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Abstract 27 
 28 
Soil colour is often used as a general purpose indicator of internal soil drainage. In this study 29 

we developed a necessarily simple model of soil drainage which combines the tacit 30 

knowledge of the soil surveyor with observed matrix soil colour descriptions. From built up 31 

knowledge of the soils in our Lower Hunter Valley, New South Wales study area, the 32 

sequence of well-draining → imperfectly draining → poorly draining soils generally follows 33 

the colour sequence of red → brown → yellow → grey → black soil matrix colours. For each 34 

soil profile, soil drainage is estimated somewhere on a continuous index of between 5 (very 35 

well drained) and 1 (very poorly drained) based on the proximity or similarity to reference 36 

soil colours of the soil drainage colour sequence. The estimation of drainage index at each 37 

profile incorporates the whole-profile descriptions of soil colour where necessary, and is 38 

weighted such that observation of soil colour at depth and/or dominantly observed horizons 39 

are given more preference than observations near the soil surface. The soil drainage index, by 40 

definition disregards surficial soil horizons and consolidated and semi-consolidated parent 41 

materials.  42 

With the view to understanding the spatial distribution of soil drainage we digitally mapped 43 

the index across our study area. Spatial inference of the drainage index was made using 44 

Cubist regression tree model combined with residual kriging. Environmental covariates for 45 

deterministic inference were principally terrain variables derived from a digital elevation 46 

model. Pearson’s correlation coefficients indicated the variables most strongly correlated 47 

with soil drainage were topographic wetness index (-0.34), mid-slope position (-0.29), multi-48 

resolution valley bottom flatness index (-0.29) and vertical distance to channel network 49 

(0.26). From the regression tree modelling, two linear models of soil drainage were derived. 50 

The partitioning of models was based upon threshold criteria of vertical distance to channel 51 

network. Validation of the regression kriging model using a withheld dataset resulted in a 52 

root mean square error of 0.90 soil drainage index units. Concordance between observations 53 

and predictions was 0.49. Given the scale of mapping, and inherent subjectivity of soil colour 54 

description, these results are acceptable. Furthermore, the spatial distribution of soil drainage 55 

predicted in our study area is attuned with our mental model developed over successive field 56 

surveys. Our approach, while exclusively calibrated for the conditions observed in our study 57 

area, can be generalised once the unique soil colour and soil drainage relationship is expertly 58 

defined for an area or region in question. With such rules established, the quantitative 59 

components of the method would remain unchanged.      60 

61 



Introduction 62 

Soil colour is arguably one of the most obvious and easily observed soil morphological 63 

characteristics.  Soil scientists use soil colour to differentiate genetic soil horizons as well as 64 

for the classification of soil types e.g. Isbell (1996). From a trained or untrained eye, some 65 

inference on soils may be made from observation of soil colour in relation to organic carbon 66 

content (Schulze et al. 1993, Aitkenhead et al. 2013, Pretorius et al. 2017), mineral 67 

composition (Schwertmann and Taylor 1977), soil water content and moisture regime 68 

(Bouma 1983, Blavet et al. 2000) may be made from observation of soil colour. Our interest 69 

in this study is making inference of a soils’ capacity to drain or soil drainage, based on 70 

observed characteristics of soil colour. 71 

For agricultural and environmental applications, soil drainage is an important property 72 

that affects plant growth, water flow and solute transport in soils (Kravchenko et al. 2002).  It 73 

has long been established that soil colour patterns can be related to a soils’ capacity to drain 74 

water (Evans and Franzmeier 1988; Pickering and Veneman 1984; Vepraskas and Wilding 75 

1983). Naturally there are exceptions to this, but often, soil colour can be interpreted as a 76 

reflection of oxidative and reductive soil processes. Reductive processes are caused by 77 

periodic or continuous water saturation. This could be due to position in the landscape 78 

(Chaplot et al. 2000) and/or the presence of a permanently or fluctuating water table near the 79 

soil surface. Described in Bouma (1983), reductive soil conditions occur when a soil is 80 

saturated.  Microbial activity depletes the soil of any free oxygen (O2) causing the soil to 81 

become anaerobic. Under anaerobic conditions, and in the presence of organic carbon, ferric 82 

iron (Fe3+) is microbially converted to ferrous (Fe2+). This process is referred to as iron 83 

reduction and causes the Fe pigmented coatings on soil particles (Fe3+ oxides) to dissolve off 84 

the particles and into the soil solution. This results in a washed out and ultimately, grey 85 

matrix soil colour, indicating the natural colour of the soil mineral grains. In addition, other 86 

redoximorphic features such as mottling and precipitation of manganese are symptomatic of 87 

soils which experience periodic or prolonged periods of soil saturation.  88 

Explanations for the causes of soil to remain saturated for prolonged periods include the 89 

proximity of a watertable or a watercourse line. Related to these physical features is the 90 

topographical position of a particular site or landscape. For example soil saturation occurs in 91 

the landscape (from Chaplot et al. 2004), when the accumulated water flux, the product of the 92 

catchment area As and the area drainage flux q, passing across an element of contour length b, 93 

exceeds the product of local soil transmissivity T and the local surface gradient S 94 



(O’Loughlin 1986). Thus terrain attributes such as slope gradient, elevation from, and 95 

distance to watercourse lines, and terrain wetness index are generally useful for 96 

understanding, but more importantly describing the spatial variation of saturated soils in a 97 

particular landscape. The other important variable, which determines soil drainage, is related 98 

to its permeability (transmissivity of water). Soil texture and pore size distribution are 99 

principal factors which determine the ability of soils to transmit water (Bouma 1983). 100 

Soil drainage classes have been used widely in soil survey to characterise the wetness 101 

(drainage capacity) of soil and describe the fluctuations and proximity of the water table at 102 

site locations (Kidd et al. 2014). The distinctions between different drainage classes are based 103 

on tacit knowledge of the soil surveyor, or better, through physical measurements. These 104 

measurements may include observations of soil water tables via a well or core, and/or 105 

measurement of the soil water status. Measuring the soil water status for estimations of 106 

drainage class requires prolonged monitoring, and though possible, the procedure is 107 

complicated, costly, and time consuming (Bouma 1983). With these logistical issues, it is not 108 

surprising that soil colour and assessment of soil redoximorphic features are often used as an 109 

indicator for making assessments of soil drainage.   110 

The implementation of quantitative indexes of soil drainage, inferred from soil colour 111 

and/or redoximorphic features is not a new concept. Some include that of Evans and 112 

Franzmeier (1988) which requires numeric indexing of Munsell notation, in addition to 113 

information regarding mottle characteristics and abundance. Blavet et al. (2002) also 114 

numericalised Munsell colour notations in addition to using of a soil redness index (Torrent et 115 

al. 1983) to derive a continuous index for describing the duration of water-logging. Chaplot et 116 

al. (2000) developed a continuous index (0-100) of soil hydromorphy based on the 117 

cumulative thickness of soil horizons with redoximorphic features, combined with 118 

information regarding the Munsell Hue and Value numbers. These studies exemplify the 119 

value of using low-cost soil morphological information for making inference of soil drainage 120 

characteristics.  121 

Our interest in this study is to develop a different type of continuous index of soil 122 

drainage. It is necessarily simple, because the soil database we are using is limited in terms of 123 

direct measurements of soil drainage and is inconsistent, even unreliable in terms of 124 

descriptions of the abundance or even presence of redoximorphic features such as mottles. In 125 

the simplest terms, the drainage index we develop in this study combines some tacit 126 

knowledge with actual observations made in the field of the soil matrix colour (each genetic 127 

soil horizon), to derive a continuous whole-profile index of soil drainage. 128 



  The motivation for deriving a soil drainage index is that we are particularly interested in 129 

understanding its spatial distribution across the landscape, as this is probably more useful 130 

from a land management and assessment perspective. Studies such as Schaetzl et al. (2009) 131 

demonstrate this.  Furthermore, after a number of years surveying the area described in this 132 

study, we have developed a mental concept of how soil drainage varies across the landscape. 133 

It is a useful exercise to validate such mental models with empirical information. Given the 134 

relationship between topography and soil saturation, there is considerable benefit in applying 135 

digital soil mapping methods (McBratney et al. 2003) for inferring the spatial distribution of 136 

soil drainage.  A number of studies have constructed soil spatial inference models of soil 137 

drainage class using topographical variables (e.g. Kravchenko et al. 2002; Campling et al. 138 

2002). Bell et al. (1992) used multivariate discriminant analysis using topography and 139 

geological information to spatially predict drainage classes. Chaplot et al. (2004) were 140 

interested in mapping the soil hydromorphic index using topographic indices derived from 141 

the land surface and saprolite upper boundary. Less invasive techniques of mapping soil 142 

drainage classes through the use of remote sensing platforms have also been demonstrated 143 

(Peng et al. 2003; Cialella et al. 1997) 144 

The aims of this study are threefold: 1) To develop an index of soil drainage combining 145 

tacit knowledge and empirical information of soil matrix colour. 2) To determine whether an 146 

empirical relationship exists between the estimated drainage index and landscape features. 3) 147 

To develop a soil spatial prediction function for estimating the spatial distribution of soil 148 

drainage across our study area in the Lower Hunter Valley, NSW (New South Wales, 149 

Australia).  150 

Materials and methods 151 

Study area 152 

The area of this study is the Hunter Wine Country Private Irrigation District (HWCPID), 153 

situated in the Lower Hunter Valley, NSW. The HWCPID covers approximately 220 km2 and 154 

encompasses the localities of Pokolbin and Rothbury, NSW (32.83°S 151.35°E), which are 155 

approximately 140 km north of Sydney, NSW (Fig. 1). Topographically, this area consists 156 

mostly of undulating hills that ascend to low mountains to the south-west. The underlying 157 

geology of the HWCPID is predominantly Early Permian, with some Middle and Late 158 

Permian formations. Described in the Newcastle Coalfield Regional 1:100000 Geology Map 159 

(Hawley et al. 1995), the most extensive formation is the Rutherford Formation (Early 160 

Permian) which consists of siltstones, marl, and some minor sandstone. Much of the southern 161 



and eastern part of the HWCPID is underlain by the Rutherford Formation. Other extensive 162 

formations include: the Mulbring Siltstone (Late Permian siltstones), the Branxton Formation 163 

(Middle Permian conglomerates, sandstones and siltstones) and the Farley Formation (Early 164 

Permian silty sandstones). These formations occupy the north-western extents of the 165 

HWCPID. In terms of landuse, dryland agricultural grazing systems are predominant, 166 

followed by an expansive viticultural industry. While most of the land has been dedicated for 167 

these uses, tracts of remnant natural vegetation (dry forest) are apparent, particularly towards 168 

the south-western area—which is bordered by Broken Back Range, Werakata National Park 169 

situated to the east, and some areas situated in the northern extents. 170 

 171 

[Insert figure 1 here] 172 

Figure 1: The Hunter Wine Country Private Irrigation District (shaded green) and surrounding 173 
localities. Sampling locations of the three survey campaigns: Malone et al. (2011) 34 soil profiles, 174 
Odgers et al. (2011) 251 soil profiles and 1261 soil profiles from annual surveys. Black lines indicate 175 
roads. Blue lines are major watercourses.  176 

Our knowledge of the soils across the HWCPID was first informed from legacy soil 177 

survey which is described in detail within the Soil Landscapes of the Singleton 1:250,000 178 

Sheet Map and Report (Kovac and Lawrie 1990). This knowledge has since evolved through 179 

annual soil surveying campaigns by students and members of our research group, which 180 

began in 2001 and continue to the present time. These annual surveys, while concentrated to 181 

the south of the study area, form a densely populated database of soil information and 182 

descriptions. This information and soil knowledge has been supplemented with two area-wide 183 

soil surveys of the HWCPID which have been described in Malone et al. (2011) and Odgers 184 

et al. (2011). Based on these various soil surveying campaigns we have found—based on the 185 

sub-order level of the Australian Soil Classification system (Isbell 1996)—that the most 186 

dominant soils across the HWCPID are both Brown and Red Dermosols and Chromosols. 187 

Generally, Dermosols and Chromosols are the most prolific; there are few Kurosols by 188 

comparison. Hydrosols and Rudosols are few, but generally concentrated near watercourse 189 

lines. Calcarosols are also few, yet exist in areas where the Rutherford Formation exists, 190 

particularly where the occurrence of the calcareous marl parent material is present. 191 

Corresponding WRB (FAO 1998) soil classes to the ASC soil orders are: Calicisols Calcisols 192 

(Calcarosols), Luvisols (Chromosols and some Dermosols), Acrisols (Kurosols and some 193 

Dermosols), Fluvisols (Hydrosols), and Regosols (Rudosols). 194 

Conceptual model of the spatial distribution of soil drainage 195 



In the HWCPID, we have often observed a common sequence of soils down hillslopes, which 196 

indicate varying degrees of soil drainage. Morphologically, this sequence can be observed as 197 

changes in the matrix soil colour. For example, red coloured soils are observed a lot on 198 

hilltops and crests. Brown and yellow soils can be found further down the hillslope, and often 199 

grey and black soils are found on the foot slopes near watercourse lines. This sequence of soil 200 

colour are is not uncommon down a hillslope in other parts of the world (e.g. Simonson and 201 

Boersma 1972; Bouma 1983; Kravchenko 2002). 202 

In Table 1, site and soil morphological data is are provided for three soils, developed from 203 

the same parent material (siltstone), at different positions of a hillslope in the HWCPID. 204 

These data are not in isolation; rather they represent a common occurrence, not of soil type, 205 

but soil colour change and presumably soil drainage. On the crest is a Red Dermosol, which 206 

then grades into a Brown Dermosol at the mid-slope position, followed by a Grey Dermosol 207 

on the flat, near a watercourse line. Terrain variables: Topographic Wetness Index (TWI), 208 

Multi-resolution Valley Bottom Flatness Index (MRVBF), and Vertical Distance to Channel 209 

Network (VDCN) highlight some topographical information which may provide further 210 

explanatory evidence for describing this sequence of soils and associated soil drainage. For 211 

example TWI and MRVBF, both indices for describing the movement and concentration of 212 

water in the landscape, increase down the hillslope i.e. soils in the mid-to-low parts of the 213 

hillslope accumulate and concentrate more water than soils on or near the hillcrests.  214 

[Table 1 here] 215 
Table 1. Site and soil morphological information for three soil profiles down a catena in the 216 
HWCPID. Topographic Wetness Index (TWI), Multi-resolution Valley Bottom Flatness 217 
Index (MRVBF), and Vertical Distance to Channel Network (VDCN). 218 

Similar to a soil drainage index, the soil hydromorphic index by Chaplot et al. (2000) 219 

requires information regarding redoximorphic features i.e. mottling for its derivation. 220 

Because we cannot rely on this data in our database (as such features have not been 221 

consistently nor accurately recorded), we need to derive another index, based exclusively on 222 

the soil matrix colour. Further in the discussion we propose an approach how to incorporate 223 

such features within our simple index. Our drainage index ranges continuously between and 224 

including the values of 5 and 1. The conceptual  model of soil water drainage in the HWCPID 225 

and exemplified with the data in Table 1, is that “red” soils have the highest drainage index 226 

value of 5, “brown” soils (4), “yellow” soils (3), “grey” soils (2), and “black” soils (1). This 227 

index implies that “red” soils drain better than “brown”, which drain better than “yellow” 228 

soils and so on. “Black” soils are the poorest in terms of soil drainage because it is these soils 229 



that appear to be saturated permanently and as a consequence have accumulated carbon. The 230 

soil drainage index has been designed for where descriptions have been made for each 231 

genetic soil horizon of a soil profile (but it may also be applied where soil is observed as 232 

regular or at specific depth intervals). Derivation of the soil drainage index is now described 233 

in the following methodological sections.  234 

Derivation of the drainage index 235 

The data 236 

In this study we use soil data collected from three major soil surveying campaigns conducted 237 

in the HWCPID.  In total, these campaigns have amounted to 1546 individual soil profile 238 

observations and descriptions (Figure 1). The breakup of these profiles is: 34 come from the 239 

work by Malone et al. (2011); 251 from the work of Odgers et al. (2011); and 1261 from 240 

annual soil survey work for the years between 2001 and 2011. For each of these soil profiles, 241 

data was recorded for each genetic horizon. Our primary interest is in the matrix soil colour 242 

of each horizon, particularly the moist colour, which was recorded on the basis of matching 243 

the observed soil colour with a colour chip on a Munsell HVC (Hue, Value, Chroma) colour 244 

chart. We disregarded horizon descriptions where the lower boundary did not exceed 40cm 245 

from the top of the soil profile. We also disregarded horizon descriptions of semi- and 246 

unconsolidated parent materials which in Australian soil nomenclature are described as B/C 247 

and C horizons respectively (The National Committee on Soil and Terrain 2009). For 248 

example, if the first horizon of a particular soil profile was 0-55cm, then it would be included 249 

in the drainage index model. If a soil profile had a sequence of horizons measuring: 0-30cm, 250 

30-75cm, 75-120cm, and >120 (which was found to be bedrock), then the drainage index 251 

would only consider the observed data from 30-120cm.  After this filtering process, we ended 252 

up with 3731 soil horizon data with moist soil colour descriptions to work with. 253 

Munsell HVC soil colour descriptions are not conducive for quantitative studies. 254 

Therefore, we performed a conversion from the Munsell HVC colour space to the CIELAB 255 

colour space (Robertson 1977; CIE 1978). The CIELAB colour space can describe any 256 

uniform colour space by the three variables: L*, a*, and b*. Each variable represents the 257 

lightness of the colour (L* = 0 yields black and L* = 100 indicates diffuse white), its position 258 

between red/magenta and green (a*, negative values indicate green while positive values 259 

indicate magenta) and its position between yellow and blue (b*, negative values indicate blue 260 

and positive values indicate yellow). The non-linear equations for converting from Munsell 261 

HVC to CIELAB are described in Viscarra Rossel et al. (2006). First Munsell HVC are 262 



converted to the CIE XYZ colour space based on a fitted neural network model of known 263 

XYZ values and corresponding Munsell soil colour chips, which are derived from the 264 

Munsell Conversion program Version 6.41 (http:// www.gretagmacbeth.com). Standard CIE 265 

(1978) equations are then used to transform from CIE XYZ to CIELAB. Because a model 266 

based approach (neural networks) — rather than a physical relationship or direct 267 

correspondence — are used to transform from Munsell HVC to CIE XYZ, the prediction will 268 

inevitably be uncertain to some degree. The extent of this uncertainty is not known. Viscarra 269 

Rossel et al. (2006) do state however that the conversion was adequate.  270 

One of the problems with descriptions of soil colour is that they are subjective and can be 271 

ambiguous estimates. Each individual’s perception of colour is different, which will result, 272 

for the same soil, often quite different predictions of soil colour. In order to work with this 273 

type of data, our drainage index is rooted in fuzzy set theory (Zadeh 1965), meaning that 274 

some of the ambiguity and uncertainty in soil colour prediction can be dealt with by 275 

allocating each observation, membership to multiple defined classes. Therefore the first step 276 

in defining a drainage index entails designating centroids or archetypal soils for each soil 277 

colour/drainage class. Using the unconverted data (i.e. the Munsell HVC colours), we 278 

designated each observation to a particular colour class based on the colour groupings of 279 

Northcote (1979). From summary statistics, we came up with 3 centroids (the 3 most 280 

frequently observed) for each colour class to represent the reference or archetypal soil colours 281 

(Table 2). Three reference colours (15 in total) for each colour class was a pragmatic decision 282 

based on the fact that we wanted to derive an appropriate configuration of centroids within 283 

the L*, a*, and b* feature space.  284 

[Insert table 2 here] 285 

Table 2. Reference soil colours for each soil colour class in both Munsell  HVC and CIELAB 286 
colour space notation. Note that the reference colours are grouped following the colour 287 
groupings that were created by Northcote (1979).  288 

 289 

With the reference colours established, we then estimated the Mahalanobis distance of 290 

each observation to each reference colour:  291 

݀௜ ൌ 	ට൫࢞௜ െ ௝൯ࢉ
்
௜࢞ଵ൫ିࡿ െ  ௝൯ࢉ

i = 1, …, N;  j = 1, …, C   292 



Equation 1 293 

where d is the Mahalanobis distance between the multivariate vector x (here an observed L*, 294 

a*, and b* vector) and reference colour vector c ( L*, a*, and b*).  S is the variance-covariance 295 

matrix of N observed x. The result here is an N × C matrix ሺࡰሻ	where each element ݀௜௝ 296 

represents the Mahalanobis distance of each observed horizon colour i to each reference 297 

colour j.  298 

The measure of similarity (or membership) of each horizon observation to each reference 299 

colour is estimated as: 300 

௜,௝ݑ ൌ
1

1 ൅ ∑ ൬
݀௜௝
݀௜௟
൰

ଵ
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஼
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i = 1, …, N;  j = 1, …, C; l=1, …, C-1  301 

Equation 2 302 

where ݑ௜,௝ is the similarity of horizon observation i  to reference colour j, and where ݀௜௟ is the 303 

Mahalanobis distance of i  to the other reference colours ݀௜௟. Thus observations close to (as 304 

determined by the Mahalanobis distance) a reference colour will have a higher similarity than 305 

those observations more distant. The fuzzy exponent m determines the level of similarity 306 

fuzziness of i to each reference colour. A value of 1 for m will result in all ݑ௜,௝ converging to 307 

either 0 or 1, which implies a crisp partitioning of the observations to the reference colours. 308 

Conversely, m values approaching infinity will create similarities with complete overlap such 309 

that an observation will have equal similarity to all reference colours. In this study, we 310 

pragmatically set m to 1.5 on the basis that we did not desire to crisply partition the 311 

observations, yet still allow for some overlap to the reference colours. 312 

Estimation of drainage index for each horizon and subsequently each soil profile 313 

The drainage index ranges continuously between and including the values of 5 and 1. As per 314 

the conceptual model of soil water drainage in the HWCPID, red soils have the highest 315 

drainage index value of 5, brown soils (4), yellow soils (3), grey soils (2), and black soils (1). 316 

For each horizon the drainage index is calculated as a weighted average based on the degree 317 

of similarity to each reference colour. Such that: 318 

௜ܫܦ ൌ 	෍ݑ௜௝ܴܥ௝

ே

௜ୀଵ

 



Equation 3 319 

where DI is the drainage index and RC refers to the reference soil colour j. While not 320 

considered in this study, the presence of mottles could potentially be included in this index 321 

with the following equation: 322 

ሺ௥௫ሻ	௜ܫܦ ൌ ௜ܫܦ	 	ൈ  ݌ܴ

Equation 4 323 

Here ܫܦ௜	ሺ௥௫ሻ is the drainage index incorporating information about the proportion of mottles 324 

within the soil matrix (expressed as a percentage), and ܴ݌ is simply 1- the observed 325 

proportion. Of course this equation would need to be tested against real data.   326 

Continuing on from equation 3, because we need to derive a whole profile drainage index 327 

value we need to aggregate each DI calculated at each horizon for each soil profile P. 328 

However, we want to preferentially weight the observed DI values such that observations at 329 

depth are given more weight to those higher up the soil profile. Firstly, for each horizon in 330 

soil profile P, a vector based on the observed upper and lower horizon boundaries is created 331 

and then summed. For example, in P, a particular horizon is observed to occur from 45-75cm.  332 

The summed vector of this sequence (i.e. 45, …, 75) is 1860. We may denote this summed 333 

vector as SV. Therefore the whole-soil profile drainage index value can be calculated as: 334 

௉ܫܦ ൌ 	෍
ܵ ௛ܸ

∑ ܵ ௛ܸ
௓
௛ୀଵ

∙  ௛ܫܦ

h = 1, …, Z 335 

where DIP and DIh are the drainage index value/s for the  whole-profile and genetic soil 336 

horizons respectively of a soil profile P.  337 

Correlation of the drainage index with environmental variable 338 

The ultimate aim of this paper is to derive a drainage index map for the HWCPID. As a 339 

preliminary step we wanted to investigate the relationship (using Pearson’s coefficient of 340 

correlation) of the derived drainage index with a suite of environmental covariate 341 

information. In this study, this covariate information is exclusively derived from a digital 342 

elevation model (25m ground resolution) sourced from the NSW Government. Informed from 343 

similar work of mapping soil drainage and hydromorphy (such as Kravchenko et al. 2002; 344 

Campling et al. 2002; and Chaplot et al. 2004), from the digital elevation model we derived a 345 



number of potentially useful primary and secondary terrain variables: Elevation (E), slope 346 

gradient (S), slope length (SL), slope height (SH), mid-slope position (MSP), terrain wetness 347 

index (TWI), vertical distance to channel network (VDCN), multi-resolution valley bottom 348 

flatness index (MRVBF), analytical hillshading (AH). These indices were derived using the 349 

terrain analysis modules of SAGA GIS (http://www.saga-gis.org/), and described in more 350 

detail in Table 3.     351 

 352 

[Insert table 3 here] 353 

 Table 3. Description of topographical variables used in this study. 354 

 355 

Mapping the drainage index  356 

We use a digital soil mapping (McBratney et al. 2003) framework for the spatial interpolation 357 

of the drainage index across the HWCPID to the same resolution as the topographic variables 358 

(25m). The dataset of 1546 profiles was randomly split into calibration (70%) and validation 359 

(30%) datasets. For calibration, the soil spatial prediction function employed here was a 360 

regression kriging model. Using the covariates described above, we used cubist models to 361 

identify any deterministic relationship with the drainage index at each of the observed soil 362 

profiles. Cubist is a prediction-oriented regression model that is based mostly on work by 363 

Quinlan (1992). Although it initially creates a tree structure, it collapses each path through 364 

the tree into a rule. A regression model is fitted for each rule, based on the data subset defined 365 

by the rules. The set of rules are pruned or possibly combined, and the candidate variables for 366 

the linear regression models are the predictors that were used in the parts of the rule that were 367 

pruned away. The residuals from the cubist model were investigated for spatial 368 

autocorrelation as a means to detect any additional (random) spatial trend of the drainage 369 

index not detected from the covariates. We used geostatistics and locally fitted variograms 370 

(based on the exponential model)  for spatial interpolation (kriging) of the residuals across the 371 

entire HWCPID. The sum of the outputs from the deterministic modelling and residual 372 

kriging resulted in a final drainage index map.  373 

The validation dataset was withheld from the calibration procedure. Using measures such 374 

as the root mean square error (RMSE) and concordance coefficient we compared the 375 

regression kriging predictions at each of the validation profiles with their ‘observed’ value. 376 



The RMSE measures the differences between predicted and observed values and is 377 

estimated by: 378 

ܧܵܯܴ ൌ 	ඨ
∑ ቀݖ௣௜ሺݏሻ െ	ݖ௜	ሺݏሻቁ

ଶ
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where ݖ௣௜ሺݏሻ and ݖ௜	ሺݏሻ are the predicted and observed values of validation point i and n is 379 

the number of validation points. The concordance coefficient measures the fidelity of the 380 

observations and the predictions to a 1:1 line (Lin 1989).  381 

The implementation of methods in this study (where previously not already stated) were 382 

carried out using the R statistical software (R Core team 2015) for general statistical 383 

analyses and mapping. The R package “Cubist” (Kuhn et al. 2016) was used for fitting the 384 

cubist model. VESPER geostatistical software (Minasny et al. 2005) was used for the local 385 

fitting of variograms and kriging.  386 

Results 387 

Pearson’s coefficient of correlation between the derived soil profile drainage index and each 388 

of the covariate data sources from highest to lowest were: TWI (-0.34), MSP (-0.29), 389 

MRVBF (-0.29), VDCN (0.26), SH (0.22), SL (-0.18), S (0.11), E (0.09), and AH (-0.03). 390 

These correlation coefficients indicate some general features of soil drainage in the 391 

HWCPID, for example there is a positive correlation of the drainage index with vertical 392 

proximity to watercourse lines. Indices such as TWI and MRVBF, which inform us about 393 

the hydrological characteristics of the area, are negatively correlated with the drainage 394 

index. Thus based on landscape position, where the soil is more prevalent to concentration 395 

of water, the drainage index is also lower. The correlations of the slope indices S, SH, and 396 

MSP with the drainage index indicate a relationship whereby gentle slopes (relatively low S 397 

and SH and high MSP) soils more likely to have a lower drainage index. Similarly, longer 398 

slopes (SL) result in a negative correlation with the drainage index.  399 

Fitting of the Cubist model to the calibration data resulted in the partitioning of two 400 

simple rules for the spatial distribution of the drainage index. Each rule defining a different 401 

regression model: 402 

Rule 1 403 

	ܰܥܦܸ	݂݅ ൑ 7.8m 404 

 ݄݊݁ݐ



ܫܦ ൌ 6.58 ൅ 0.06ሺܸܰܥܦሻ െ 0.20ሺܹܶܫሻ െ 0.02ሺܧሻ െ 0.80ሺܪܣሻ	 

Rule 2 405 

	ܰܥܦܸ	݂݅ ൐ 7.8m 406 

 ݄݊݁ݐ

ܫܦ ൌ 6.58 െ 0.11ሺܹܶܫሻ െ 0.01ሺܧሻ െ 0.09ሺܲܵܯሻ ൅ 0.001ሺܸܰܥܦሻ	 

These simple linear regressions are pre-empted by a recursive split of all data based on a 407 

threshold value of 7.8 for the VDCN. Essentially this means that vertical proximity to a 408 

watercourse line is a defining characteristic of soil drainage. Common parameters to each 409 

linear model were VDCN, TWI, and E, while AH was only included in the first rule and MSP 410 

was only included in the second rule.  411 

Examining where each Cubist rule was applied shows clearly the relationship of the rules 412 

with proximity to watercourse lines (Figure 2a). For approximately one-third of the area, rule 413 

1 was applied.   414 

 415 

[Figure 2 here] 416 

Figure 2. Spatial map of the application of Cubist rules across the HWCPID (a). Map of the soil 417 
drainage index across the HWCPID (b). Black lines indicate roads. Blue lines indicate watercourse 418 
lines 419 

The associated drainage index map which resulted from the regression kriging model is 420 

shown in Figure 2b. With the blue lines indicating the watercourse lines, it is clear from the 421 

map that proximity to them has a considerable effect on the soil drainage.  From a basic 422 

statistical analysis, where rule 1 was applied, the mean drainage index was 2.70 with 95% of 423 

the area between 1.85 and 3.60. Where rule 2 was applied, the mean drainage index was 3.40 424 

with 95% of the area between 2.51 and 4.00.  425 

Validation of the regression kriging model based on 446 withheld data indicated a RMSE 426 

of 0.90, meaning that, the predictions of the drainage index on average deviate approximately 427 

0.9 away from the observed value. The concordance between the observed and predicted 428 

values was a reasonable 0.49. The plot in Figure 3 show the observations and corresponding 429 

predictions with respect to the 1:1 relationship (draw as a red dashed line). Predictions appear 430 

to be strongest around drainage index values between 2.5 and 4.0  From visual inspection of 431 

the plot it is clear there does not seem to be any bias, such as prevalence for over or under 432 

predictions (mean error was calculated as -0.08).  A linear model fitted to the observed and 433 



fitted data resulted in a co-efficient of determination of 31%, indicating a reasonable 434 

correlative relationship (green solid line).   435 

[Insert Figure 3] 436 

Figure 3.  Observed and fitted plot of drainage index based on regression kriging predictions 437 
for the validation dataset. Red dashed line indicates a line of concordance (1:1 relationship). 438 
Green solid line is a regression line for the linear relationship between the observed and 439 
predicted drainage index.  440 

Discussion  441 

The continuous index of soil drainage proposed in this study requires little information other 442 

than tacit knowledge of soil drainage spatial variability, and observed soil matrix colour 443 

descriptions. The fundamental limitation of this is that we have assumed there is a direct 444 

correlation between soil colour and soil drainage. There is good physical evidence though to 445 

support this relationship (e.g.  Bouma 1983; Evans and Franzmeier 1988). It is likely, since 446 

we have been able to establish a correlative relationship between our index of soil drainage 447 

and some topographical variables, that some validation in terms of soil water measurements 448 

or measurements of water table proximity is warranted in further studies. 449 

There is significant value from the land management perspective in quantifying soil 450 

drainage as a spatially continuous variable across the landscape. In this study, we have 451 

avoided mapping the well-known and established drainage classes. While there may be 452 

value in doing this, the grading between classes is qualitative and in the absence of direct 453 

measurement, allocation to a particular class is a subjective designation. Nevertheless, it was 454 

by necessity (due to the data used) that we had to develop our own model, which by default 455 

treats soil drainage as a continuous variable. Subsequently, mapping the continuously 456 

varying drainage index across the HWCPID revealed spatial patterns more attuned to what 457 

one would observe in the landscape; that is, continuously varying rather than discreetly 458 

apportioned. In the HWCPID, it is believed that discreet variations of soil drainage are the 459 

exception rather than the rule.  460 

On the basis of using digital soil mapping methods, we have been able to validate 461 

quantitatively the spatial model of soil drainage. Comparatively with other digital soil 462 

mapping studies, the results found in this study are acceptable (Grunwald 2009). Other 463 

studies that have examined the relationship between soil drainage and environmental 464 

information have reported stronger correlations than that reported in this study (e.g. 465 

Campling et al. 2002; Chaplot et al. 2004). It is suspected that scale may be one cause for 466 

this discrepancy. For example we have attempted to describe the variations of soil drainage 467 



over a much larger area of land which we know to be rather complex (topographically and 468 

lithologically). While these results may be improved upon, the map, from a soil surveyor’s 469 

perspective, adequately coincides with the knowledge we have developed over the years of 470 

survey in the HWCPID.  471 

In terms of the spatial prediction model, we used the Cubist models as an attempt to 472 

mirror what a soil surveyor would observe in the landscape. That is, given particular 473 

combinations of features or characteristics of the landscape, a particular soil or characteristic 474 

of the soil will behave similarly. The quantitative interpretation of this and what was found 475 

in this study, was that vertical distance to a channel network was a divisive and important 476 

physical attribute determining the estimation of soil drainage. Such that, given a certain 477 

threshold, different predictive models were applied. More generally, we have found that 478 

using such rule-based spatial prediction functions makes them more interpretable (from the 479 

soil survey perspective) and particularly useful for digital soil mapping. 480 

Correcting the deviation between what was observed (from the data) and what was 481 

predicted using a spatial model is a worthwhile pursuit. What was clear in this study is that 482 

the observed variations of soil colour described something much more complex than what 483 

the spatial model was able to describe. There could be many reasons and explanations for 484 

this. One of them is that soil colour alone and attribution thereof can have significant 485 

influence on the interpretation of soil processes. While fuzzy set theory is embedded within 486 

our model, which by definition embraces the subjectivity around soil colour attribution, our 487 

model is by no means immune to poorly attributed soil colour descriptions. Ultimately, this 488 

can have flow-on effects when soil colour is then used in some sort of quantitative model 489 

e.g. soil drainage (Chaplot et al. 2004). O’Donnell et al. (2010) have proposed a 490 

standardised procedure of soil colour attribution based on image processing. Or perhaps 491 

usage of a colorimeter would be enough to make standardised assessments of soil colour. 492 

Currently, standardised assessments of soil colour are not made during soil survey around 493 

the world, so it is likely it will be some time before we can test the applicability of our 494 

method using such assessments. 495 

The spatial model of soil drainage in this study principally used topographical variables 496 

as predictive covariate information. We also incorporated a regression kriging model with 497 

the intention of further modelling spatial trend that was not detectable from the topographic 498 

information. Regression kriging made some improvement of the prediction in comparison to 499 

just using a deterministic model. Nevertheless, due to a limitation in the availability of 500 

additional sources of predictive information, we were unable to explore more complex 501 



relationships of soil drainage with other environmental variables. For example, parent 502 

material or underlying geology has been shown to be a useful variable (Bell et al. 1992). 503 

Intuitively, different lithologies will impart differing soil physical characteristics, such that 504 

the drainage characteristics of a soil developed from limestone will be different from those 505 

developed on siltstone or sandstone etc. The best available geological survey of the 506 

HWCPID (1:100000; Hawley et al. 1995) informs us that while siltstones are the most 507 

predominant lithology, there are also sandstones and silty sandstone parent materials. A 508 

limitation of our mental model of soil drainage is that it has been refined where the lithology 509 

is predominantly siltstone—as most of the soil sampling has been conducted on this 510 

lithology. There is potential bias regarding estimation of soil drainage to contend with where 511 

other lithologies are found. However, the question is whether the current geological survey 512 

could be used to refine our model of soil drainage? It is unlikely that it would, because while 513 

instructive, it is neither comprehensive or of the appropriate scale. Furthermore, soil 514 

processes such as colluviation and alluviation have often created soil profiles of complex 515 

and mixed lithology that is near impossible to disentangle from geological survey maps. We 516 

envisage that in the future, gamma-radiometric survey will provide us with information 517 

regarding the lithology and lithological processes at the necessary detail to be included 518 

within our soil drainage model. Gamma radiometry refers to the measurement of naturally 519 

occurring gamma radiation which is emitted from the ground surface (Cook et al. 1996). 520 

Such information has been shown to describe the distribution of soil-forming materials and 521 

weathering processes over large areas (Wilford 2012) 522 

In the absence of detailed lithological information, a pragmatic solution may be to 523 

examine whether the digital mapping of soil texture grades (or soil variables derived from 524 

them such as bulk density etc.) are useful for interpreting variations of soil drainage. In the 525 

HWCPID, where soil textures are recorded predominantly as that derived from hand 526 

bolusing, we need to explore methods of how to incorporate these data within a digital soil 527 

mapping framework.  528 

Conclusions 529 

By necessity of the data available, we have developed an index of soil drainage which 530 

incorporates tacit knowledge of the soil surveyor and observed soil matrix colour. Soil 531 

drainage is evaluated as a whole-profile, weighted combination of the soil colour at each 532 

generic soil horizon. Fuzzy set theory is built into the drainage index model as a means to 533 



dampen the subjectivity of soil colour attribution. We believe the approach can be 534 

generalised to other areas once the unique soil colour and soil drainage relationships have 535 

been defined by an expert. 536 

In our study, we found that the topographical variables most strongly correlated with soil 537 

drainage are topographic wetness index, mid-slope position, multi-resolution valley bottom 538 

flatness index and vertical distance above channel network. Cubist models were used to 539 

model the relationship of the drainage index with a suite of topographic variables with the 540 

dual purpose of understanding the spatial variation of soil drainage and to validate our 541 

mental model of soil drainage developed over the years from successive field surveys. 542 

Validation of the spatial model of soil drainage was adequate in consideration of the scale of 543 

mapping and nature of the data. The associated map corresponds meaningfully to what we 544 

have generally observed in the field. The incorporation of new information specifically from 545 

gamma-radiometry or soil texture may be useful solutions in improving our understanding 546 

of soil drainage in the HWCPID.  547 

  548 
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