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Background. Larval settlement and intra-specific interactions during the recruitment
phase are crucial in determining the distribution and density of sessile marine populations.
Marine caves are confined and stable habitats. As such, they provide natural l[aboratory to
study the settlement and recruitment processes in sessile invertebrates, including the
valuable Mediterranean red coral Corallium rubrum. In the present study the spatial and
temporal variability of red coral settlers in an underwater cave was investigated by
demographic and genetic approaches. Methods. Sixteen PVC tiles were positioned on the
walls and ceiling of the Colombara Cave, Ligurian Sea, and recovered after twenty months.
A total of 372 individuals of red coral belonging to two different reproductive events were
recorded. Basal diameter, height, and number of polyps were measured, and 7
microsatellites loci were used to evaluate the genetic relationship among individuals and
the genetic structure. Results. Significant differences in the colonization rate were
observed both between the two temporal cohorts and between ceiling and walls. No
genetic structuring was observed between cohorts. Overall, high levels of relatedness
among individuals were found. Conclusion. The results show that C. rubrum individuals
on tiles are highly related at very small spatial scales, suggesting that nearby recruits are
likely to by sibs and most larvae originated from adult colonies surrounding the tiles.
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Abstract

Background. Larval settlement and intra-specific interactions during the recruitment phase are
crucial in determining the distribution and density of sessile marine populations. Marine caves
are confined and stable habitats. As such, they provide natural laboratory to study the settlement
and recruitment processes in sessile invertebrates, including the valuable Mediterranean red coral
Corallium rubrum. In the present study the spatial and temporal variability of red coral settlers in

an underwater cave was investigated by demographic and genetic approaches.
Methods. Sixteen PVC tiles were positioned on the walls and ceiling of the Colombara Cave,

Ligurian Sea, and recovered after twenty months. A total of 372 individuals of red coral
belonging to two different reproductive events were recorded. Basal diameter, height, and
number of polyps were measured, and 7 microsatellites loci were used to evaluate the genetic
relationship among individuals and the genetic structure.

Results. Significant differences in the colonization rate were observed both between the two
temporal cohorts and between ceiling and walls. No genetic structuring was observed between
cohorts. Overall, high levels of relatedness among individuals were found.

Conclusion. The results show that C. rubrum individuals on tiles are highly related at very small
spatial scales, suggesting that nearby recruits are likely to by sibs and most larvae originated

from adult colonies surrounding the tiles.
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Introduction

Recovery and resilience of sessile benthic organisms mostly depend on their early life history
stages such as dispersal, settlement and recruitment (Hughes et al., 2000; Pineda et al., 2007). It
has been shown that abiotic (Torrents & Garrabou, 2011) and biotic (Lindsay, Wethey &
Woodin, 1997) factors, as well as larval behaviour (Martinez-Quintana et al., 2014) may
influence dispersal and larval mortality during the pre-settlement period. The settlement is
influenced by events occurring during the planktonic stage (Babcock & Mundy, 1996). After the
settlement, other sources of mortality (e.g. intraspecific competition, predation, detachment from
the substrate) can affect the recruitment process (Perkol-Finkel et al., 2008; Santangelo et al.,
2012). Larval dispersal and recruitment play a primary role in maintaining genetic diversity
leading to a chaotic genetic patchiness (Johnson & Black, 1982). These effects are more evident
at fine spatial scales below the expected range of larval dispersal of the species (Eldon et al.,
2016). In marine invertebrates chaotic genetic patchiness seems related mainly to high variance
in reproductive success (Hedgecock, 1994), collective dispersal (Broquet & Yearsley, 2012) and
asynchronous local population dynamics (Eldon et al., 2016). Nevertheless, recruitment coming
only or mostly from local populations (self-recruitment) can; lead to an impoverishment of the
genetic variability and thus decreasing the population resilience to stressors (Brazeau, Sammarco
& Atchison, 2011; Lasker, 2013) but could also enhance population survival through local
adaptation (Sanford & Kelly, 2011).

Early life stages (from larval release to recruitment) in marine invertebrates such as sponges,
ascidians and cnidarians, have been investigated using different tools such as laboratory
experiments on larval behaviour (Guizien et al.,, 2012; Martinez-Quintana et al., 2014), on

settlement and metamorphosis on different substrates (Bavestrello et al., 2000), field experiments
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on settlement and post-settlement processes (Fraschetti et al., 2002), mathematical simulation by
biophysical circulation modelling (Guizien et al., 2006), and empirical evidences from
population genetics (Hedgecock, Barber & Edmands, 2007; Eldon et al., 2016). Moreover,
recruitment rates, and their variability in space and time, can be estimated directly, using
settlement tiles (Bramanti et al., 2007; Green & Edmunds, 2011; Santangelo et al., 2012;
Bramanti & Edmunds, 2016); while spatial genetic structure (SGS; e.g. genetic variability,
relatedness) can provide indirect estimates (Brazeau, Sammarco & Atchison, 2011; Smilansky &
Lasker, 2014). The strong SGS observed in corals suggest that recruitment is often local,
probably as a result of the short effective dispersal of larvae and their philopatric behaviour
(Costantini, Fauvelot & Abbiati, 2007a; Ledoux et al., 2010a). However, to date, only few
studies have analysed the SGS in coral settlers and recruits (Brazeau, Sammarco & Atchison,
2011; Torda et al., 2013; Smilansky & Lasker, 2014).

Underwater caves (sensu Rastorgueff et al., 2015) represent a naturally fragmented and confined
habitat not exposed to the dominant currents, which provide a natural protection from
disturbances associated with waterborne substances (Garrabou & Harmelin, 2002). Due to their
high species richness, they are considered a Mediterranean biodiversity reservoir (Gerovasileiou
& Voultsiadou, 2012). Underwater caves represent, therefore, an excellent natural mesocosm to
investigate the recruitment processes without adding other stochastic external disturbances.
Moreover, the understanding of recruitment processes in caves will be pivotal to forecast their
ability to recover after disturbances, and to understand if they can act as refugia for species living
outside the caves.

The red coral (Corallium rubrum L. 1758) is one of the abundant species inhabiting

Mediterranean caves due to its preference for dim-light conditions and down-facing surfaces
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(Laborel & Vacelet, 1961; Garrabou & Harmelin, 2002; Virgilio, Airoldi & Abbiati, 2006). Red
coral is a gonocehoric species with internal fertilization. Gonadal development follows an annual
cycle with a synchronized release in summer (Santangelo et al., 2003). Planulae are internally
brooded and released once a year over a period of approximately 2 weeks between the end of
July and early August (Santangelo et al., 2003; Bramanti et al., 2005). Natural (e.g., smothering
by sediments, infection by parasites), anthropogenic stressors (€., harvesting: Tsounis et al.;
2013; habitat 1oss and fragmentation) and threats arising from climate change (€:g:; acidification:
Bramanti et al., 2013; Cerrano et al., 2013; increasing of sea water temperature: Cerrano,
Bavestrello & Bianchi, 2000) affect C. rubrum populations almost along its entire geographical
distribution. Several recruitment studies using settlement tiles have been carried out on shallow-
water red coral populations inhabiting vertical cliffs or small crevices (Bramanti, Magagnini &
Santangelo, 2003; Bramanti et al., 2007; Santangelo et al., 2012). High variability in the density
of recruitment between different sites has been found, and was attributed to biological
interactions (e.g. competition for space, predation, overgrowth). Population genetic studies,
conducted only on adult colonies, have shown large heterozygosity deficiencies, suggesting the
occurrence of inbreeding (non-random mating) within populations (Costantini, Fauvelot &
Abbiati, 2007a,b, Ledoux et al., 2010b,a; Aurelle et al., 2011) or demographic instability (Padron
& Guizien, 2015) and a strong genetic structure at distances of less than one meter (Costantini,
Fauvelot & Abbiati, 2007a; Ledoux et al., 2010a).

In the present study we investigated 2 cohorts of red coral recruits on settlement tiles deployed in
a Mediterranean submarine cave acting as an experimental mesocosm. Specifically, we have
analysed the variability of biometric parameters of the two cohorts of settlers (e.g. abundance of

settlers, diameter, height, number of polyps). By means of microsatellite loci, the relatedness and
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the fine spatial genetic structure within and between the two cohorts have been analysed in order
to provide additional information on early life characteristics and population dynamics of this
species. Understanding red coral recruitment processes is of key importance to unveil the drivers
of the population dynamics of the species and hence the potential recovery of the

overexploited/threatened populations.

Materials and methods

Study area and experimental design

The study was conducted inside the Colombara (or-Marcante)cave (Lat 44° 18' 35", Long 9° 10'
37") located on the east coast of the Gulf of San Fruttuoso (Italy). The cave, 10 meters long,
stands from 34 to 39 m depth on a rocky cliff southward oriented. The cave walls host a rich
assemblage of sessile invertebrates typical of the sublittoral caves of the North-West
Mediterranean Sea (Morri et al., 1986) with many sponges, corals, bryozoans, polychaetes, and
tunicates.

Field experiments were approved by the Marine Protected Area of Portofino and by the
Universita Politecnica delle Marche (Authorization n. 3/2011 (n. prot. 449/2-1-5.) and
authorization n°® 4/2012 (Protoc. N° 409/2-1-1)).

In June 2010, about 3 weeks before the start of red coral spawning (Santangelo et al., 2003),
sixteen 20 x 20 cm white PVC tiles, drilled in the centre, were fixed inside the cave by a steel
screw. PVC was selected owing to the success in previous experiment on larval recruitment
(Cerrano C, pers. comm; but see also Kennedy et al., 2017). Moreover, having positive

buoyancy, the risk of detachment from the ceiling was avoided.
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In order to test if recruitment is affected by orientation, one plot of four tiles was located on the
right vertical wall, another plot on the left vertical wall, and two plots on the ceiling of the cave
(Fig. 1). Each tile was attached to the rock, 1 m from the entrance and at a minimum distance of
30 cm from any another tiles, to avoid possible mutual interference. The red coral population
distribution into the cave is patchy, showing an average density of 349 + 215 col/m? (Cattaneo-
Vietti, Bavestrello & Senes, 1993). Tiles were attached in low-density areas of the red coral
population trying to limit as much as possible the breakage of surrounding colonies.

In February 2012, after two reproductive events (summer 2010 and summer 2011), the tiles were
removed (n=14 as 2 located on one vertical wall were lost, Fig. 1). Recovered tiles were fixed in
80% ethanol and transferred to the laboratory. A picture of each tile was taken with a NIKON
camera on a stereomicroscope NIKON SMZ 1500 and analysed with IMAGE J software version
1.240 (http://imagej.nihgov/ij) to study the spatial distribution of the red coral individuals. The
position of each individual was marked and size (diameter) was measured by averaging the
minimum and maximum width. All the individuals were then removed from the tiles and for
each of them; the number of polyps was counted under the dissecting microscope. Polyps were
removed from each individual and stored in plastic tubes with 80% ethanol at 4°C for the
upcoming DNA extraction.

Based on the literature on red coral early life stages (Bramanti et al., 2005) the age of each
individual was estimated on the basis of its height: individuals with an encrusting button shape
and height equal to zero were assigned to the cohort 2011 (hereafter recruits); individuals that
developed in height forming a small branch were assigned to the cohort 2010 (hereafter

juveniles) (Fig. 2).
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To check if a sort of cave-effect affected the pattern of recruitment, in the same period an
additional series of plots with four PVC tiles were deployed on a vertical cliff out of the cave
(Punta del Faro) where red coral population has the same range of density of the cave (425 + 100

colonies x m?) (Bavestrello et al., 2015). Plots were fixed at 70, 55, 45, and 35 m depth.

Measuring growth performances

The size structure of red coral individuals was obtained by analysing the frequency distributions
of the basal diameter (for both recruits and juveniles) and of colony height (only for juveniles).
The correlations between the parameters (diameter vs. height; diameter vs. number of polyps;
height vs. number of polyps) were analysed by the Pearson’s coefficient. Moreover, we tested
the temporal and spatial variations of the abundance of individuals by two separate one-way
ANOVAs with Cohort (two levels; fixed; recruits and juveniles) and Position (two levels; fixed;

ceiling and walls) as factors using PRIMER v6 software program (Clarke & Gorley, 2006).

Measuring genetic variability and structuring

Due to the small number of C. rubrum individuals found on the tiles deployed on the walls, the
molecular analysis was carried out only on the individuals occurring on the tiles deployed on the
ceiling of the cave.

Total genomic DNA was extracted from each individual (1 to 4 polyps per colony) following the
CTAB protocol and purified by standard chloroform procedure. Seven microsatellite loci COR9,
CORA46, L7, CORS58, MIC20, MIC24, MIC26 (Costantini & Abbiati, 2006; Ledoux et al., 2010b)
were amplified either as single locus using the protocol by Costantini & Abbiati, (2006) and by

Ledoux et al., (2010b) or in multiplex using a QIAGEN Multiplex PCR Kit. Genotyping was
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performed by MACROGEN INC. Allele sizing was determined with Peak Scanner v1.0
software. Genotypic linkage disequilibrium at each pair of loci for each was tested using FSTAT
v.2.9.3.2 (Goudet, 2001). Significance of each pairwise comparison was tested using 3360
permutations of the data.

Scoring errors due to stuttering, large allele dropout and null alleles were controlled with
MICROCHECKER version 2.2.3 (Van Oosterhout et al., 2004). Estimated frequencies of
putative null alleles were subsequently calculated for each locus using the expectation
maximization (EM) algorithm of Dempster, Laird & Rubin, (1977) implemented in FREENA
(Chapuis & Estoup, 2007). Red corals settlers sharing the same multilocus genotype (MLG)
were identified using GENALEX version 6.1 (Peakall & Smouse, 2006). Identical MLGs can
result from two distinct sexual reproduction events. To test this, the unbiased probability of
identity (Pp) that two sampled individuals share identical MLG by chance (Kendall & Stewart,
1977) was computed. The total number of alleles (N,), observed (H,), and unbiased expected
(H.) heterozygosities (Nei, 1973) were calculated for each locus and for each cohort of settlers
(either recruits and juveniles) using GENETIX software package version 4.03 (Belkhir et al.,
2000). Allelic richness was calculated after controlling for differences in sample size (N = 54),
using a rarefaction approach implemented in HP rare (Kalinowski, 2005). The f estimator of Fig
(Weir & Cockerham, 1984) was computed, and significant departures from the Hardy—Weinberg
equilibrium were tested wusing Fisher’s exact test in GENEPOP version 3.4
(http://genepop.curtin.edu.au/; Raymond & Rousset, 1995), with the level of significance
determined by a Markov chain randomization. Significant differences in genetic diversity (H,, He

and Fig) between recruits and juveniles were tested using a Student’s t-test. For all the analyses,
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when necessary, a correction for multiple tests was applied with a false discovery rate of 0.05
(Benjamini & Hochberg, 1995).

To determine whether individuals were more related than expected under panmixia, the Rxy
pairwise relatedness coefficient (Queller & Goodnight, 1989) was computed separately for
recruits and for juveniles. This index varies between 0 and 1 with Rxy = 1.0 for full-sib
relationships, Rxy = 0.5 for half-sibs and Rxy= 0 for unrelated individuals in an infinitely large
panmictic population (Peakall & Smouse, 2006). The observed mean and variance of Rxy were
compared with their expected distribution under the null hypothesis of panmixia using 1000
permutations of alleles as implemented in IDENTIX (Belkhir, Castric & Bonhomme, 2002). The
null distribution was obtained by a conventional Monte Carlo resampling procedure, which
randomly selected 10,000 genotypes without replacement and then recalculating the statistic.
Null hypothesis could be rejected with a significance level of 5%, given that the observed value
of the statistic was above the 95% level of the resampled statistics.

An exclusion test, performed in GENECLASS 2.0 (Piry et al., 2004) was used to test whether
individuals found in one tile was more similar to the individuals settled on the same tile. First,
the likelihood that an individual belongs to a particular tile was computed with a Bayesian
criterion of Rannala & Mountain (1997). Then, this likelihood was compared to a distribution of
likelihoods of 10000 genotypes simulated from each candidate tile with a Monte Carlo
algorithm. An individual was excluded from its tile when the probability of exclusion was
greater than 95% (P or a < 0.05). The second part of this Bayesian analysis utilized the
probabilities that the individuals excluded from their sampling tile originated from one of the
other tiles. Thus, individuals that were excluded from their sampling tile when P < 0.05, were

assigned to another tile when P > 0.1.
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The value of effective population size (Ne) for each cohort was inferred using the standard
linkage disequilibrium method with Waples, (2006) correction. The computations were
performed with LDNe under the random-mating model, excluding rare alleles with frequencies
of less than 0.02 and using the Jackknife option to estimate confidence intervals (Waples & Do,
2008, 2010).

Genotypic differentiation between the recruits and juveniles was tested with an exact test
(Markov chain parameters: 1,000 dememorizations, followed by 1,000 batches of 1,000
iterations per batch), and the P value of the log-likelihood (G)-based exact test (Goudet et al.,
1996) was estimated in GENEPOP. The analysis was performed three times using three different
subsets of recruits, comparable to the number of juveniles, randomly selected.

A Bayesian approach implemented in the program STRUCTURE version 2.2 (Pritchard,
Matthew & Donnelly, 2000; Falush, Stephens & Pritchard, 2007) were used to estimate the
number of genetic clusters, K, within the entire sample (i.e. recruits + juveniles). Mean and
variance of log likelihoods of the number of clusters for K = 1 to K = 10 were inferred by
running structure ten times with 1000000 repetitions each (burn-in = 100000 iterations) under the
admixture ancestry model and the assumption of correlated allele frequencies among samples.
Due to the presence of null alleles, the clustering analysis was conducted on the original data set,
using the option of null alleles coded as recessive alleles described in Falush, Stephens &
Pritchard, (2007). Mean likelihoods of K from ten runs were plotted using STRUCTURE
HARVESTER 0.56.3 (available at http://taylor0.biology.ucla.edu/struct harvest/). Results of all
runs were averaged in CLUMPAK server (Kopelman et al., 2015). Moreover, since the Structure
analysis could be inflated by the HW disequilibrium, a discriminant analysis of principal

components (DAPC), available in the Adegenet package (Jombart, Devillard & Balloux, 2010)
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for R (R Development Core Team, 2012), was also performed. This technique is designed for
multivariate genetic data (multi-locus genotypes). It maximizes the variation between groups by
first performing a principal component analysis (PCA) on pre-defined groups or populations and
then uses the PCA factors as variables for a discriminant analysis (DA), thus ensuring their
independence.

Spatial autocorrelation analyses among individuals were performed with SPAGEDI (Hardy &
Vekemans, 2002). The Loiselle’s kinship coefficient (¢ij; Loiselle et al., 1995) was used since it
is not dependent on Hardy—Weinberg (HW) equilibrium conditions (Hardy, 1999) and it has
been proved to be very effective in determining spatial genetic structure (Vekemans & Hardy,
2004). Two different analyses were performed. To test the spatial autocorrelation within the
cave, distance categories were set based on the distance between tiles and considering the
distance between two individuals found within the same tile as zero. Then, a spatial
autocorrelation analyses within those tiles containing more individuals (T4, TS, T7, T8, T9 and
T10; see results) were carried out. Taking into account the distance between individuals, the
distance categories were set in such a way that the number of pairwise comparisons within each
distance category was approximately constant. Statistical significance was based on permuting
individual locations among all individuals 10000 times and calculating upper and lower 95%

confidence interval for each distance class.

Results
Red coral recruitment
In the plots positioned into the cave, overall 372 individuals were observed on the 14 tiles.

Corallium rubrum settled on every tile deployed on the ceiling of the cave, but recruitment failed
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on three out of eight tiles on the walls (T1, T13, T14). In fact, of the 372 individuals, 350 were
found on the ceiling tiles, and only 22 on the tiles deployed on the walls, corresponding to a
significantly higher density on the ceiling than on walls (ANOVA: F, ;4 = 10.78; P < 0.01, Fig.
3). Of the 350 individuals on the ceiling, 278 were recruits and 72 were juveniles, corresponding
to a density of 34.75 + 23.86 /400 cm? and of 9 + 6.82 / 400 cm?, respectively (ANOVA: F; 55 =
5.99; P <0.05, Fig. 2). The 22 individuals found in the wall were all recruits (Fig. 3). On the tiles
positioned along the vertical cliff, at all depths no recruits were found when checking in summer

2011.

Growth performances

The size/recruit structure showed a monotonic and decreasing pattern, in which recruits in the
first class (recruits with diameter <1.5 mm) represented the dominant class (Fig. 4A). Only three
recruits (1%) had a diameter > 6 mm, and they might be formed by merging of two or more
planulae (Fig. 2) as observed by Cerrano C, (pers. comm.). The number of polyps per recruit
ranged from 1 to 22, with 70.66% of the recruits presenting 1-2 polyps, 22% between 3-4 polyps
and 7.33% more than four polyps (mean + SD = 2.32 + 2.14 polyps/recruit). Pearson’s
coefficient showed a low correlation (r = 0.4) (Fig. 4C).

The size structure of juveniles showed a more variable trend, with diameter values ranging from
0.15 mm to 8.95 mm with an average value of 2.5 = 1.5 mm (Fig. 5A). The number of polyps
ranged from 0 to 22 (average number of 9.21 + 4.6) (Fig. 5C). Juveniles with 3-4 polyps were the
9.7% of the total number, while 90.3% of them had more than five polyps. The height of the
juveniles ranged from 0.5 to 9.15 mm, with a mean of 3.3 = 1.8 mm (Fig. 5E). Pearson's

correlation coefficients showed no correlation between diameter and number of polyps (r = 0.09,
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Fig. 5B), nor between diameter and height (r = 0.03, Fig. 5F). A weak but significant correlation

was observed between height and number of polyps (r = 0.3, Fig. 5D).

Genetic variability

Individuals in which more then two loci did not amplify do to technical failures (e.g. low DNA
quantity, no amplification ef-after re-amplification); were not included in the dataset. A total of
290 red coral individuals were genotyped. No genotypic disequilibrium was observed between
loci (all P > 0.05 after FDR correction). No evidence of scoring errors due to stuttering or large
allele dropout was found, according to MICROCHECKER. An excess of homozygotes was
detected at all loci due to the presence of null alleles. Null allele frequencies ranged from 0.09
(Mic24) to 0.25 (Cor9, Mic26 and Cor58). Number of alleles ranged from 10 (Mic20) to 23
(Cor9 and Mic26). The expected and observed heterozygosity ranged from 0.29 (Cor46) to
0.81(Cor9) and from 0.13 (Mic26) to 0.64 (Mic20), respectively. The estimators of Fig (f) were
positive and ranged from 0.21 (Mic20) to 0.86 (Cor48) (Table 1).

Overall, a low genetic variability (H.= 0.59 + 0.16 and H,= 0.29+0.2; mean + SD) was found.
Out of the 290 individuals analysed, 281 different multilocus genotypes (MLGs) were identified.
Four MLGs were found twice; one MLG was encountered three times and one four times.
Individuals sharing the same MLG always came from the same tile. Tiles where identical MLGs
were found were T7, T8 and T10. The individuals sharing the same MLG were between 0.2 cm
and 13.65 cm away (in T7 and T10, respectively). In T8 and T10, one recruit and one juvenile
shared a MLG. The unbiased probability of identity (P;p) that two sampled individuals share

identical MLG by chance was 1.5¢7%4,
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No significant differences in genetic variability were observed between juveniles and recruits in
terms of H. and H, (P values associated with the permutation procedure: Py,=0.65 and
Py=0.71); while recruits showed a significantly higher allelic richness than juveniles

(PA=0.001).

Relatedness

A high degree of genetic relatedness among individuals was found: a t-test performed on the
mean observed relatedness, and test based on a permutation procedure (expected under
panmixia) gave different responses (observed mean rxy=0.027, resampled mean rxy=0.014,
t=1173, P =0.001). Pairwise relatedness based on the Queller & Goodnight, (1989) coefficient
revealed that 25.98% of the pairwise comparisons were involved in one or more parentage
relationships, with 8.57% and 17.41% of individuals involved in a full-sib and half-sib
relationship, respectively. These percentages were numerically similar considering the
relatedness within the two temporal cohorts separately.

The percentage of individuals correctly assigned at the same tile where they were found by the
individual assignments method using GENECLASS was around 50%. The effective population
size (Ne) was estimated in 68.7 (95% CI: 42.5-116.4) including all the individuals and in 32.5 for
recruits (95% CI: 20.6-57.8) and -1467.8 for juveniles (95% CI: 87.1 - «). The last negative
value is expected when the population is sufficiently large that no notable linkage disequilibrium

is induced through genetic drift (Waples & Do, 2010).

Spatial and temporal genetic structure
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No genetic structuring was observed between recruits and juveniles using the three random
dataset (Fst = 0.008, P = 0.16). The clustering method identified K = 2 gene pools based on
Evanno’s delta K statistic (Supplemental Fig. S1, S2) but with high levels of admixture as many
individuals could not be undoubtedly assigned to either cluster. Nevertheless, an eastward
genetic gradient of differentiation were observed. The DAPC is in agreement with the Structure
results (Fig. 6) with a higher genetic isolation of the titles T3 and T4 with all the other tiles.

Significantly positive kinship coefficients were detected between all the individuals within the
single tile (¢pij = 0.066, p < 0.001) indicating that individuals within tiles had a higher genetic
relatedness than random pairs of individuals. Within the cave, the autocorrelogram suggested an
estimated patch size of less than 40 cm (Fig. 7). The spatial autocorrelation between individuals

within each tile showed a significant positive value within a range from 3 to 10 cm.

Discussion

In the present study the early life history traits of the Mediterranean red coral have been
investigated using settlement tiles deployed inside a submarine cave. Size and genetic structures
of recruits have been analysed. Two cohorts of red coral recruit were collected and they showed
significant variability in space and time. No significant genetic structure was observed between
the two cohorts, while settlers on the same tiles were highly related, suggesting that larval clouds

recruiting nearby are sibs.

In summers 2010 and 2011 C. rubrum successfully recruited on artificial tiles inside the cave.
The density of settlers (26.57+29,92 individuals/400 ¢cm?) was higher compare to values found
by Bramanti et al., (2014) in Cap de Creus marine reserve (Costa Brava, Spain: 42°29.21° N;

03°30.18’E, Spain, 5.6+2.8 individuals/400 cm?) and in Portofino (Eastern Ligurian Sea, Italy:
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44°18.18” N; 09°12.83’E, Italy. 17.544.7 individuals/400 cm?). While adult colonies dwells on
the vault and on the walls of the cave, settlers density significantly differed between these two
habitats, with higher values on the tiles located on the ceiling of the cave. The only three tiles
(T1, T13, and T14) where no recruitment was recorded were positioned on the walls of the cave.
The causes of these differences are not fully understood yet, but they could be related to several
factors. Both larval behavior and habitat constraints can influence the higher recruitment density
observed on the ceiling. Even if C. rubrum larvae could survive at least 16 days (potentially up
to 42 days) in the plankton (Martinez-Quintana et al., 2014), inside caves and/or overhangs they
probably are trapped by the ceiling due to their negative geotaxis (Weinberg, 1979; Martinez-
Quintana et al., 2014). Sediment deposition is a limiting factor for red coral recruitment, and
observation made by Virgilio, Airoldi & Abbiati, (2006) showed that a thin coat of sediment
covering vertical surfaces, affects colony densities (but see also Cau et al., 2016). These findings
suggest that red coral populations dwelling in crevices and caves are more resilient due to
enhanced recruitment rates, while populations living on cliffs and on rocky bottoms, which are
the most exploited nowadays, might be endangered due to recruitment limitation.

Due to the difficulties in identifying tiny individuals (Bramanti, Magagnini & Santangelo, 2003),
only few studies have investigated the early life stage of this species (Garrabou & Harmelin,
2002; Bramanti et al., 2005, 2007). By using settlement tiles, it was possible to discriminate two
early life stages of C. rubrum: recruits and juveniles. Significant variation in the abundance of
recruits and juveniles were observed, suggesting both an inter-annual variability in larval supply
and/or post-settlement mortality. However, it is not easy to disentangle these two processes, and
this was not in the scope of this study. Concerning post-settlement processes, they include the

intra- and inter-specific interactions mediated by chemical cues, food limitation, local water

Peer] reviewing PDF | (2017:10:21242:1:1:REVIEW 9 Feb 2018)



Peer]

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

flow, predation and competition for space (Fraschetti et al., 2002). Competition for space,
together with grazing intensity, is known to produce variations in coral recruitment at this spatial
scale (Babcock & Mundy, 1996). All these processes, and their interactions, contribute to the
high mortality rates in gorgonian recruits (Caley et al., 1996; Perkol-Finkel et al., 2008),
including C. rubrum (Garrabou & Harmelin, 2002; Bramanti, Magagnini & Santangelo, 2003).
The number of polyps per individuals was consistent to Bramanti et al., (2005), with a higher
number of polyps in juveniles compared to recruits, and a significant correlation between number
of polyps and height in the juveniles. Moreover, individuals settling on tiles showed a
considerable variability in diameter and height, suggesting that growth rate in early red coral
stages may be extremely variable and possibly much higher than the growth rates estimated in
adult colonies (0.89 mm /year between the first and second years, Bramanti et al. 2005; but see
Table S2 in Cerrano et al., 2013). Considering that age of colonies on tiles is 20 months (for the
juveniles) an average annual growth rate in diameter of 1.48 mmy-' for juveniles was estimated.
These results support the high variation in colony growth rates among geographic regions and in
the early stages of colony life (Santangelo et al., 2012; Cerrano et al., 2013).

An important finding of the genetic characterization of settlers within the Colombara cave is that
several identical multi locus genotypes (MLGs) were shared by recruits and juveniles. However,
up to now, no evidence of asexual reproduction and/or polyp bail-out were reported in Corallium
rubrum. The most likely explanation for the presence of identical MLGs is that, due to the low
level of genetic variability of the species, these individuals are sibs sharing all the genotypes.

The low level of genetic variability observed compared to that previously observed in natural
populations (Costantini, Fauvelot & Abbiati, 2007; Ledoux et al., 2010a), could be due to the

small population size. However, this hypothesis seems unlikely considering the high density of
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settlers on the tiles, and the high average density of colonies on the Portofino Promontory
(227£37 colonies x m?; Bavestrello et al., 2015), including the Colombara cave (Cerrano C. pers.
obs.). The observed low genetic variability suggests high genetic drift acting within the cave. In
fact, a correlation between low genetic variability and low effective population size was already
observed in Corallium rubrum (Ledoux et al., 2015) confirming that the genetic drift might be
relevant in this species (Costantini, Fauvelot & Abbiati, 2007; Ledoux et al., 2010a).

The significant deviations from Hardy—Weinberg equilibrium, emphasized by the high positive
Fis estimates it is unlikely to be related to null alleles. Null alleles were found in some loci but
given their frequency, and previous observations in other red coral populations (Costantini,
Fauvelot & Abbiati, 2007), their effect seem not to be so relevant. High inbreeding rates (e.g.
mating between relatives) are a more likely explanation for the Fig values. This phenomenon was
already observed in Corallium rubrum (Costantini, Fauvelot & Abbiati, 2007) and was related to
larval behaviour. This hypothesis is also supported by the occurrence of sibs on a single tiles,
suggesting limited larval dispersal and/or collective dispersal (Broquet & Yearsley, 2012).
Settlers’ consanguinity could be explained by other factors (e.g., asynchrony of reproduction
events, gametes behaviour, uneven sex ratio and clonality). Little is known about red coral
gametes behaviour (Santangelo et al., 2003) but also the other possible explanations seem
unlikely. In fact, in Corallium rubrum the sex ratio is balanced (Tsounis et al., 2006; Bramanti et
al., 2014; Santangelo et al., 2015), reproduction is not completely synchrony but occurs within a
discrete time-interval in summer (Santangelo et al., 2003) and up to now clonality (asexual
reproduction) was not observed. Moreover, no genetic structure was observed between the two
analysed cohorts of settlers. All these findings, including the high relatedness among settlers (full

and half-sib relationship), suggest that in both cohorts larval supply was provided by a limited
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number of genetically similar adult colonies (o progenitors). Fine spatial scale genetic structure
is a common feature of gorgonians (Brazeau, Sammarco & Atchison, 2011), including red coral
(Costantini, Fauvelot & Abbiati, 2007; Ledoux et al., 2010a). In the Colombara cave a
population patch size of about 8 cm was detected, of the same range observed by Ledoux et al.
(2010a) in a Mediterranean marine cave close to Marseilles (20-30 cm). These high SGS,
together with the low genetic variability and the high inbreeding rate, in a close environment as a
marine cave, could enhance local adaptation. No evidences of fitness variability due to
inbreeding depression was observed in shallow red coral populations (Bramanti, lannelli &
Santangelo, 2009). However, further reduction of genetic diversity, and hence reduction of
population size due to, for example, global changes (e.g. thermal anomalies, acidification), could
lead to overcome the ‘inbreeding threshold,” resulting in loss the of fitness and in a risk of local

extinction (Frankham, 1995).

Conclusion

The present study provides new insight concerning recruitment processes in red coral
populations using a submarine cave as an experimental mesocosm. The main outcome of the
study is that C. rubrum individuals settling in the Colombara cave are highly related at very
small spatial scales, and that most larvae recruiting nearby are sibs. Evidences of the processes
explaining this pattern cannot be provided, however, self-recruitment and the presence of clouds
of larvae that settle altogether could be possible explanations. Parentage analysis between adult
individuals, both inside and outside the cave, and the recruits would help to disentangle the two
processes. Understanding processes acting in the early life history of a species is a challenging

but crucial task, with major implications for conservation. In fact, these processes drive the
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population structure and dynamic of the species, and are essential for the resistance and

resilience of populations.
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Figure 1(on next page)

Maps of sampling location and scheme of the sampling design

A) Overview of the geographic location of the Colombara cave. B) zoom of the Portofino
promontory where the cave is located. C) front of the cave and scheme of the tiles deployed.
D) profile of the cave. White rectangles represent the tiles. Rectangles without number

represent the lost tiles. Drawing made by Mancuso FP.
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Figure 2

Example of a PVC tile recovered from the Colombara cave after two years.

(A) Tile T7, (B) zoom of a recruit, (C) a juvenile, (D) a recruit probably derived by two merged

planulae.
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Figure 3(on next page)

Number of settlers on the 14 tiles deployed in the Colombara cave.
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Figure 4 (on next page)

Distribution of red coral recruits.

A) Diameter classes, B) number of polyp’s classes, C) relationship between number of polyps

and diameter. r.: Pearson coefficient.
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Figure 5(on next page)

Distribution of red coral juveniles.

A) Diameter classes, C) number of polyps classes, E) height classes. Relationship between: B)
number of polyps and diameter, D) number of polyps and height, F) height and diameter. r.:

Pearson coefficient.
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Figure 6(on next page)

Scatterplot of the Discriminant analysis of principal components (DAPC) of the settlers
found in the tiles deployed in ceiling of the Colombara cave.

Peer] reviewing PDF | (2017:10:21242:1:1:REVIEW 9 Feb 2018)



PeerJ

13

T4

Manuscript|to be reviewed

1710

igenvalues

|_||_||_|I_I|—|

\JJ




Peer]

Figure 7 (on next page)

Spatial autocorrelation analysis of Loiselle kinship coefficient (Loiselle et al. 1995).

A) All tiles: correlogram performed for all the individuals within the cave B-G) correlogram
performed for for each tiles with enough numbers of settlers (T4, T5, T7, T8, T9 and T10).

Grey lines represent 95% confidence intervals.
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Table 1(on next page)

Locus characteristics for all the individuals

Number of alleles per locus (Na); null allele frequency (r); gene diversity (H., Nei 1973);
observed heterozygosity (H,); Weir & Cockerham (1984) estimator of F (f). * Significant

deviation from panmixia after false discovery rate correction at 0.05 (Benjamini & Hochberg
1995).
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Table 1: Locus characteristics for all the individuals: number of alleles per locus (Na); null allele
frequency (r); gene diversity (He, Nei 1973); observed heterozygosity (Ho); Weir & Cockerham
(1984) estimator of Fis (f). * Significant deviation from panmixia after false discovery rate
correction at 0.05 (Benjamini & Hochberg 1995).

N Na R H. H, f

Cor9 286 23 0.22 0.81 0.31 0.61%
Mic20 289 10 0.1 0.6 0.64 0.21%*
Mic24 283 18 0.09 0.67 0.43 0.37*
Mic26 283 23 0.25 0.6 0.13 0.79*
Cor46 218 19 0.19 0.29 0.04 0.86*

L7 283 20 0.1 0.56 0.32 0.44*
Cor5s8 235 16 0.25 0.66 0.17 0.75%
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