casamiquelai
Composite taxon brachyrhynchus
Composite taxon durobrivensis

Cricosaurus suevicus
Cricosaurus macrospondylus

Gracilineustes leedsi
Metriorhynchus superciliosus

Zoneait nargorum
Eoneustes gaudryi

Eoneustes bathonicus
Teleidosaurus calvadosii

Magyarosuchus fitosi
Pelagosaurus typus

Machimosaurus buffetauti
Steneosaurus durobrivensis

Steneosaurus leedsi

Peipehsuchus teleorhinus
Platysuchus multiscrobiculatus
Steneosaurus bollensis

Steneosaurus brevidens
Steneosaurus brevior

Teleosaurus cadomensis
Steneosaurus gracilirostris

Susisuchus anatoceps

Knoetschkesuchus guimarotae
Montsecosuchus depereti

Kayentasuchus walkeri

Almadasuchus figarii
Junggarsuchus sloani

Sphenosuchus acutus
Dibothrosuchus elaphros

Hesperosuchus cf gracilis
Postosuchus kirkpatricki

Gracilisuchus stipanicicorum

NOTOSUCHIA

PROTOSUCHIA

TETHYSUCHIA

GONIOPHOLIDIDAE

EUSUCHIA

Theriosuchus pusillus

T
H

A
L
A

T
T

O
S

U
C

H
IA

T
E

L
E

O
S

A
U

R
O

ID
E

A
M

E
T

R
IO

R
H

Y
N

C
H

O
ID

E
A

Wilberg matrix

PeerJ reviewing PDF | (2018:02:23877:0:1:NEW 9 Feb 2018)

Manuscript to be reviewed



Figure 12(on next page)

Comparison of thalattosuchian bony tails and the distal caudal vertebrae within the

bending zone.

A-B, Cricosaurus suevicus from Nusplingen (GPIT RE 7322); C-D, Metriorhynchus superciliosus

(GPIT RE 9405); E-F, Steneosaurus bollensis (MTM M 69242) ; G-H, Pelagosaurus typus (MTM

M 62 2516); I, Magyarosaurus fitosi gen. et sp. nov. distal caudal (MTM V.97.19.) with the

interpreted original outline of the vertebra.
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Table 1(on next page)

Measurements of the bones of Magyarosuchus fitosi gen. et sp. nov. from the Toarcian

of the Gerecse Mountains, Hungary.
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Measurements of the bones of Magyarosuchus fitosi gen. et sp. nov. 

Specimen No. Skeletal element Greatest diameter (mm)

V.97.2A dentale fragment 143

V.97.2B left dentale posterior fragment 171

V.97.2C mandibula fragment 128

V.97.40 left angular-surangular 106

V.97.26 dorsal vertebra 68

V.97.26 dorsal vertebra 67

V.97.30 last dorsal vertebra 58

V.97.30 first sacral vertebra 60

V.97.30 second sacral vertebra 58

V.97.30 first caudal vertebra 53

V.97.29 proximal caudal vertebra 60

V.97.27 mid-caudal vertebra 61

V.97.28 mid-caudal vertebra 63

V.97.28 mid-caudal vertebra 63

V.97.28 mid-caudal vertebra 61

V.97.28 mid-caudal vertebra 62

V.97.27 fragmentery distal caudal vertebra 58

V.97.27 distal caudal vertebra 61

V.97.27 distal caudal vertebra 63

V.97.27 distal caudal vertebra 62

V.97.21 distal caudal vertebra 62

V.97.21 distal caudal vertebra 64

V.97.22 distal caudal vertebra 63

V.97.31 distal caudal vertebra 60

V.97.31 distal caudal vertebra 59

V.97.31 distal caudal vertebra 63

V.97.31 distal caudal vertebra 59

V.97.19 last caudal vertebra 23

V.97.37 sacral rib with crest 74

V.97.39 sacral rib 75

V.97.7 right coracoideum, fragment with coracoid foramen 66

V.97.7 right coracoideum,distal half 80

V.97.34 left ilium 117

V.97.35 right pubis 164

V.97.49 distal half of left pubis 103

V.97.36 left ischium 137

V.97.44 right ilium 97

V.97.33 right femur 360

V.97.13 left femur 355

V.97.69 left tibia 213

V.97.9 right tibia 210

V.97.15 proximal fibula 62

V.97.45 metatarsal 61

V.97.10 metatarsal III 127

V.97.11 metatarsal 72

V.97.12 tarsus 36

V.97.38 ventral osteoderm 77

V.97.59 dorsal osteoderm 92

V.97.60 dorsal osteoderm 89
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