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Abstract

Background. The Chinese Natural Forest Protection program has been conducted nationwide
and has achieved resounding success. However, timber importation has increased; therefore,
producing more domestic timber is critical to meet the demand for raw materials. Fertilization is
one of the most effective silviculture practices used to improve tree and stand growth. However,
determining the appropriate type and amount of-elements is necessary for effective fertilization
of big timber in different forest types and environmental conditions. Stoichiometric theory
provides the criteria to assess nutrient limitation in plants and offers important insight into
fertilizing in forest land.

Methods. Nitrogen (N) and phosphorus (P) concentrations in tree layer leaves, mineral soil, and
litter were investigated in a mixed pine-oak stand.

Results. The big timber rate of Pinus tabuliformis, Pinus armandii and Quercus aliena var.
acutesserata is 57.71%, 22.79% and 2.78% of current existing individuals respectively]. Foliar N
and P concentrations were 9.08 and 0.88 mgg?, respectively. The N: P in the tree layer was
10.30. N concentration and N: P in mineral soil decreased from 0-30 cm soil depth. For litter, N
and P concentrations were 16.89 and 1.51 mgg™ respectively, and N: P was [11.51]
Concentrations of N and P in mineral soil and litter did not significantly affect hree layer leaves ]
or mineral soil. Nitrogen storage in mineral soil was significantly correlated with foliar N: P in
the tree layer.

Discussion. Foliar N:P of dominant tree species and the tree layer, and foliar N concentration in

Pinus tabuliformis and P. armandii, and foliar P concentration of P. armandii in the mixed pine-
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oak stand was lower than that in Chinese and other terrestrial plants. Foliar nutrients in the tree
layer were not affected by soil nutrients. According to the criteria of nutrient limitation for
plants, growth of dominant tree species was N limited; therefore, 1.49 t ha' pure N was added to

forest land to as fertilizer.

Keywords: nitrogen; phosphorus; N: P; fertilizer; mixed pine-oak stand; the Qinling Mountains
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INTRODUCTION

The Natural Forest Protection Program (NFPP) was implemented in China in 1998 and has
achieved or surpassed its initial goal by prohibiting commercial logging and partial or full
harvesting of timber (Xu 2011). However, the effectiveness of the NFPP has been disputed
as it has increased timber imports and caused deterioration in the structures of forest stands
(Wang et al. 2013). To redress the insufficient production of domestic timber, the project
“Techniques for big timber (diameter at breast height, DBH>26 cm) cultivation” has been
conducted in both northern and southern forests in China. Besides proper forest
management (Hou et al. 2017), applying fertilizer is also an efficient way to achieve “big
timber”. However, determining the appropriate type and amounts of elements is necessary
in the cultivation of big timbers in different forest types and environmental conditions.

Carbon (C), nitrogen (N), and phosphorus (P) are essential elements for plant growth
and metabolic processes (Yang et al. 2015). The relative concentrations of C, N, and P in
plants is known as stoichiometry (He et al. 2006), which is a unifying conceptual
framework to examine how proportions of these elements affect organisms and ecosystems,.
Mith element limitation one of the most important topics ](Danger et al. 2016). The most
common limiting elements, C, N, and P, either individually or in combination, are
widespread in terrestrial ecosystems (Venterink et al. 2001; Venterink et al. 2003; Vitousek

et al. 2010). Stoichiometric traits, particularly C: N and N: P, are useful indicators of
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nutrient limitation in both terrestrial ecosystems and ecosystem functioning (Elser et al. 2007;
Gundersen et al. 2009).

In the last two decades, most research in ecological stoichiometry has focused on the
causes and consequences of variation in C, N, and P ratios in organisms and their resources;
however, there are large disparities in knowledge among taxa, ecosystem types, and specific
research topics (Bell et al. 2014; Fanin et al. 2013; Han et al. 2005; He et al. 2006; Knoll et al.
2009; Sardans et al. 2011; Scharler et al. 2015; van Huysen et al. 2016; Venterink and Glisewell
2010; Vrede et al. 2004; Zhan et al. 2017). Leaf stoichiometry of plants, especially N and P, is
very important in analyzing the composition, structure, and function of a community and
ecosystem (Gao et al. 2013; Han et al. 2005; Rong et al. 2015; Venterink and Gisewell 2010).
Determining how nutrients limit plant growth and N: P in leaves has become a hot topic (He et
al. 2008). Previous studies have documented N: P in plant leaves and biomass to infer or assess
the degree of N or P limitation at the community level (Aerts and Chapin 1999; Ellison 2006;
Gusewell 2004; Koerselman 1996; Sardans et al. 2012)._ However, determining the fertilizer of a
specific community via ecological stoichiometry theory by assessing N and P limitation is still
in its infancy (Finn et al. 2016; Hong et al. 2015). We hypothesized that growth of a dominant
tree species would not be limited by nutrients when foliar N: P in the tree layer meets a
threshold (Aerts and Chapin 1999; Gusewell 2004; Koerselman 1996; Sardans et al. 2012). We
asked whether the amount of fertilization needed for a concrete forest stand could be determined

using current N and P storage in mineral soil.
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The Qinling Mountains are located in central China and have historically played a vital role
in supplying timber for construction. The mixed pine-oak stand is extensive at the mid-
altitudinal gradient of the Qinling Mountains (Hou et al. 2017). Maximizing the volume of this
forest type not only increases its carbon sequestration and ecosystem services, but also provides
more timber for harvesting. The objectives of this study were to address key knowledge gaps,
including: (1) foliar N and P stoichiometric traits in the tree layer in mixed pine-oak stand; (2)
the relationship between N and P stoichiometry in forest soil and leaves in the tree layer; (3)
nutrient limitation of the tree layer; and (4) preliminary recommendations for a fertilizer for

dominant trees growing normally based on stoichiometric traits.

MATERIALS AND METHODS

Site description

Experiments were conducted at the Qinling National Forest Ecosystem Research Station
(QNFERS), located on the southern slope of the Qinling Mountains, Huoditang, Ningshan
County, Shaanxi Province, China (32°18'N, 108°20'E). The altitude of the study area was from

1500 to 2500 m. The area gxperieneed-a has subtropical climate, with annual mean air

temperatures around 8-10°C, annual mean precipitation around 900-1200 mm, and annual
mean evaporation around 800-950 mm. The main soil type was mountain brown soil, developed
from granite material, ranging from 30-50 cm depth. The total forest area in the station was
2037 hectares. Natural forest occupied 93% of the total forest area in QNFERS, with various
vegetation types distributed along an altitudinal gradient, such as evergreen deciduous mixed
forest_(mixed pine-oak forest), deciduous broad-leaved forest (oak, red birch), temperate
coniferous forest (Chinese red pine, Armand pine), and cold temperate coniferous forest (spruce,
fir). The most dominant forest type was mixed pine-oak forest with an average stand age of 42

years and an average height of 9.2 m. Common tree species included Pinus tabuliformis, P.
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armandii, and Quercusaliena var. acuteserrata, and understory species were abundant (Hou et
al. 2017).

Field investigations and sampling were conducted from 10 to 15 September, 2014. Samples
of trees litter and soils were collected from 13 long-term fixed plots in the mixed pine-oak stand.
Each plot was 20 x20 m. Tree species, number, Height (H), and diameter at breast height (DBH)
were recorded and used to determine the dominant tree species and DBH classes. DBH
increasing 4 cm each is a DBH class Land mid-diameter is used to stand for it (DBH ranging from
6.1 to 10 cm, the corresponding mid-diameter is 8 cm). One hundred and fifty-six of the average
standard trees (AST) in all DBH classes were determined in each of the 13 plots
(Supplementary). Mature, sunlit leaves without disease or insect pests were sampled. Four
leaves/needles from each AST were collected in each of the four directions (north, east, south
and west) and at different stem heights (crown, intermediate section, and underpart), and mixed
into one sample for each AST. Five subplots (1 x1 m) within each plot were randomly
established to collect litter and mineral soil (depth 0-30 cm, 10 cm each layer). Samples of litter
were collected manually and soil samples were collected by an auger (internal diameter 38 mm).
Soil volumetric rings (100 cm®) were also used to collect soil samples to measure soil bulk
density using the cutting ring method. Five samples of litter and mineral soil from the same
depth within each subplot were mixed into one sample. All samples (litter and mineral soil)
were weighed in the field before being transported to the laboratory.

Chemical analysis

Samples of leaves/needles and litter were oven-dried at 60 °C to a constant weight, and
then ground using a plant sample mill and sieved through a 1-mm mesh screen. Nitrogen
concentrations in leaves/needles and litter were measured using a flow injection analyzer

(FIA5000, FOSS, Sweden), while P concentrations were measured using the molybdenum blue
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colorimetric method after digestion in a H.SO4+H20; solution (Bao 2000). Auger soil samples
were air-dried under shade, then ground and sieved though a 0.149-mm mesh. Total soil N (TN)
was measured using the Kjeldahl method (Kjeltec TM 8400, FOSS, Sweden), and total soil P
(TP) was determined using acid digestion in a Ho.SO4+HCIO4 solution_(Bao 2000).

Data processing

Importance values (IV) of tree species were calculated following Busby et al. (2010):
RH=20x100% (1)

where, RH is the relative height, Hj, is the height of tree species i, and H is the height of all

tree species in all plots.

RF=20x100% (2)

where, RF is the relative frequency, Fiis the frequency of tree species i, and F is the
frequency of all tree species in all plots.

lify D?
RD = £ ©

where, RD is the relative basal area, Diis the DBH of tree species i, D is the basal area of all

tree species in all plots, and f is the form factor of tree species (fconiter =0.40, foroadiear =0.42).

_ RH+RF+RD
3

v x 100% (4)
Tree species with 1V>10% were determined as dominant.
Nitrogen and P stoichiometry (N and P concentration and N: P) of tree layer leaves was

calculated following Du et al. (2011):

St = 2iLq Cni X 1V )
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where, St is N and P stoichiometry of all tree species, Chi is the concentration of N or P (mg
gY) or N: P in leaves of tree i, IVi is the importance value of tree i, and n is the number of
dominant tree species.

Nutrient storage (t ha'®) in litter was calculated as follows:

S =GB (6)

where, S; is the litter nutrient storage (t ha'), Cy is element (N or P) concentration (mg g%),
and Bj is the biomass (t ha™).

Storage of nutrients (N and P) in soil was calculated as follows:

St = Xiz1 EiBiD; (7

where, St is the soil nutrient storage_(t ha®), Ei is the concentration of element i (mg g%), B;
is the bulk density (g cm™) in layer i, and Diis depth i (cm).

The relationships between foliar N and P and N: P in the tree layer, foliar N and P, N: P in
the tree layer and mineral soil, and litter were assessed using Spearman’s rank correlation.
Significance levels were set at p=0.05. All statistical analyses were performed using SPSS
software (version 19.0 for Windows; SPSS Inc., Chicago, IL, USA). Figures were plotted using

Origin 8.0 (OriginLab Corporation, Northampton, Massachusetts, USA).

RESULTS
Dominant tree species

There were 21 tree species in the mixed pine-oak stand. Aside from the photophilous
species (P. tabuliformis, P. armandii, and Q. aliena var.acuteserrata), most of the species were
shade-tolerant (Toxicodendron vernicifluum, Carpinus turczaninowii) or neutral with respective
to light (Acer mono, Sorbus folgneri) (I'I'able lD. The dominant tree species with importance

values >10% were P. tabuliformis, P. armandii, and Q. aliena var.acuteserrata (Table 1).

9
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Foliar N and P stoichiometric traits in the tree layer in mixed pine-oak stand

The positive correlation between foliar N and P concentrations in the tree layer is consistent
with stoichiometric stability criteria of a fixed ratio of nutrient absorption in the plant
(Koerselman 1996). ]Previously, mean foliar N and P and N: P were reported as 18.6,1.21 mg g°
! and 14.4, respectively for 753 species of terrestrial plants across China (Han et al. 2005)
and 18.3, 1.42 mg g%, and 11.8, respectively for 1251 world terrestrial plants (Reich and
Oleksyn 2004). This study indicated that foliar N: P of dominant tree species (P.
tabuliformis, P. armandii, and Quercusaliena var. acuteserrata.) and in the tree layer were
lower than both Chinese and global terrestrial plants. Similarly, foliar N concentration of P.
tabuliformis and P. armandii, and foliar P concentration of P. armandii were also lower.
The overall element composition of plants in an ecosystem is determined by the mix of
species and by the physiological status of the dominant plants (Glsewell 2004).Therefore,
potential explanations for the observed patterns are that foliar element concentrations and
ratios were strongly determined by genetic and physiological controls, and that hhe secrucial ]
factors prevented plants from responding to the natural availability of nutrients (Castle and
Neff 2009). Furthermore, the nutrient status of terrestrial plants has a strong local and
regional signal due to acquiring nutrients via weathering and microbial decomposition in
situ (Chadwick et al. 1999). In the study area, low air temperature (<10°C) (Hou et al. 2017)
may have hindered rock weathering and microbial activity. However, the concentration of
foliar N and P in Q. aliena var. acuteserrata was higher than that reported for Chinese and
global mean levels. Foliar P concentration of P. tabuliformis was higher than the Chinese
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m) (Hou et al. 2017). Therefore, shorter leaf life span and growing season may have caused
higher N and P concentrations (Castle and Neff 2009; He et al. 2006).
Response of foliar nutrients in the tree layer to soil nutrients

The N and P concentrations in mineral soil were generally low. The N concentration in the
top layer of mineral soil (0-10 cm) was above the standard of first class soil (>2.0 g kg™);
however, at 11-20 cm depth it only met the standard of third class soil (1-1.5 g kg™?), and at 21—
30 cm it met the standard of fifth class soil (0.5-0.75 g kg™) (National Soil Survey Office of
China 1998). The level of soil P concentration at 0-30 cm only reached the standard of third
class soil (0.2-0.4 g kg'!) (National Soil Survey Office of China 1998). Litter decomposition
and rock weathering are the main nutrient sources for mineral soil in natural forests. Plant
element concentrations are largely determined by supplies of elements in soil and the chemical
and physical characteristics of soil environments (Castle and Neff 2009). However, our findings
demonstrated that elements in litter did not significantly affect mineral soil. We found most of

the relationships between foliar N and P concentrations in the tree layer and mineral soil at

various depths were pensignifieant not significant, and soil nutrients did not explain more than { Formatted: Font color: Red
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149% of foliar nutrients in the tree layer. Therefore, these results were not able to provide a better
understanding and interpretation of the effects of litter and soil nutrients on mineral soil and
foliar nutrients in the tree layer. Possible explanations for the observed patterns include high
non-soluble chemical compounds in litter and low temperature (Hou et al. 2017), which slowed
down litter decomposition. Furthermore, soil available N and P absorbed by plants have strong

mobility and are easily leached (Thompson et al. 2010). The thickness of mineral soil (at 30-50
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cm depth), pore ratio from 32.0 to 62.28%, high precipitation (800-1200 mm), and low
temperature (Hou et al. 2010, 2017) in the study area may have accelerated leaching of N and P
in decomposed litter and mineral soil, leaving less N and P to be assimilated into leaves in the
tree layer.

Nutrient limitation of the tree layer

It has been suggested that biomass N: P may be a better indicator of N or P deficiency than
nutrient concentrations (Glisewell et al. 2003). Previous studies have reported that plant growth
is limited py concurrent N concentration <20 mg g™ and N: P<14; while P limits plant growth at
concentrations of<1 mg g** and N: P >16.Therefore, co-limitation of N and P will occur when
the concentrations and ratio of N and P meet these conditions (Aerts and Chapin 1999;
Koerselman 1996). The foliar N: P (10.3) and N concentration (9.08 mg g') of the tree layer in
the mixed pine-oak (Table 3) stand showed N limitation according to above mentioned criteria
(Aerts and Chapin 1999; Koerselman 1996).

The relationships between soil nutrient storage and foliar N: P of the tree layer indicated
that foliar N: P of the tree layer was correlated with soil N storage (Figure 4(a)). One possible
reason may be that the growth of the tree layer was limited by N, and foliar N: P of the tree layer
responses to soil N were more sensitive. However, N storage in mineral soil only explained 40%
(Figure 4(a)) of the variation in foliar N: P of the tree layer, and foliar N: P of the tree layer was
not significantly correlated with soil P storage (Figure 4(b)). This may have been a result of low
P concentration in mineral soil, which also affected foliar N: P of the tree layer.

Our results showed that the total standing crop of elements in litter was estimated as
0.31+0.07 t ha* for N, and 0.02+0.01 t ha* for P; and 4.58+0.15 t ha™ for N and 0.95+0.09 t ha*
for P in mineral soil at 0-30 cm depth (Table 4). This suggested that trees might assimilate N

and P entirely from that stored in mineral soil and litter. According to the criteria (Aerts and
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Chapin 1999; Koerselman 1996), 1.49 t ha* pure N should be used to fertilize forest land to
relieve N limitation on tree growth.
Limitations of the analysis

We analyzed stoichiometric traits of leaves in the tree layer, mineral soil, and litter to
explore the effects of N and P concentrations and N: P of litter and mineral soil on leaves in the
tree layer. We also investigated the relationships between foliar N: P in the tree layer and N and
P storage in mineral soil. The factors included in this study only explained 40% of the variation,
which prevented us from fully understanding and interpreting total variation. Furthermore,
besides criteria we used in the study, a more conservative estimate of a-N: P threshold is <10 for
N limitation and >20 for P limitation (Gusewell 2004; Sardans et al. 2012). Since there are
multiple criteria for assessing nutrient limitation (Aerts and Chapin 1999; Glisewell 2004;
Koerselman 1996; Sardans et al. 2012), we lack sufficient evidence to support an accurate
estimation of fertilizer application rate. Finally, nutrient use efficiency and its influence on tree
growth was not included in the estimation of pure N application rate, as it would have
underestimated N. To verify these preliminary results, more study is required to detect the

effects of fertilizer on stoichiometric traits of trees and mineral soil, and N and P interactions.
CONCLUSIONS

Our results indicated that N and P concentrations were low in leaves in the tree layer and
mineral soil, but high in litter. Concentrations of N and P in mineral soil were insufficient to
explain the variation in foliar N: P in the tree layer. However, N storage in mineral soil at 0-30
cm depth was correlated with foliar N: P. The growth of the tree layer was limited by N;
therefore, 1.49 t ha'* pure N should be added to forest land to relieve this limitation. We further
recommend that appropriate fertilization rates should be included in the process of big timber
cultivation. This result offers important insights into fertilizing forest land.
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