Living upside down: patterns of red coral settlement in a cave (#21242)

First revision

Editor guidance

Please submit by 23 Feb 2018 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 9 Figure file(s)
- 1 Table file(s)
- 1 Raw data file(s)

Field study

- Have you checked the authors field study permits?
- Are the field study permits appropriate?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Living upside down: patterns of red coral settlement in a cave

Federica Costantini $^{\text{Corresp.}\ 1,\,2,\,3}$, Luca Rugiu 4 , Carlo Cerrano $^{3,\,5}$, Marco Abbiati $^{1,\,2,\,3,\,6}$

Corresponding Author: Federica Costantini Email address: federica.costantini@unibo.it

Background. Larval settlement and intra-specific interactions during the recruitment phase are crucial in determining the distribution and density of sessile marine populations. Marine caves are confined and stable habitats. As such, they provide natural laboratory to study the settlement and recruitment processes in sessile invertebrates, including the valuable Mediterranean red coral Corallium rubrum. In the present study the spatial and temporal variability of red coral settlers in an underwater cave was investigated by demographic and genetic approaches. **Methods.** Sixteen PVC tiles were positioned on the walls and ceiling of the Colombara Cave, Ligurian Sea, and recovered after twenty months. A total of 372 individuals of red coral belonging to two different reproductive events were recorded. Basal diameter, height, and number of polyps were measured, and 7 microsatellites loci were used to evaluate the genetic relationship among individuals and the genetic structure. **Results.** Significant differences in the colonization rate were observed both between the two temporal cohorts and between ceiling and walls. No genetic structuring was observed between cohorts. Overall, high levels of relatedness among individuals were found. **Conclusion.** The results show that *C. rubrum* individuals on tiles are highly related at very small spatial scales, suggesting that nearby recruits are likely to by sibs and most larvae originated from adult colonies surrounding the tiles.

 $^{^{}m 1}$ Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy

² Centro Interdipartimentale di Ricerca per le Scienze Ambientali (CIRSA), Ravenna, Italy

³ CoNISMa, Roma, Italy

⁴ Section of Ecology, Department of Biology, University of Turku, Turku, Finland

⁵ Department of Life and Environmental Science (DiSVA), Università Politecnica delle Marche, Ancona, Italy

⁶ Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche, Bologna, Italy

- 1 LIVING UPSIDE DOWN: PATTERNS OF RED CORAL SETTLEMENT IN A CAVE
- 2 COSTANTINI FEDERICA^{1,2,3}, RUGIU LUCA⁴, CERRANO CARLO^{3,5}, ABBIATI MARCO ^{1,2,3,6}
- 3 ¹ Department of Biological, Geological and Environmental Sciences, University of Bologna,
- 4 Ravenna, Italy
- ² Centro Interdipartimentale di Ricerca per le Scienze Ambientali (CIRSA), Ravenna, Italy
- 6 ³ CoNISMa, Roma, Italy
- ⁴ Section of Ecology, Department of Biology, University of Turku, Turku, Finland
- 8 ⁵ Department of Life and Environmental Science (DiSVA), Università Politecnica delle Marche,
- 9 Ancona, Italy
- ⁶ Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche, Bologna, Italy

12
13
14 Corresponding author: federica.costantini@unibo.it
15 Tel: +39 0544 937401
16 Fax: +39 0544 973411

18

17

11

21

23

24

29

32

Abstract

20 **Background.** Larval settlement and intra-specific interactions during the recruitment phase are

crucial in determining the distribution and density of sessile marine populations. Marine caves

are confined and stable habitats. As such, they provide natural laboratory to study the settlement

and recruitment processes in sessile invertebrates, including the valuable Mediterranean red coral

Corallium rubrum. In the present study the spatial and temporal variability of red coral settlers in

an underwater cave was investigated by demographic and genetic approaches.

26 Methods. Sixteen PVC tiles were positioned on the walls and ceiling of the Colombara Cave,

27 Ligurian Sea, and recovered after twenty months. A total of 372 individuals of red coral

28 belonging to two different reproductive events were recorded. Basal diameter, height, and

number of polyps were measured, and 7 microsatellites loci were used to evaluate the genetic

30 relationship among individuals and the genetic structure.

31 **Results.** Significant differences in the colonization rate were observed both between the two

temporal cohorts and between ceiling and walls. No genetic structuring was observed between

cohorts. Overall, high levels of relatedness among individuals were found.

34 Conclusion. The results show that *C. rubrum* individuals on tiles are highly related at very small

spatial scales, suggesting that nearby recruits are likely to by sibs and most larvae originated

from adult colonies surrounding the tiles.

37

35

36

Introduction

Recovery and resilience of sessile benthic organisms mostly depend on their early life history 39 stages such as dispersal, settlement and recruitment (Hughes et al., 2000; Pineda et al., 2007). It 40 has been shown that abiotic (Torrents & Garrabou, 2011) and biotic (Lindsay, Wethey & 41 Woodin, 1997) factors, as well as larval behaviour (Martínez-Quintana et al., 2014) may 42 influence dispersal and larval mortality during the pre-settlement period. The settlement is 43 influenced by events occurring during the planktonic stage (Babcock & Mundy, 1996). After the 44 settlement, other sources of mortality (e.g. intraspecific competition, predation, detachment from 45 the substrate) can affect the recruitment process (Perkol-Finkel et al., 2008; Santangelo et al., 46 2012). Larval dispersal and recruitment play a primary role in maintaining genetic diversity 47 leading to a chaotic genetic patchiness (Johnson & Black, 1982). These effects are more evident 48 at fine spatial scales below the expected range of larval dispersal of the species (Eldon et al., 49 2016). In marine invertebrates chaotic genetic patchiness seems related mainly to high variance 50 in reproductive success (Hedgecock, 1994), collective dispersal (Broquet & Yearsley, 2012) and 51 asynchronous local population dynamics (Eldon et al., 2016). Nevertheless, recruitment coming 52 only or mostly from local populations (self-recruitment) can, lead to an impoverishment of the 53 genetic variability and thus decreasing the population resilience to stressors (Brazeau, Sammarco 54 & Atchison, 2011; Lasker, 2013) but could also enhance population survival through local 55 adaptation (Sanford & Kelly, 2011). 56 Early life stages (from larval release to recruitment) in marine invertebrates such as sponges, 57 ascidians and cnidarians, have been investigated using different tools such as laboratory 58 experiments on larval behaviour (Guizien et al., 2012; Martínez-Quintana et al., 2014), on 59 settlement and metamorphosis on different substrates (Bavestrello et al., 2000), field experiments 60

on settlement and post-settlement processes (Fraschetti et al., 2002), mathematical simulation by 61 biophysical circulation modelling (Guizien et al., 2006), and empirical evidences from 62 population genetics (Hedgecock, Barber & Edmands, 2007; Eldon et al., 2016). Moreover, 63 recruitment rates, and their variability in space and time, can be estimated directly, using 64 settlement tiles (Bramanti et al., 2007; Green & Edmunds, 2011; Santangelo et al., 2012; 65 Bramanti & Edmunds, 2016); while spatial genetic structure (SGS; e.g. genetic variability, 66 relatedness) can provide indirect estimates (Brazeau, Sammarco & Atchison, 2011; Smilansky & 67 Lasker, 2014). The strong SGS observed in corals suggest that recruitment is often local, 68 probably as a result of the short effective dispersal of larvae and their philopatric behaviour 69 (Costantini, Fauvelot & Abbiati, 2007a; Ledoux et al., 2010a). However, to date, only few 70 studies have analysed the SGS in coral settlers and recruits (Brazeau, Sammarco & Atchison, 71 2011; Torda et al., 2013; Smilansky & Lasker, 2014). 72 Underwater caves (sensu Rastorgueff et al., 2015) represent a naturally fragmented and confined 73 habitat not exposed to the dominant currents, which provide a natural protection from 74 disturbances associated with waterborne substances (Garrabou & Harmelin, 2002). Due to their 75 high species richness, they are considered a Mediterranean biodiversity reservoir (Gerovasileiou 76 77 & Voultsiadou, 2012). Underwater caves represent, therefore, an excellent natural mesocosm to investigate the recruitment processes without adding other stochastic external disturbances. 78 Moreover, the understanding of recruitment processes in caves will be pivotal to forecast their 79 80 ability to recover after disturbances, and to understand if they can act as refugia for species living outside the caves. 81 The red coral (Corallium rubrum L. 1758) is one of the abundant species inhabiting 82 83 Mediterranean caves due to its preference for dim-light conditions and down-facing surfaces

(Laborel & Vacelet, 1961; Garrabou & Harmelin, 2002; Virgilio, Airoldi & Abbiati, 2006). Red 84 coral is a gonocohoric species with internal fertilization. Gonadal development follows an annual 85 cycle with a synchronized release in summer (Santangelo et al., 2003). Planulae are internally 86 brooded and released once a year over a period of approximately 2 weeks between the end of 87 July and early August (Santangelo et al., 2003; Bramanti et al., 2005). Natural (e.g., smothering 88 89 by sediments, infection by parasites), anthropogenic stressors (e.g., harvesting: Tsounis et al., 2013, habitat loss and fragmentation) and threats arising from climate change (e.g., acidification: 90 Bramanti et al., 2013; Cerrano et al., 2013; increasing of sea water temperature: Cerrano, 91 Bayestrello & Bianchi, 2000) affect C. rubrum populations almost along its entire geographical 92 distribution. Several recruitment studies using settlement tiles have been carried out on shallow-93 water red coral populations inhabiting vertical cliffs or small crevices (Bramanti, Magagnini & 94 Santangelo, 2003; Bramanti et al., 2007; Santangelo et al., 2012). High variability in the density 95 of recruitment between different sites has been found, and was attributed to biological 96 interactions (e.g. competition for space, predation, overgrowth). Population genetic studies, 97 conducted only on adult colonies, have shown large heterozygosity deficiencies, suggesting the 98 occurrence of inbreeding (non-random mating) within populations (Costantini, Fauvelot & 99 100 Abbiati, 2007a,b, Ledoux et al., 2010b,a; Aurelle et al., 2011) or demographic instability (Padron & Guizien, 2015) and a strong genetic structure at distances of less than one meter (Costantini, 101 102 Fauvelot & Abbiati, 2007a; Ledoux et al., 2010a). 103 In the present study we investigated 2 cohorts of red coral recruits on settlement tiles deployed in a Mediterranean submarine cave acting as an experimental mesocosm. Specifically, we have 104 105 analysed the variability of biometric parameters of the two cohorts of settlers (e.g. abundance of 106 settlers, diameter, height, number of polyps). By means of microsatellite loci, the relatedness and

the fine spatial genetic structure within and between the two cohorts have been analysed in order to provide additional information on early life characteristics and population dynamics of this species. Understanding red coral recruitment processes is of key importance to unveil the drivers of the population dynamics of the species and hence the potential recovery of the overexploited/threatened populations.

112

113

114

118

119

127

111

107

108

109

110

Materials and methods

Study area and experimental design

The study was conducted inside the Colombara (or Marcante) cave (Lat 44° 18' 35", Long 9° 10'

116 37") located on the east coast of the Gulf of San Fruttuoso (Italy). The cave, 10 meters long,

stands from 34 to 39 m depth on a rocky cliff southward oriented. The cave walls host a rich

assemblage of sessile invertebrates typical of the sublittoral caves of the North-West

Mediterranean Sea (Morri et al., 1986) with many sponges, corals, bryozoans, polychaetes, and

120 tunicates.

121 Field experiments were approved by the Marine Protected Area of Portofino and by the

122 Università Politecnica delle Marche (Authorization n. 3/2011 (n. prot. 449/2-1-5.) and

123 authorization n° 4/2012 (Protoc. N° 409/2-1-1)).

124 In June 2010, about 3 weeks before the start of red coral spawning (Santangelo et al., 2003),

sixteen 20 x 20 cm white PVC tiles, drilled in the centre, were fixed inside the cave by a steel

screw. PVC was selected owing to the success in previous experiment on larval recruitment

(Cerrano C, pers. comm; but see also Kennedy et al., 2017). Moreover, having positive

buoyancy, the risk of detachment from the ceiling was avoided.

In order to test if recruitment is affected by orientation, one plot of four tiles was located on the 129 right vertical wall, another plot on the left vertical wall, and two plots on the ceiling of the cave 130 (Fig. 1). Each tile was attached to the rock, 1 m from the entrance and at a minimum distance of 131 30 cm from any another tiles, to avoid possible mutual interference. The red coral population 132 distribution into the cave is patchy, showing an average density of 349 ± 215 col/m² (Cattaneo-133 134 Vietti, Bayestrello & Senes, 1993). Tiles were attached in low-density areas of the red coral population trying to limit as much as possible the breakage of surrounding colonies. 135 In February 2012, after two reproductive events (summer 2010 and summer 2011), the tiles were 136 removed (n=14 as 2 located on one vertical wall were lost, Fig. 1). Recovered tiles were fixed in 137 80% ethanol and transferred to the laboratory. A picture of each tile was taken with a NIKON 138 camera on a stereomicroscope NIKON SMZ 1500 and analysed with IMAGE J software version 139 1.24o (http://imagej.nihgov/ij) to study the spatial distribution of the red coral individuals. The 140 position of each individual was marked and size (diameter) was measured by averaging the 141 minimum and maximum width. All the individuals were then removed from the tiles and for 142 each of them; the number of polyps was counted under the dissecting microscope. Polyps were 143 removed from each individual and stored in plastic tubes with 80% ethanol at 4°C for the 144 145 upcoming DNA extraction. Based on the literature on red coral early life stages (Bramanti et al., 2005) the age of each 146 147 individual was estimated on the basis of its height: individuals with an encrusting button shape 148 and height equal to zero were assigned to the cohort 2011 (hereafter recruits); individuals that developed in height forming a small branch were assigned to the cohort 2010 (hereafter 149 150 juveniles) (Fig. 2).

151	To check if a sort of cave-effect affected the pattern of recruitment, in the same period an
152	additional series of plots with four PVC tiles were deployed on a vertical cliff out of the cave
153	(Punta del Faro) where red coral population has the same range of density of the cave (425 ± 100
154	colonies x m²) (Bavestrello et al., 2015). Plots were fixed at 70, 55, 45, and 35 m depth.
155	
156	Measuring growth performances
157	The size structure of red coral individuals was obtained by analysing the frequency distributions
158	of the basal diameter (for both recruits and juveniles) and of colony height (only for juveniles).
159	The correlations between the parameters (diameter vs. height; diameter vs. number of polyps;
160	height vs. number of polyps) were analysed by the Pearson's coefficient. Moreover, we tested
161	the temporal and spatial variations of the abundance of individuals by two separate one-way
162	ANOVAs with Cohort (two levels; fixed; recruits and juveniles) and Position (two levels; fixed;
163	ceiling and walls) as factors using PRIMER v6 software program (Clarke & Gorley, 2006).
164	
165	Measuring genetic variability and structuring
166	Due to the small number of C. rubrum individuals found on the tiles deployed on the walls, the
167	molecular analysis was carried out only on the individuals occurring on the tiles deployed on the
168	ceiling of the cave.
169	Total genomic DNA was extracted from each individual (1 to 4 polyps per colony) following the
170	CTAB protocol and purified by standard chloroform procedure. Seven microsatellite loci COR9,
171	COR46, L7, COR58, MIC20, MIC24, MIC26 (Costantini & Abbiati, 2006; Ledoux et al., 2010b)
172	were amplified either as single locus using the protocol by Costantini & Abbiati, (2006) and by
173	Ledoux et al., (2010b) or in multiplex using a QIAGEN Multiplex PCR Kit. Genotyping was

performed by MACROGEN INC. Allele sizing was determined with Peak Scanner v1.0 174 software. Genotypic linkage disequilibrium at each pair of loci for each was tested using FSTAT 175 v.2.9.3.2 (Goudet, 2001). Significance of each pairwise comparison was tested using 3360 176 permutations of the data. 177 Scoring errors due to stuttering, large allele dropout and null alleles were controlled with 178 179 MICROCHECKER version 2.2.3 (Van Oosterhout et al., 2004). Estimated frequencies of putative null alleles were subsequently calculated for each locus using the expectation 180 maximization (EM) algorithm of Dempster, Laird & Rubin, (1977) implemented in FREENA 181 (Chapuis & Estoup, 2007). Red corals settlers sharing the same multilocus genotype (MLG) 182 were identified using GENALEX version 6.1 (Peakall & Smouse, 2006). Identical MLGs can 183 result from two distinct sexual reproduction events. To test this, the unbiased probability of 184 identity (P_{ID}) that two sampled individuals share identical MLG by chance (Kendall & Stewart, 185 1977) was computed. The total number of alleles (N_a) , observed (H_0) , and unbiased expected 186 187 (H_e) heterozygosities (Nei, 1973) were calculated for each locus and for each cohort of settlers (either recruits and juveniles) using GENETIX software package version 4.03 (Belkhir et al., 188 2000). Allelic richness was calculated after controlling for differences in sample size (N = 54), 189 using a rarefaction approach implemented in HP rare (Kalinowski, 2005). The f estimator of F_{IS} 190 (Weir & Cockerham, 1984) was computed, and significant departures from the Hardy-Weinberg 191 192 equilibrium were tested using Fisher's exact test in **GENEPOP** version 3.4 193 (http://genepop.curtin.edu.au/; Raymond & Rousset, 1995), with the level of significance determined by a Markov chain randomization. Significant differences in genetic diversity (H₀, H_e 194 195 and F_{IS}) between recruits and juveniles were tested using a Student's t-test. For all the analyses,

when necessary, a correction for multiple tests was applied with a false discovery rate of 0.05 196 (Benjamini & Hochberg, 1995). 197 198 To determine whether individuals were more related than expected under panmixia, the R_{XY} pairwise relatedness coefficient (Queller & Goodnight, 1989) was computed separately for 199 recruits and for juveniles. This index varies between 0 and 1 with $R_{XY} = 1.0$ for full-sib 200 201 relationships, $R_{XY} = 0.5$ for half-sibs and $R_{XY} = 0$ for unrelated individuals in an infinitely large panmictic population (Peakall & Smouse, 2006). The observed mean and variance of R_{XY} were 202 compared with their expected distribution under the null hypothesis of panmixia using 1000 203 permutations of alleles as implemented in IDENTIX (Belkhir, Castric & Bonhomme, 2002). The 204 null distribution was obtained by a conventional Monte Carlo resampling procedure, which 205 randomly selected 10,000 genotypes without replacement and then recalculating the statistic. 206 Null hypothesis could be rejected with a significance level of 5%, given that the observed value 207 of the statistic was above the 95% level of the resampled statistics. 208 209 An exclusion test, performed in GENECLASS 2.0 (Piry et al., 2004) was used to test whether individuals found in one tile was more similar to the individuals settled on the same tile. First, 210 the likelihood that an individual belongs to a particular tile was computed with a Bayesian 211 212 criterion of Rannala & Mountain (1997). Then, this likelihood was compared to a distribution of likelihoods of 10000 genotypes simulated from each candidate tile with a Monte Carlo 213 214 algorithm. An individual was excluded from its tile when the probability of exclusion was 215 greater than 95% (P or $\alpha \le 0.05$). The second part of this Bayesian analysis utilized the probabilities that the individuals excluded from their sampling tile originated from one of the 216 other tiles. Thus, individuals that were excluded from their sampling tile when $P \le 0.05$, were 217 218 assigned to another tile when $P \ge 0.1$.

The value of effective population size (Ne) for each cohort was inferred using the standard 219 linkage disequilibrium method with Waples, (2006) correction. The computations were 220 performed with LDNe under the random-mating model, excluding rare alleles with frequencies 221 of less than 0.02 and using the Jackknife option to estimate confidence intervals (Waples & Do, 222 2008, 2010). 223 224 Genotypic differentiation between the recruits and juveniles was tested with an exact test (Markov chain parameters: 1,000 dememorizations, followed by 1,000 batches of 1,000 225 iterations per batch), and the P value of the log-likelihood (G)-based exact test (Goudet et al., 226 1996) was estimated in GENEPOP. The analysis was performed three times using three different 227 subsets of recruits, comparable to the number of juveniles, randomly selected. 228 A Bayesian approach implemented in the program STRUCTURE version 2.2 (Pritchard, 229 Matthew & Donnelly, 2000; Falush, Stephens & Pritchard, 2007) were used to estimate the 230 number of genetic clusters, K, within the entire sample (i.e. recruits + juveniles). Mean and 231 variance of log likelihoods of the number of clusters for K = 1 to K = 10 were inferred by 232 running structure ten times with 1000000 repetitions each (burn-in = 100000 iterations) under the 233 admixture ancestry model and the assumption of correlated allele frequencies among samples. 234 235 Due to the presence of null alleles, the clustering analysis was conducted on the original data set, using the option of null alleles coded as recessive alleles described in Falush, Stephens & 236 Pritchard, (2007). Mean likelihoods of K from ten runs were plotted using STRUCTURE 237 238 HARVESTER 0.56.3 (available at http://taylor0.biology.ucla.edu/struct harvest/). Results of all runs were averaged in CLUMPAK server (Kopelman et al., 2015). Moreover, since the Structure 239 analysis could be inflated by the HW disequilibrium, a discriminant analysis of principal 240 241 components (DAPC), available in the Adegenet package (Jombart, Devillard & Balloux, 2010)

for R (R Development Core Team, 2012), was also performed. This technique is designed for 242 multivariate genetic data (multi-locus genotypes). It maximizes the variation between groups by 243 first performing a principal component analysis (PCA) on pre-defined groups or populations and 244 then uses the PCA factors as variables for a discriminant analysis (DA), thus ensuring their 245 independence. 246 247 Spatial autocorrelation analyses among individuals were performed with SPAGEDI (Hardy & Vekemans, 2002). The Loiselle's kinship coefficient (\phii; Loiselle et al., 1995) was used since it 248 is not dependent on Hardy-Weinberg (HW) equilibrium conditions (Hardy, 1999) and it has 249 been proved to be very effective in determining spatial genetic structure (Vekemans & Hardy, 250 2004). Two different analyses were performed. To test the spatial autocorrelation within the 251 cave, distance categories were set based on the distance between tiles and considering the 252 distance between two individuals found within the same tile as zero. Then, a spatial 253 autocorrelation analyses within those tiles containing more individuals (T4, T5, T7, T8, T9 and 254 T10; see results) were carried out. Taking into account the distance between individuals, the 255 distance categories were set in such a way that the number of pairwise comparisons within each 256 distance category was approximately constant. Statistical significance was based on permuting 257 258 individual locations among all individuals 10000 times and calculating upper and lower 95% confidence interval for each distance class. 259

260

261

Results

- 262 Red coral recruitment
- In the plots positioned into the cave, overall 372 individuals were observed on the 14 tiles.
- 264 Corallium rubrum settled on every tile deployed on the ceiling of the cave, but recruitment failed

on three out of eight tiles on the walls (T1, T13, T14). In fact, of the 372 individuals, 350 were 265 found on the ceiling tiles, and only 22 on the tiles deployed on the walls, corresponding to a 266 significantly higher density on the ceiling than on walls (ANOVA: $F_{1.14} = 10.78$; P < 0.01, Fig. 267 3). Of the 350 individuals on the ceiling, 278 were recruits and 72 were juveniles, corresponding 268 to a density of $34.75 \pm 23.86 / 400 \text{ cm}^2$ and of $9 \pm 6.82 / 400 \text{ cm}^2$, respectively (ANOVA: $F_{1.26} =$ 269 5.99; P < 0.05, Fig. 2). The 22 individuals found in the wall were all recruits (Fig. 3). On the tiles 270 positioned along the vertical cliff, at all depths no recruits were found when checking in summer 271 2011. 272

273

274 Growth performances

The size/recruit structure showed a monotonic and decreasing pattern, in which recruits in the 275 first class (recruits with diameter <1.5 mm) represented the dominant class (Fig. 4A). Only three 276 recruits (1%) had a diameter > 6 mm, and they might be formed by merging of two or more 277 planulae (Fig. 2) as observed by Cerrano C, (pers. comm.). The number of polyps per recruit 278 ranged from 1 to 22, with 70.66% of the recruits presenting 1-2 polyps, 22% between 3-4 polyps 279 and 7.33% more than four polyps (mean \pm SD = 2.32 \pm 2.14 polyps/recruit). Pearson's 280 coefficient showed a low correlation (r = 0.4) (Fig. 4C). 281 The size structure of juveniles showed a more variable trend, with diameter values ranging from 282 0.15 mm to 8.95 mm with an average value of 2.5 ± 1.5 mm (Fig. 5A). The number of polyps 283 284 ranged from 0 to 22 (average number of 9.21 ± 4.6) (Fig. 5C). Juveniles with 3-4 polyps were the 9.7% of the total number, while 90.3% of them had more than five polyps. The height of the 285 juveniles ranged from 0.5 to 9.15 mm, with a mean of 3.3 ± 1.8 mm (Fig. 5E). Pearson's 286 287 correlation coefficients showed no correlation between diameter and number of polyps (r = 0.09,

Fig. 5B), nor between diameter and height (r = 0.03, Fig. 5F). A weak but significant correlation was observed between height and number of polyps (r = 0.3, Fig. 5D).

290

291

Genetic variability

Individuals in which more then two loci did not amplify do to technical failures (e.g. low DNA 292 293 quantity, no amplification of after re-amplification), were not included in the dataset. A total of 290 red coral individuals were genotyped. No genotypic disequilibrium was observed between 294 loci (all P > 0.05 after FDR correction). No evidence of scoring errors due to stuttering or large 295 allele dropout was found, according to MICROCHECKER. An excess of homozygotes was 296 detected at all loci due to the presence of null alleles. Null allele frequencies ranged from 0.09 297 (Mic24) to 0.25 (Cor9, Mic26 and Cor58). Number of alleles ranged from 10 (Mic20) to 23 298 (Cor9 and Mic26). The expected and observed heterozygosity ranged from 0.29 (Cor46) to 299 0.81(Cor9) and from 0.13 (Mic26) to 0.64 (Mic20), respectively. The estimators of F_{IS} (f) were 300 301 positive and ranged from 0.21 (Mic20) to 0.86 (Cor48) (Table 1). Overall, a low genetic variability (H_e = 0.59 ± 0.16 and H_o = 0.29±0.2; mean ± SD) was found. 302 Out of the 290 individuals analysed, 281 different multilocus genotypes (MLGs) were identified. 303 304 Four MLGs were found twice; one MLG was encountered three times and one four times. Individuals sharing the same MLG always came from the same tile. Tiles where identical MLGs 305 306 were found were T7, T8 and T10. The individuals sharing the same MLG were between 0.2 cm 307 and 13.65 cm away (in T7 and T10, respectively). In T8 and T10, one recruit and one juvenile shared a MLG. The unbiased probability of identity (P_{ID}) that two sampled individuals share 308 identical MLG by chance was 1.5e⁻⁰⁴. 309

310	No significant differences in genetic variability were observed between juveniles and recruits in
311	terms of H_e and H_o (P values associated with the permutation procedure: P_{Ho} =0.65 and
312	P _{He} =0.71); while recruits showed a significantly higher allelic richness than juveniles
313	$(P_{Ar}=0.001)$.
314	
315	Relatedness
316	A high degree of genetic relatedness among individuals was found: a t-test performed on the
317	mean observed relatedness, and test based on a permutation procedure (expected under
318	panmixia) gave different responses (observed mean rxy=0.027, resampled mean rxy=0.014,
319	t=1173, P = 0.001). Pairwise relatedness based on the Queller & Goodnight, (1989) coefficient
320	revealed that 25.98% of the pairwise comparisons were involved in one or more parentage
321	relationships, with 8.57% and 17.41% of individuals involved in a full-sib and half-sib
322	relationship, respectively. These percentages were numerically similar considering the
323	relatedness within the two temporal cohorts separately.
324	The percentage of individuals correctly assigned at the same tile where they were found by the
325	individual assignments method using GENECLASS was around 50%. The effective population
326	size (Ne) was estimated in 68.7 (95% CI: 42.5-116.4) including all the individuals and in 32.5 for
327	recruits (95% CI: 20.6-57.8) and -1467.8 for juveniles (95% CI: 87.1 - ∞). The last negative
328	value is expected when the population is sufficiently large that no notable linkage disequilibrium
329	is induced through genetic drift (Waples & Do, 2010).
330	
331	Spatial and temporal genetic structure

PeerJ reviewing PDF | (2017:10:21242:1:1:REVIEW 9 Feb 2018)

No genetic structuring was observed between recruits and juveniles using the three random dataset ($F_{ST} = 0.008$, P = 0.16). The clustering method identified K = 2 gene pools based on Evanno's delta K statistic (Supplemental Fig. S1, S2) but with high levels of admixture as many individuals could not be undoubtedly assigned to either cluster. Nevertheless, an eastward genetic gradient of differentiation were observed. The DAPC is in agreement with the Structure results (Fig. 6) with a higher genetic isolation of the titles T3 and T4 with all the other tiles. Significantly positive kinship coefficients were detected between all the individuals within the single tile (ϕ ij = 0.066, p < 0.001) indicating that individuals within tiles had a higher genetic relatedness than random pairs of individuals. Within the cave, the autocorrelogram suggested an estimated patch size of less than 40 cm (Fig. 7). The spatial autocorrelation between individuals within each tile showed a significant positive value within a range from 3 to 10 cm.

Discussion

In the present study the early life history traits of the Mediterranean red coral have been investigated using settlement tiles deployed inside a submarine cave. Size and genetic structures of recruits have been analysed. Two cohorts of red coral recruit were collected and they showed significant variability in space and time. No significant genetic structure was observed between the two cohorts, while settlers on the same tiles were highly related, suggesting that larval clouds recruiting nearby are sibs.

In summers 2010 and 2011 *C. rubrum* successfully recruited on artificial tiles inside the cave. The density of settlers (26.57±29,92 individuals/400 cm²) was higher compare to values found by Bramanti et al., (2014) in Cap de Creus marine reserve (Costa Brava, Spain: 42°29.21' N; 03°30.18'E, Spain, 5.6±2.8 individuals/400 cm²) and in Portofino (Eastern Ligurian Sea, Italy:

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

44°18.18' N; 09°12.83'E, Italy. 17.5±4.7 individuals/400 cm²). While adult colonies dwells on the vault and on the walls of the cave, settlers density significantly differed between these two habitats, with higher values on the tiles located on the ceiling of the cave. The only three tiles (T1, T13, and T14) where no recruitment was recorded were positioned on the walls of the cave. The causes of these differences are not fully understood yet, but they could be related to several factors. Both larval behavior and habitat constraints can influence the higher recruitment density observed on the ceiling. Even if C. rubrum larvae could survive at least 16 days (potentially up to 42 days) in the plankton (Martínez-Quintana et al., 2014), inside caves and/or overhangs they probably are trapped by the ceiling due to their negative geotaxis (Weinberg, 1979; Martínez-Quintana et al., 2014). Sediment deposition is a limiting factor for red coral recruitment, and observation made by Virgilio, Airoldi & Abbiati, (2006) showed that a thin coat of sediment covering vertical surfaces, affects colony densities (but see also Cau et al., 2016). These findings suggest that red coral populations dwelling in crevices and caves are more resilient due to enhanced recruitment rates, while populations living on cliffs and on rocky bottoms, which are the most exploited nowadays, might be endangered due to recruitment limitation. Due to the difficulties in identifying tiny individuals (Bramanti, Magagnini & Santangelo, 2003), only few studies have investigated the early life stage of this species (Garrabou & Harmelin, 2002; Bramanti et al., 2005, 2007). By using settlement tiles, it was possible to discriminate two early life stages of C. rubrum: recruits and juveniles. Significant variation in the abundance of recruits and juveniles were observed, suggesting both an inter-annual variability in larval supply and/or post-settlement mortality. However, it is not easy to disentangle these two processes, and this was not in the scope of this study. Concerning post-settlement processes, they include the intra- and inter-specific interactions mediated by chemical cues, food limitation, local water

flow, predation and competition for space (Fraschetti et al., 2002). Competition for space, 378 together with grazing intensity, is known to produce variations in coral recruitment at this spatial 379 scale (Babcock & Mundy, 1996). All these processes, and their interactions, contribute to the 380 high mortality rates in gorgonian recruits (Caley et al., 1996; Perkol-Finkel et al., 2008), 381 including C. rubrum (Garrabou & Harmelin, 2002; Bramanti, Magagnini & Santangelo, 2003). 382 383 The number of polyps per individuals was consistent to Bramanti et al., (2005), with a higher number of polyps in juveniles compared to recruits, and a significant correlation between number 384 of polyps and height in the juveniles. Moreover, individuals settling on tiles showed a 385 considerable variability in diameter and height, suggesting that growth rate in early red coral 386 stages may be extremely variable and possibly much higher than the growth rates estimated in 387 adult colonies (0.89 mm /year between the first and second years, Bramanti et al. 2005; but see 388 Table S2 in Cerrano et al., 2013). Considering that age of colonies on tiles is 20 months (for the 389 juveniles) an average annual growth rate in diameter of 1.48 mmy⁻¹ for juveniles was estimated. 390 These results support the high variation in colony growth rates among geographic regions and in 391 the early stages of colony life (Santangelo et al., 2012; Cerrano et al., 2013). 392 An important finding of the genetic characterization of settlers within the Colombara cave is that 393 394 several identical multi locus genotypes (MLGs) were shared by recruits and juveniles. However, up to now, no evidence of asexual reproduction and/or polyp bail-out were reported in Corallium 395 rubrum. The most likely explanation for the presence of identical MLGs is that, due to the low 396 397 level of genetic variability of the species, these individuals are sibs sharing all the genotypes. The low level of genetic variability observed compared to that previously observed in natural 398 399 populations (Costantini, Fauvelot & Abbiati, 2007; Ledoux et al., 2010a), could be due to the 400 small population size. However, this hypothesis seems unlikely considering the high density of

settlers on the tiles, and the high average density of colonies on the Portofino Promontory 401 (227±37 colonies x m²; Bavestrello et al., 2015), including the Colombara cave (Cerrano C. pers. 402 obs.). The observed low genetic variability suggests high genetic drift acting within the cave. In 403 fact, a correlation between low genetic variability and low effective population size was already 404 observed in Corallium rubrum (Ledoux et al., 2015) confirming that the genetic drift might be 405 406 relevant in this species (Costantini, Fauvelot & Abbiati, 2007; Ledoux et al., 2010a). The significant deviations from Hardy–Weinberg equilibrium, emphasized by the high positive 407 F_{IS} estimates it is unlikely to be related to null alleles. Null alleles were found in some loci but 408 given their frequency, and previous observations in other red coral populations (Costantini, 409 Fauvelot & Abbiati, 2007), their effect seem not to be so relevant. High inbreeding rates (e.g. 410 mating between relatives) are a more likely explanation for the F_{IS} values. This phenomenon was 411 already observed in Corallium rubrum (Costantini, Fauvelot & Abbiati, 2007) and was related to 412 larval behaviour. This hypothesis is also supported by the occurrence of sibs on a single tiles, 413 414 suggesting limited larval dispersal and/or collective dispersal (Broquet & Yearsley, 2012). Settlers' consanguinity could be explained by other factors (e.g., asynchrony of reproduction 415 events, gametes behaviour, uneven sex ratio and clonality). Little is known about red coral 416 417 gametes behaviour (Santangelo et al., 2003) but also the other possible explanations seem unlikely. In fact, in Corallium rubrum the sex ratio is balanced (Tsounis et al., 2006; Bramanti et 418 al., 2014; Santangelo et al., 2015), reproduction is not completely synchrony but occurs within a 419 420 discrete time-interval in summer (Santangelo et al., 2003) and up to now clonality (asexual reproduction) was not observed. Moreover, no genetic structure was observed between the two 421 422 analysed cohorts of settlers. All these findings, including the high relatedness among settlers (full 423 and half-sib relationship), suggest that in both cohorts larval supply was provided by a limited

number of genetically similar adult colonies (o progenitors). Fine spatial scale genetic structure is a common feature of gorgonians (Brazeau, Sammarco & Atchison, 2011), including red coral (Costantini, Fauvelot & Abbiati, 2007; Ledoux et al., 2010a). In the Colombara cave a population patch size of about 8 cm was detected, of the same range observed by Ledoux et al. (2010a) in a Mediterranean marine cave close to Marseilles (20-30 cm). These high SGS, together with the low genetic variability and the high inbreeding rate, in a close environment as a marine cave, could enhance local adaptation. No evidences of fitness variability due to inbreeding depression was observed in shallow red coral populations (Bramanti, Iannelli & Santangelo, 2009). However, further reduction of genetic diversity, and hence reduction of population size due to, for example, global changes (e.g. thermal anomalies, acidification), could lead to overcome the 'inbreeding threshold,' resulting in loss the of fitness and in a risk of local extinction (Frankham, 1995).

Conclusion

The present study provides new insight concerning recruitment processes in red coral populations using a submarine cave as an experimental mesocosm. The main outcome of the study is that *C. rubrum* individuals settling in the Colombara cave are highly related at very small spatial scales, and that most larvae recruiting nearby are sibs. Evidences of the processes explaining this pattern cannot be provided, however, self-recruitment and the presence of clouds of larvae that settle altogether could be possible explanations. Parentage analysis between adult individuals, both inside and outside the cave, and the recruits would help to disentangle the two processes. Understanding processes acting in the early life history of a species is a challenging but crucial task, with major implications for conservation. In fact, these processes drive the

447	population structure and dynamic of the species, and are essential for the resistance and
448	resilience of populations.
149	
450	Acknowledgements
451	We would like to thank the director of the Portofino MPA Dr. Giorgio Fanciulli, and the
452	Università Politecnica delle Marche for the authorization of the field experiments. We thank
453	Adriana Villamor for her advice during the lab work; Massimo Ponti for his help in the imaging
454	data analysis, Marco Palma and Ubaldo Pantaleo for field assistance and Paolo Mancuso for his
455	great drawing capacity. Part of this research has been performed in the frame of the Mesomed
456	project in collaboration with Portofino Divers. This work is part of the PRIN 2010-2011 (prot.
457	2010Z8HJ5M), and PRIN 2015 (prot. 2015J922E4) projects by the Italian Ministry of Education,
458	University and Research.
459	
460	References
461	Babcock R, Mundy C. 1996. Coral recruitment: consequences of settlement choice for early
462	growth and survivorship in two scleractinians. Journal of Experimental Marine Biology and
463	Ecology 206:179–201. DOI: https://doi.org/10.1016/S0022-0981(96)02622-6
464	Bavestrello G, Bianchi C, Calcinai B, Cattaneo-Vietti R, Cerrano C, Morri C, Puce S, Sara M.
465	2000. Bio-mineralogy as a structuring factor for marine epibenthic communities. Marine
466	Ecology Progress Series 193:241–249. DOI:10.3354/meps193241
467	Bavestrello G, Bo M, Bertolino M, Betti F, Cattaneo-Vietti R. 2015. Long-term comparison of
468	structure and dynamics of the red coral metapopulation of the Portofino Promontory (
469	Ligurian Sea): a case-study for a Marine Protected Area in the Mediterranean Sea. Marine

Ecology 36:1354–1363. DOI: 10.1111/maec.12235. 470 Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 2000. GENETIX 4.05, Logiciel sous 471 Windows pour la Génétique des Populations. Laboratoire Genome et Populations, 472 Universite de Montpellier, Montpellier. 473 Belkhir K, Castric V, Bonhomme F. 2002. Identix, a software to test for relatedness in a 474 475 population using permutation methods. *Molecular Ecology Notes* 2:611–614. DOI: 10.1046/j.1471-8286.2002.00273.x. 476 Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: a practical and powerful 477 approach to multiple Testing. Journal of the Royal Statistical Society. Series B 478 (Methodological) 57:289–300. DOI: doi:10.2307/2346101. 479 Bramanti L, Edmunds P. 2016. Density-dependent recruitment mediates coral population 480 dynamics on a coral reef. Coral Reefs 35:543–553. DOI: 10.1007/s00338-016-1413-4. 481 Bramanti L, Iannelli M, Santangelo G. 2009. Mathematical modelling for conservation and 482 management of gorgonians corals: youngs and olds, could they coexist? Ecological 483 Modelling 220:2851–2856. DOI: 10.1016/j.ecolmodel.2009.01.031. 484 Bramanti L, Magagnini G, De Maio L, Santangelo G. 2005. Recruitment, early survival and 485 486 growth of the Mediterranean red coral Corallium rubrum (L 1758), a 4-year study. Journal of Experimental Marine Biology and Ecology 314:69–78. DOI: 487 10.1016/j.jembe.2004.08.029. 488 489 Bramanti L, Magagnini G, Santangelo G. 2003. Settlement and recruitment: the first stages in the life cycle of two epibenthic suspension feeders (Corallium rubrum and Anomia ephippium). 490 Italian Journal of Zoology 67: 295-299 DOI: https://doi.org/10.1080/11250000309356512. 491 492 Bramanti L, Movilla J, Guron M, Calvo E, Gori A, Dominguez-Carrió C, Grinyó J, Lopez-Sanz

193	A, Martinez-Quintana A, Pelejero C, Ziveri P, Rossi S. 2013. Detriniental effects of ocean
194	acidification on the economically important Mediterranean red coral (Corallium rubrum).
195	Global Change Biology 19:1897–1908. DOI: 10.1111/gcb.12171.
196	Bramanti L, Rossi S, Tsounis G, Gili JM, Santangelo G. 2007. Settlement and early survival of
197	red coral on artificial substrates in different geographic areas: some clues for demography
198	and restoration. <i>Hydrobiologia</i> 580:219–224. DOI: 10.1007/s10750-006-0452-1.
199	Bramanti L, Vielmini I, Rossi S, Tsounis G, Iannelli M, Cattaneo-Vietti R, Priori C, Santangelo
500	G. 2014. Demographic parameters of two populations of red coral (Corallium rubrum L.
501	1758) in the North Western Mediterranean. <i>Marine Biology</i> 161:1015–1026. DOI:
502	10.1007/s00227-013-2383-5.
503	Brazeau D, Sammarco P, Atchison A. 2011. Micro-scale genetic heterogeneity and structure in
504	coral recruitment: fine-scale patchiness. <i>Aquatic Biology</i> 12:55–67. DOI: 10.3354/ab00313.
505	Broquet T, Yearsley JM 2012. Genetic drift and collective dispersal can result in chaotic genetic.
506	Evolution 67:1660–1675. DOI: 10.5061/dryad.612g8.
507	Caley J, Carr M, Hixon M, Hughes T, Jones G, Menge B. 1996. Recruitment and the local
508	dynamics of open marine populations. Annual Revue in Ecology and Systematic 27:477-
509	500. DOI: https://doi.org/10.1146/annurev.ecolsys.27.1.477
510	Cattaneo-Vietti R, Bavestrello G, Senes L. (1993) Red coral from the Portofino promontory
511	(Ligurian Sea). In: Cicogna F, Cattaneo-Vietti R (eds) Red coral in the Mediterranean Sea:
512	art, history and science. Ministerio delle Risorse Agricole, Ali- mentari e Forestali, Roma,
513	pp 109–130
514	Cau A, Bramanti L, Cannas R, Follesa MC, Angiolillo M, Canese S, Bo M, Cuccu D, Guizien K
515	2016. Habitat constraints and self-thinning shape Mediterranean red coral deep population

516	structure: implications for conservation practice. Scientific Reports 6:23322.
517	DOI:10.1038/srep23322
518	Cerrano C, Bavestrello G, Bianchi C. 2000. A catastrophic mass-mortality episode of gorgonians
519	and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999.
520	Ecology Letters 3:284–293. DOI: 10.1046/j.1461-0248.2000.00152.x
521	Cerrano C, Cardini U, Bianchelli S, Corinaldesi C, Pusceddu A, Danovaro R. 2013. Red coral
522	extinction risk enhanced by ocean acidification. Scientific Reports 3. DOI:
523	10.1038/srep01457.
524	Chapuis M, Estoup A. 2007. Microsatellite null alleles and estimation of population
525	differentiation. Molecular Biology and Evolution 24:621-631. DOI:
526	10.1093/molbev/msl191.
527	Clarke K, Gorley R. 2006. RIMER v6: User Manual/Tutorial. Plymouth: PRIMER-E. :192.
528	Costantini F, Abbiati M. 2006. Development of microsatellite markers for the Mediterranean
529	gorgonian coral Corallium rubrum. Molecular Ecology Notes 6:521–523. DOI:
530	10.1111/j.1471-8286.2006.01305.x.
531	Costantini F, Fauvelot C, Abbiati M. 2007. Fine-scale genetic structuring in Corallium rubrum:
532	evidence of inbreeding and limited effective larval dispersal. Marine Ecology Progress
533	Series 340:109–119. DOI: 10.3354/meps340109.
534	Dempster A, Laird N, Rubin D. 1977. Maximum likelihood from incomplete data via the EM
535	algorithm. Journal of the Royal Statistical Society 39:1-38.
536	Eldon B, Riquet F, Yearsley J, Jollivet D, Broquet T. 2016. Current hypotheses to explain
537	genetic chaos under the sea. Current Zoology 62:1-54. DOI: 10.1093/cz/zow094.
538	Falush D, Stephens M, Pritchard J 2007. Inference of population structure using multilocus

539	genotype data: dominant markers and null alleles. <i>Molecular Ecology Notes</i> 7:574–578.
540	DOI: 10.1111/j.1471-8286.2007.01758.x.
541	Frankham R 1995. Inbreeding and Extinction: A Threshold Effect. Conservation Biology 9:792-
542	799. DOI: 10.1046/j.1523-1739.1995.09040792.x.
543	Fraschetti S, Giangrande A, Terlizzi A, Boero F. 2002. Pre- and post-settlement events in benthi
544	community dynamics. Oceanologica Acta 25:285–295. DOI: 10.1016/S0399-
545	1784(02)01194-5.
546	Garrabou J, Harmelin J. 2002. A 20-year study on life-history traits of a harvested long-lived
547	temperate coral in the NW Mediterranean: insights into conservation and management
548	needs. <i>Journal of Animal Ecology</i> 71:966–978. DOI: 10.1046/j.1365-2656.2002.00661.x.
549	Gerovasileiou V, Voultsiadou E. 2012. Marine caves of the Mediterranean Sea: a sponge
550	biodiversity reservoir within a biodiversity hotspot. PloS one 7:e39873. DOI:
551	10.1371/journal.pone.0039873.
552	Goudet J. 2001. FSTAT, a program to estimate and test gene diversi- ties and fixation indices
553	(version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from
554	Goudet (1995).
555	Goudet J, Raymond M, De-Meeus T, Rousset F. 1996. Testing differentiation in diploid
556	populations. Genetics 144:1933–1940.
557	Green DH, Edmunds PJ. 2011. Spatio-temporal variability of coral recruitment on shallow reefs
558	in St. John, US Virgin Islands. Journal of Experimental Marine Biology and Ecology
559	397:220–229. DOI: 10.1016/j.jembe.2010.12.004.
560	Guizien K, Belharet M, Guarini J, Marsaleix P. 2012. Using larval dispersal simulations for
561	marine protected area design: application to the Gulf of Lions (northwest Mediterranean).

562	Limnology and Oceanography 57:1099–1112. DOI: 10.4319/lo.2012.57.4.1099
563	Guizien K, Brochier T, Duche'ne JC, Koh BS, Marsaleix P. 2006. Dispersal of Owenia
564	fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in
565	a threedimensional stochastic model. Marine Ecology Progress Series 311:47-66.
566	DOI10.3354/meps311047
567	Hardy OJ. 1999. Isolation by distance in a continuous population: reconciliation between spatial
568	autocorrelation analysis and population genetics models. Heredity 83:145. DOI:
569	10.1046/j.1365-2540.1999.00558.x.
570	Hardy OJ, Vekemans X. 2002. Spagedi: a versatile computer program to analyse spatial genetic
571	structure at the individual or population levels. <i>Molecular Ecology Notes</i> 2:618–620. DOI:
572	10.1046/j.1471-8286.2002.00305.x.
573	Hedgecock D. 1994. Does variance in reproductive success limit effective population sizes of
574	marine organisms? Genetics and evolution of aquatic organisms 122
575	Hedgecock D, Barber P, Edmands S. 2007. Genetic approaches to measuring connectivity.
576	Oceanography 20:70–79.
577	Hughes ATP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner E, Willis BL
578	2000. Supply-side ecology works both ways: the link between benthic adults, fecundity, and
579	larval recruits. Ecology 81:2241–2249.
580	Johnson M, Black R. 1982. Chaotic genetic patchiness in an intertidal limpet, <i>Siphonaria</i> sp.
581	Marine Biology 70.2:157–164.
582	Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: a new
583	method for the analysis of genetically structured populations. BMC genetics 11:94. DOI:
584	10.1186/1471-2156-11-94.

585	Kalinowski ST. 2005. hp-rare 1.0: a computer program for performing rarefaction on measures
586	of allelic richness. <i>Molecular Ecology Notes</i> 5:187–189.
587	Kendall M, Stewart A. 1977. The advanced theory of statistics. Vol. 1. New York: Macmillan.
588	Kennedy E, Ordoñez A, Lewis B, Diaz-Pulido G. 2017. Comparison of recruitment tile materials
589	for monitoring coralline algae responses to a changing climate. Marine Ecology Progress
590	Series 569:129-144. DOI: https://doi.org/10.3354/meps12076
591	Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. 2015. CLUMPAK: a
592	program for identifying clustering modes and packaging population structure inferences
593	across K. Molecular Ecology Resources 15:1179–1191. DOI: 10.1111/1755-0998.12387.
594	Laborel J, Vacelet J. 1961. Répartition bionomique du Corallium rubrum LMCK dans les grottes
595	et falaises sous-marines. Rapports et Proces-Verbaux des Réunions de la Commission
596	Internationale pour l'Exploration Scientifique de la Mer Méditerranée 16:464–469.
597	Ledoux J-B, Aurelle D, Bensoussan N, Marschal C, Féral J-P, Garrabou J. 2015. Potential for
598	adaptive evolution at species range margins: contrasting interactions between red coral
599	populations and their environment in a changing ocean. Ecology and Evolution. 5:1178-
600	1192. DOI: 10.1002/ece3.1324
601	Ledoux J-B, Garrabou J, Bianchimani O, Drap P, Féral J-P, Aurelle D. 2010a. Fine-scale genetic
602	structure and inferences on population biology in the threatened Mediterranean red coral,
603	Corallium rubrum. Molecular Ecology 19:4204–4216. DOI: 10.1111/j.1365-
604	294X.2010.04814.x.
605	Ledoux J-B, Mokhtar-Jamaï K, Roby C, Féral J-P, Garrabou J, Aurelle D. 2010b. Genetic survey
606	of shallow populations of the Mediterranean red coral [Corallium rubrum (Linnaeus,
607	1758)]: new insights into evolutionary processes shaping nuclear diversity and implications

608	for conservation. <i>Molecular Ecology</i> 19:675–90. DOI: 10.1111/j.1365-294X.2009.04516.x.
509	Lindsay SM, Wethey DS, Woodin SA. 1997. Modeling interactions of browsing predation,
510	infaunal activity, and recruitment in marine soft-sediment habitats. Oceanographic
511	Literature Review 44. The American Naturalist 148.4: 684-699.
512	Loiselle BA, Sork VL, Nason J, Graham C. 1995. Spatial genetic structure of a tropical
513	understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82:1420.
514	DOI: 10.2307/2445869.
515	Martínez-Quintana A, Bramanti L, Viladrich N, Rossi S, Guizien K. 2014. Quantification of
516	larval traits driving connectivity: the case of Corallium rubrum (L. 1758). Marine Biology
517	162:309–318. DOI: 10.1007/s00227-014-2599-z.
518	Morri C, Bianchi CN, Damiani V, Peirano A, Romeo G, Tunesi L. 1986. L'ambiente marino tra
519	Punta della Chiappa e Sestri Levante (Mar Ligure): profilo ecotipologico e proposta di carta
520	bionómica. Boll. Mus. Ist. Biol. Univ. Genova 52:213-231.
521	Nei M. 1973. Analysis of gene diversity in subdivided populations. <i>Proceedings of the National</i>
522	Academy of Sciences 70:3321–3323. DOI: 10.1073/pnas.70.12.3321.
523	Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. Micro-checker: software for
524	identifying and correcting genotyping errors in microsatellite data. Molecular Ecology
525	Notes 4:535–538. DOI: 10.1111/j.1471-8286.2004.00684.x.
526	Peakall R, Smouse PE. 2006. Genalex 6: genetic analysis in Excel. Population genetic software
527	for teaching and research. Molecular Ecology Notes 6:288–295. DOI: 10.1111/j.1471-
528	8286.2005.01155.x.
529	Perkol-Finkel S, Zilman G, Sella I, Miloh T, Benayahu Y. 2008. Floating and fixed artificial
530	habitats: Spatial and temporal patterns of benthic communities in a coral reef environment.

- Estuarine, Coastal and Shelf Science 77:491–500. DOI: 10.1016/j.ecss.2007.10.005.
- 632 Pineda J, Hare JJ, Sponaungle S, Sponaugle S. 2007. Larval transport and dispersal in the coastal
- ocean and consequences for population connectivity. *Oceanography* 20:22–39. DOI:
- 634 10.5670/oceanog.2007.27.
- Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A. 2004. GENECLASS2: a
- software for genetic assignment and first-generation migrant detection. *The Journal of*
- 637 *Heredity* 95:536–9. DOI: 10.1093/jhered/esh074.
- Pritchard J, Matthew S, Donnelly P. 2000. Inference of population structure using multilocus
- 639 genotype data. *Genetics* 155:945–959.
- Queller D, Goodnight K. 1989. Estimating relatedness using genetic markers. Evolution 43:258–
- 641 275.
- Rannala B, Mountain JL. 1997. Detecting immigration by using multilocus genotypes.
- *Proceedings of the National Academy of Sciences* 94:9197–9201. DOI:
- 644 10.1073/pnas.94.17.9197.
- Rastorgueff PA, Bellan-Santini D, Bianchi CN, Bussotti S, Chevaldonné P, Guidetti P, Harmelin
- J.G., Montefalcone M, Morri C, Perez T, Ruitton S, Vacelet J. PS. 2015. An ecosystem-
- based approach to evaluate the ecological quality of Mediterranean undersea caves.
- 648 *Ecological Indicators* 54:137–152.
- Raymond M, Rousset F. 1995. An exact test for population differentiation. Evolution 49:1280–
- 650 1283. DOI: 10.2307/2410454.
- 651 Sanford E, Kelly MW. 2011. Local adaptation in marine invertebrates. Annual Review of Marine
- Science 3:509–535. DOI: 10.1146/annurev-marine-120709-142756.
- 653 Santangelo G, Bramanti L, Rossi S, Tsounis G, Vielmini I, Lott C, Gili JM. 2012. Patterns of

654	variation in recruitment and post-recruitment processes of the Mediterranean precious
655	gorgonian coral Corallium rubrum. Journal of Experimental Marine Biology and Ecology
656	411:7–13. DOI: 10.1016/j.jembe.2011.10.030.
657	Santangelo G, Carletti E, Maggi E, Bramanti L. 2003. Reproduction and population sexual
658	structure of the overexploited Mediterranean red coral Corallium rubrum. Marine Ecology
659	Progress Series 248:99–108. DOI: 10.3354/meps248099.
660	Santangelo G, Cupido R, Cocito S, Bramanti L, Priori C, Erra F, Iannelli M. 2015. Effects of
661	increased mortality on gorgonian corals (Cnidaria, Octocorallia): different demographic
662	features may lead affected populations to unexpected recovery and new equilibrium points.
663	<i>Hydrobiologia</i> 759:171–187. DOI: 10.1007/s10750-015-2241-1.
664	Smilansky V, Lasker HR. 2014. Fine-scale genetic structure in the surface brooding Caribbean
665	octocoral, Antillogorgia elisabethae. Marine Biology 161:853–861. DOI: 10.1007/s00227-
666	013-2385-3.
667	Core Team (2012). R: A language and environment for statistical computing. R Foundation for
668	statistical computing, Vienna, Austria. URL http://www.R-project.org/.
669	Torda G, Lundgren P, Willis BL, van Oppen MJH. 2013. Genetic assignment of recruits reveals
670	short- and long-distance larval dispersal in Pocillopora damicornis on the Great Barrier
671	Reef. Molecular Ecology 22:5821–34. DOI: 10.1111/mec.12539.
672	Tsounis G, Rossi S, Aranguren M, Gili J-M, Arntz W. 2006. Effects of spatial variability and
673	colony size on the reproductive output and gonadal development cycle of the Mediterranean
674	red coral (Corallium rubrum L.). Marine Biology 148:513–527. DOI: 10.1007/s00227-005-
675	0100-8.
676	Tsounis G, Rossi S, Bramanti L, Santangelo G. 2013. Management hurdles for sustainable

577	harvesting of Corallium rubrum. Marine Policy 39:361-364. DOI:
578	10.1016/j.marpol.2012.12.010.
579	Vekemans X, Hardy OJ. 2004. New insights from fine-scale spatial genetic structure analyses in
680	plant populations. Molecular Ecology 13:921–935. DOI: 10.1046/j.1365-
581	294X.2004.02076.x.
582	Virgilio M, Airoldi L, Abbiati M. 2006. Spatial and temporal variations of assemblages in a
583	Mediterranean coralligenous reef and relationships with surface orientation. Coral Reefs
584	25:265–272. DOI: 10.1007/s00338-006-0100-2.
585	Waples R. 2006. A bias correction for estimates of effective population size based on linkage
686	disequilibrium at unlinked gene loci. Conservation Genetics 7:167–184.
687	Waples RS, Do C. 2008. LDNE: a program for estimating effective population size from data on
588	linkage disequilibrium. Molecular Ecology Resources 8:753-756.
589	Waples RS, Do C. 2010. Linkage disequilibrium estimates of contemporary Ne using highly
590	variable genetic markers: A largely untapped resource for applied conservation and
591	evolution. Evolutionary Applications 3:244–262.
592	Weinberg S. 1979. The light-dependent behaiviour of planulae larvae of Eunicella singularis and
593	Corallium rubrum and its implications for for octocoral ecology. Bijds. Dijerkd 49:16–30.
594	Weir B, Cockerham C. 1984. Estimating F-statistics for the analysis of population structure.
595	Evolution 38:1358–1370. DOI: 10.2307/2408641.
596	

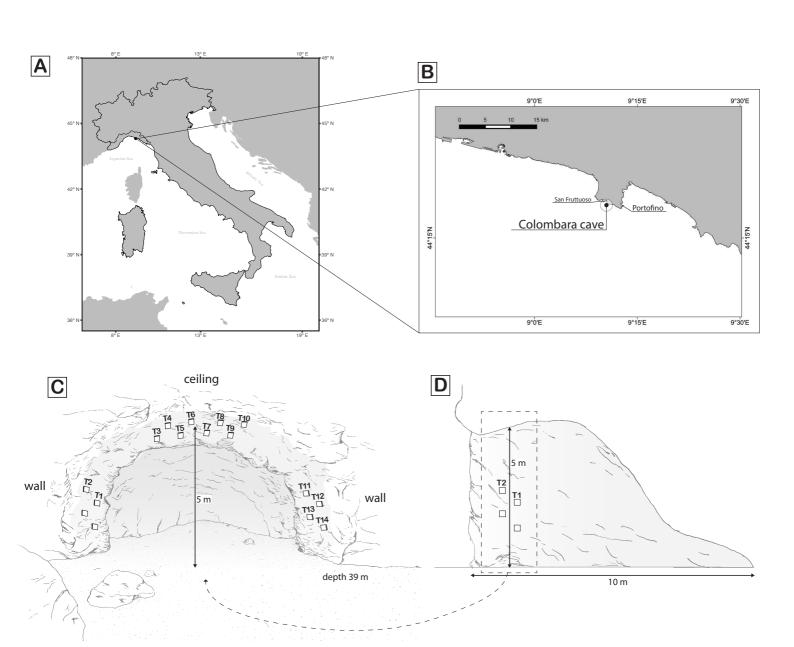


Figure 1(on next page)

Maps of sampling location and scheme of the sampling design

- A) Overview of the geographic location of the Colombara cave. B) zoom of the Portofino promontory where the cave is located. C) front of the cave and scheme of the tiles deployed.
- D) profile of the cave. White rectangles represent the tiles. Rectangles without number represent the lost tiles. Drawing made by Mancuso FP.

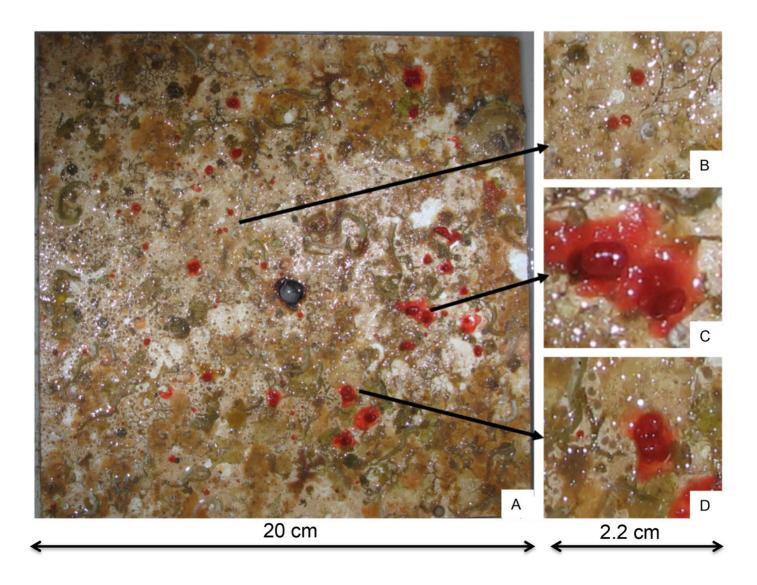

PeerJ

Figure 2

Example of a PVC tile recovered from the Colombara cave after two years.

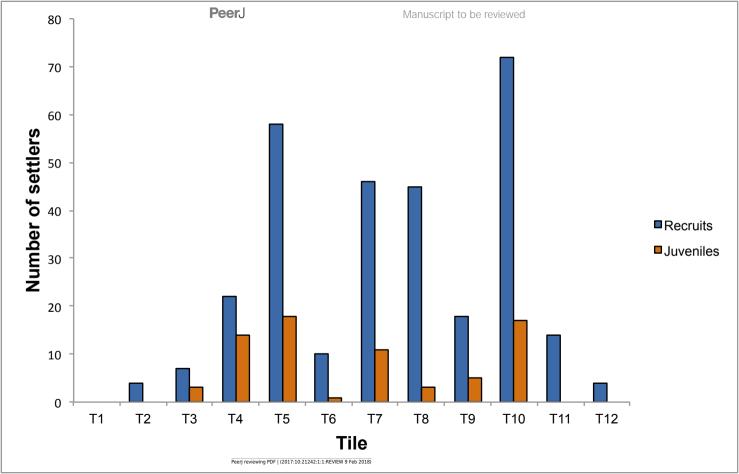
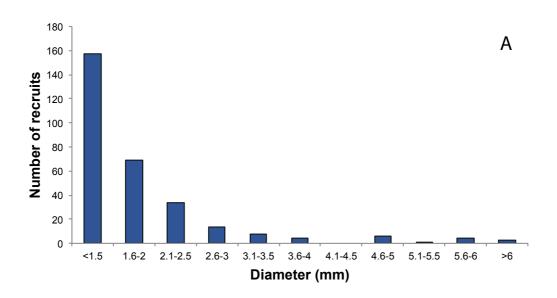
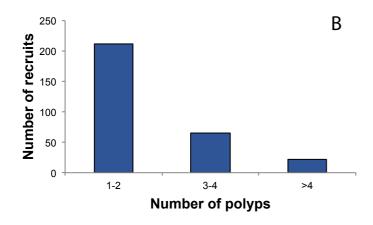
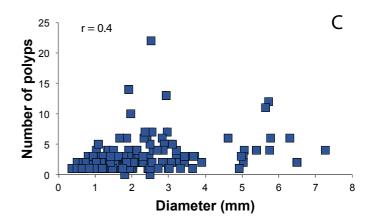

(A) Tile T7, (B) zoom of a recruit, (C) a juvenile, (D) a recruit probably derived by two merged planulae.

Figure 3(on next page)

Number of settlers on the 14 tiles deployed in the Colombara cave.




Figure 4(on next page)


Distribution of red coral recruits.

A) Diameter classes, B) number of polyp's classes, C) relationship between number of polyps and diameter. r.: Pearson coefficient.

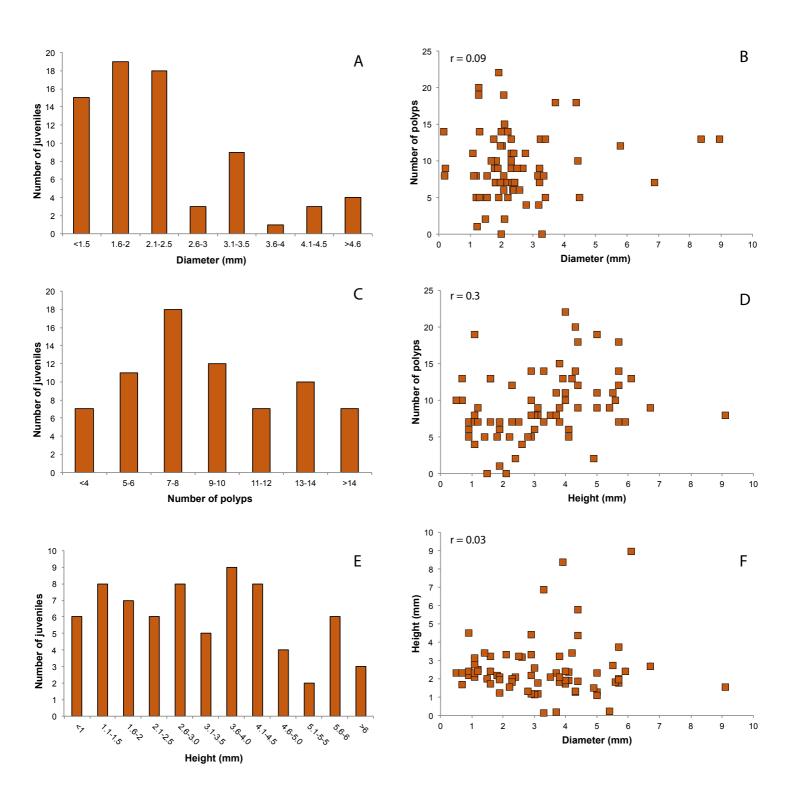


Figure 5(on next page)

Distribution of red coral juveniles.

A) Diameter classes, C) number of polyps classes, E) height classes. Relationship between: B) number of polyps and diameter, D) number of polyps and height, F) height and diameter. r.: Pearson coefficient.

PeerJ

Figure 6(on next page)

Scatterplot of the Discriminant analysis of principal components (DAPC) of the settlers found in the tiles deployed in ceiling of the Colombara cave.

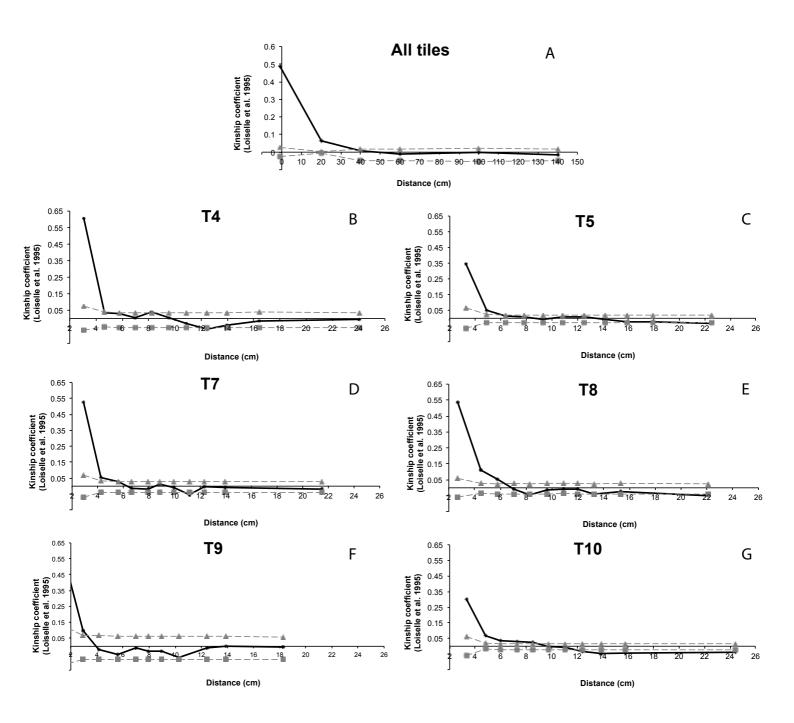


Figure 7(on next page)

Spatial autocorrelation analysis of Loiselle kinship coefficient (Loiselle et al. 1995).

A) All tiles: correlogram performed for all the individuals within the cave B-G) correlogram performed for for each tiles with enough numbers of settlers (T4, T5, T7, T8, T9 and T10). Grey lines represent 95% confidence intervals.

PeerJ

Table 1(on next page)

Locus characteristics for all the individuals

Number of alleles per locus (Na); null allele frequency (r); gene diversity (H_e , Nei 1973); observed heterozygosity (H_o); Weir & Cockerham (1984) estimator of F_{IS} (f). * Significant deviation from panmixia after false discovery rate correction at 0.05 (Benjamini & Hochberg 1995).

Table 1: Locus characteristics for all the individuals: number of alleles per locus (Na); null allele frequency (r); gene diversity (H_e , Nei 1973); observed heterozygosity (H_o); Weir & Cockerham (1984) estimator of F_{IS} (f). * Significant deviation from panmixia after false discovery rate correction at 0.05 (Benjamini & Hochberg 1995).

	N	Na	R	$\mathbf{H}_{\mathbf{e}}$	\mathbf{H}_{o}	f
Cor9	286	23	0.22	0.81	0.31	0.61*
Mic20	289	10	0.1	0.6	0.64	0.21*
Mic24	283	18	0.09	0.67	0.43	0.37*
Mic26	283	23	0.25	0.6	0.13	0.79*
Cor46	218	19	0.19	0.29	0.04	0.86*
L7	283	20	0.1	0.56	0.32	0.44*
Cor58	235	16	0.25	0.66	0.17	0.75*