1	Applying foliar stoichiometric traits of tree layer to determine fertilization
2	for a mixed pine-oak stand in the Qinling Mountains, China
3	
4	
5	Lin Hou ¹ *, Zhenjie Dong ¹ , Yuanyuan Yang ¹ , Donghong Zhang ¹ , Shengli Zhang ² , Shuoxin
6	Zhang ¹
7	
8	1 College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
9	2 College of Natural Resources and Environment, Northwest A&F University, Yangling,
10	Shaanxi 712100, China
11	
12	
13	
14	
15	
16	Corresponding author
17	Lin Hou
18	3 Taicheng Road, Yangling, Shaanxi, 712100, China
19	E-mail: houlin1969@163.com
20	Tel: +86-29-8708-2124
	1
16 17 18 19	Lin Hou 3 Taicheng Road, Yangling, Shaanxi, 712100, China E-mail: houlin1969@163.com

1	Δ	he	tra	ct

- 22 Background. The Chinese Natural Forest Protection program has been conducted nationwide
- and has achieved resounding success. However, timber importation has increased; therefore,
- 24 producing more domestic timber is critical to meet the demand for raw materials. Fertilization is
- 25 one of the most effective silviculture practices used to improve tree and stand growth. However,
- 26 determining the appropriate type and amount of-elements is necessary for effective fertilization
- 27 of big timber in different forest types and environmental conditions. Stoichiometric theory
- 28 provides the criteria to assess nutrient limitation in plants and offers important insight into
- 29 fertilizing in forest land.
- 30 Methods. Nitrogen (N) and phosphorus (P) concentrations in tree layer leaves, mineral soil, and
- 31 litter were investigated in a mixed pine-oak stand.
- Results. The big timber rate of *Pinus tabuliformis*, *Pinus armandii* and *Quercus aliena* var.
- 33 acutesserata is 57.71%, 22.79% and 2.78% of current existing individuals respectively. Foliar N
- and P concentrations were 9.08 and 0.88 mgg⁻¹, respectively. The N: P in the tree layer was
- 35 [10.30]. N concentration and N: P in mineral soil decreased from 0–30 cm soil depth. For litter, N
- and P concentrations were 16.89 and 1.51 mgg⁻¹, respectively, and N: P was 11.51.
- 37 Concentrations of N and P in mineral soil and litter did not significantly affect tree layer leaves
- or mineral soil. Nitrogen storage in mineral soil was significantly correlated with foliar N: P in
- 39 the tree layer.
- 40 **Discussion.** Foliar N:P of dominant tree species and the tree layer, and foliar N concentration in
- 41 Pinus tabuliformis and P. armandii, and foliar P concentration of P. armandii in the mixed pine-

Commented [AOA1]: fertilizer requirements of forested ecosystems

Commented [AOA2]: What does this mean? Is it the rate at which big timber of each of the three listed species is found in the stand studied? Please rephrase the sentence so its meaning is clearly comprehensible. See Line 192

Commented [AOA3]: 10.32

Commented [AOA4]: 11.19

Commented [AOA5]:tree layer leaf concentrations. Similar result was also obtained between litter and mineral soil concentrations.

42	oak stand was lower than that in Chinese and other terrestrial plants. Foliar nutrients in the tree
43	layer were not affected by soil nutrients. According to the criteria of nutrient limitation for
44	plants, growth of dominant tree species was N limited; therefore, 1.49 t ha ⁻¹ pure N was added to
45	forest land to as fertilizer.
46	
47	Keywords: nitrogen; phosphorus; N: P; fertilizer; mixed pine-oak stand; the Qinling Mountains
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	

INTRODUCTION

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

The Natural Forest Protection Program (NFPP) was implemented in China in 1998 and has achieved or surpassed its initial goal by prohibiting commercial logging and partial or full harvesting of timber (Xu 2011). However, the effectiveness of the NFPP has been disputed as it has increased timber imports and caused deterioration in the structures of forest stands (Wang et al. 2013). To redress the insufficient production of domestic timber, the project "Techniques for big timber (diameter at breast height, DBH>26 cm) cultivation" has been conducted in both northern and southern forests in China. Besides proper forest management (Hou et al. 2017), applying fertilizer is also an efficient way to achieve "big timber". However, determining the appropriate type and amounts of elements is necessary in the cultivation of big timbers in different forest types and environmental conditions. Carbon (C), nitrogen (N), and phosphorus (P) are essential elements for plant growth and metabolic processes (Yang et al. 2015). The relative concentrations of C, N, and P in plants is known as stoichiometry (He et al. 2006), which is a unifying conceptual framework to examine how proportions of these elements affect organisms and ecosystems, with element limitation one of the most important topics (Danger et al. 2016). The most common limiting elements, C, N, and P, either individually or in combination, are widespread in terrestrial ecosystems (Venterink et al. 2001; Venterink et al. 2003; Vitousek et al. 2010). Stoichiometric traits, particularly C: N and N: P, are useful indicators of

Formatted: Font color: Red

Commented [AOA6]: What exactly does dangler et al 2016 say? The phrase ".....with element limitation one of the most important topics (Danger at al. 2016)" is hard to understand. Consider a period after ".... These elements affect organisms and ecosystems."

nutrient limitation in both terrestrial ecosystems and ecosystem functioning (Elser et al. 2007; 82 Gundersen et al. 2009). 83 84 In the last two decades, most research in ecological stoichiometry has focused on the causes and consequences of variation in C, N, and P ratios in organisms and their resources; 85 however, there are large disparities in knowledge among taxa, ecosystem types, and specific 86 research topics (Bell et al. 2014; Fanin et al. 2013; Han et al. 2005; He et al. 2006; Knoll et al. 87 88 2009; Sardans et al. 2011; Scharler et al. 2015; van Huysen et al. 2016; Venterink and Güsewell 2010; Vrede et al. 2004; Zhan et al. 2017). Leaf stoichiometry of plants, especially N and P, is 89 90 very important in analyzing the composition, structure, and function of a community and ecosystem (Gao et al. 2013; Han et al. 2005; Rong et al. 2015; Venterink and Güsewell 2010). 91 Determining how nutrients limit plant growth and N: P in leaves has become a hot topic (He et 92 93 al. 2008). Previous studies have documented N: P in plant leaves and biomass to infer or assess the degree of N or P limitation at the community level (Aerts and Chapin 1999; Ellison 2006; 94 Güsewell 2004; Koerselman 1996; Sardans et al. 2012). However, determining the fertilizer of a 95 specific community via ecological stoichiometry theory by assessing N and P limitation is still 96 97 in its infancy (Finn et al. 2016; Hong et al. 2015). We hypothesized that growth of a dominant 98 tree species would not be limited by nutrients when foliar N: P in the tree layer meets a threshold (Aerts and Chapin 1999; Güsewell 2004; Koerselman 1996; Sardans et al. 2012). We 99 100 asked whether the amount of fertilization needed for a concrete forest stand could be determined

101

using current N and P storage in mineral soil.

The Qinling Mountains are located in central China and have historically played a vital role in supplying timber for construction. The mixed pine-oak stand is extensive at the midaltitudinal gradient of the Qinling Mountains (Hou et al. 2017). Maximizing the volume of this forest type not only increases its carbon sequestration and ecosystem services, but also provides more timber for harvesting. The objectives of this study were to address key knowledge gaps, including: (1) foliar N and P stoichiometric traits in the tree layer in mixed pine-oak stand; (2) the relationship between N and P stoichiometry in forest soil and leaves in the tree layer; (3) nutrient limitation of the tree layer; and (4) preliminary recommendations for a fertilizer for dominant trees growing normally based on stoichiometric traits.

MATERIALS AND METHODS

Site description

Experiments were conducted at the Qinling National Forest Ecosystem Research Station (QNFERS), located on the southern slope of the Qinling Mountains, Huoditang, Ningshan County, Shaanxi Province, China (32°18′N, 108°20′E). The altitude of the study area was from 1500 to 2500 m. The area experienced a has subtropical climate, with annual mean air temperatures around 8–10°C, annual mean precipitation around 900–1200 mm, and annual mean evaporation around 800–950 mm. The main soil type was mountain brown soil, developed from granite material, ranging from 30–50 cm depth. The total forest area in the station was 2037 hectares. Natural forest occupied 93% of the total forest area in QNFERS, with various vegetation types distributed along an altitudinal gradient, such as evergreen deciduous mixed forest_(mixed pine-oak forest), deciduous broad-leaved forest (oak, red birch), temperate coniferous forest (Chinese red pine, Armand pine), and cold temperate coniferous forest (spruce, fir). The most dominant forest type was mixed pine-oak forest with an average stand age of 42 years and an average height of 9.2 m. Common tree species included *Pinus tabuliformis*, *P*.

Formatted: Font color: Red

Formatted: Font color: Red

armandii, and *Quercusaliena* var. *acuteserrata*, and understory species were abundant (Hou et al. 2017).

Field investigations and sampling were conducted from 10 to 15 September, 2014. Samples of trees litter and soils were collected from 13 long-term fixed plots in the mixed pine-oak stand. Each plot was 20 ×20 m. Tree species, number, Height (H), and diameter at breast height (DBH) were recorded and used to determine the dominant tree species and DBH classes. DBH increasing 4 cm each is a DBH class and mid-diameter is used to stand for it (DBH ranging from 6.1 to 10 cm, the corresponding mid-diameter is 8 cm). One hundred and fifty-six of the average standard trees (AST) in all DBH classes were determined in each of the 13 plots (Supplementary). Mature, sunlit leaves without disease or insect pests were sampled. Four leaves/needles from each AST were collected in each of the four directions (north, east, south and west) and at different stem heights (crown, intermediate section, and underpart), and mixed into one sample for each AST. Five subplots (1 ×1 m) within each plot were randomly established to collect litter and mineral soil (depth 0-30 cm, 10 cm each layer). Samples of litter were collected manually and soil samples were collected by an auger (internal diameter 38 mm). Soil volumetric rings (100 cm³) were also used to collect soil samples to measure soil bulk density using the cutting ring method. Five samples of litter and mineral soil from the same depth within each subplot were mixed into one sample. All samples (litter and mineral soil) were weighed in the field before being transported to the laboratory.

Chemical analysis

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

Samples of leaves/needles and litter were oven-dried at 60 °C to a constant weight, and then ground using a plant sample mill and sieved through a 1-mm mesh screen. Nitrogen concentrations in leaves/needles and litter were measured using a flow injection analyzer (FIA5000, FOSS, Sweden), while P concentrations were measured using the molybdenum blue

Commented [AOA7]: Rephrase this sentence to show the BDH classes used in the study. The sentence in its present form is hard to understand.

colorimetric method after digestion in a H₂SO₄+H₂O₂ solution (Bao 2000). Auger soil samples

were air-dried under shade, then ground and sieved though a 0.149-mm mesh. Total soil N (TN)

was measured using the Kjeldahl method (Kjeltec TM 8400, FOSS, Sweden), and total soil P

(TP) was determined using acid digestion in a H₂SO₄+HClO₄ solution_(Bao 2000).

Data processing

151

152

153

154

155

164

167

Importance values (IV) of tree species were calculated following Busby et al. (2010):

156
$$RH = \frac{\sum H_i}{H} \times 100\% \qquad (1)$$

where, RH is the relative height, H_i , is the height of tree species i, and H is the height of all

tree species in all plots.

$$RF = \frac{\sum F_i}{F} \times 100\% \qquad (2)$$

where, RF is the relative frequency, F_i is the frequency of tree species i, and F is the

161 frequency of all tree species in all plots.

$$RD = \frac{\frac{1}{4}\pi f \sum D_i^2}{D^2}$$
 (3)

where, RD is the relative basal area, D_i is the DBH of tree species i, D is the basal area of all

tree species in all plots, and f is the form factor of tree species (f_{conifer} =0.40, f_{broadleaf} =0.42).

165
$$IV = \frac{RH + RF + RD}{3} \times 100\% \quad (4)$$

Tree species with IV>10% were determined as dominant.

Nitrogen and P stoichiometry (N and P concentration and N: P) of tree layer leaves was

168 calculated following Du et al. (2011):

$$S_t = \sum_{i=1}^{n} C_{ni} \times IV_i \qquad (5)$$

where, S_t is N and P stoichiometry of all tree species, C_{ni} is the concentration of N or P (mg g^{-1}) or N: P in leaves of tree i, IV_i is the importance value of tree i, and n is the number of dominant tree species.

Nutrient storage (t ha⁻¹) in litter was calculated as follows:

$$S_l = C_l B_l \tag{6}$$

where, S_l is the litter nutrient storage (t ha⁻¹), C_l is element (N or P) concentration (mg g⁻¹), and B_l is the biomass (t ha⁻¹).

Storage of nutrients (N and P) in soil was calculated as follows:

178
$$S_{T} = \sum_{i=1}^{n} E_{i} B_{i} D_{i}$$
 (7)

where, S_T is the soil nutrient storage_(t_ha^-1), E_i is the concentration of element i (mg g⁻¹), B_i is the bulk density (g cm⁻³) in layer i, and D_i is depth i (cm).

The relationships between foliar N and P and N: P in the tree layer, foliar N and P, N: P in the tree layer and mineral soil, and litter were assessed using Spearman's rank correlation. Significance levels were set at p=0.05. All statistical analyses were performed using SPSS software (version 19.0 for Windows; SPSS Inc., Chicago, IL, USA). Figures were plotted using Origin 8.0 (OriginLab Corporation, Northampton, Massachusetts, USA).

RESULTS

Dominant tree species

There were 21 tree species in the mixed pine-oak stand. Aside from the photophilous species (*P. tabuliformis*, *P. armandii*, and *Q. aliena* var.*acuteserrata*), most of the species were shade-tolerant (*Toxicodendron vernicifluum*, *Carpinus turczaninowii*) or neutral with respective to light (*Acer mono*, *Sorbus folgneri*) (Table 1). The dominant tree species with importance values >10% were *P. tabuliformis*, *P. armandii*, and *Q. aliena* var.*acuteserrata* (Table 1).

Commented [AOA8]: Insert space between RH(%) i.e. RH (%) etc on Table 1.

The IV (importance value) of big timber rate of for P. tabuliformis, P. armandii, and 193 Q. aliena var. acuteserrata was 57.71%, 22.79% and 2.78% of current existing individuals 194 195 respectively (Table 2). Patterns of foliar N and Pa and N: P in the tree layer 196 Foliar N (11.84 \pm 2.36 mg·g⁻¹ to 21.72 \pm 3.19 mg·g⁻¹) and P (1.20 \pm 0.14 mg·g⁻¹ to 2.00 197 \pm 0.31 mg·g⁻¹) and N: P (9.62 to 10.87) exhibited large variation among tree species (Table 198 3). The general trend demonstrated that foliar nutrients and N: P of P. tabuliformis and P. 199 armandii were less than that in Q. aliena var. acuteserrata (Table 3). Moreover, foliar 200 201 stoichiometric variables of the tree layer were also less than those in individual tree species 202 in the mixed pine-oak stand (Table 3). In the tree layer, concentrations of foliar N and P were significantly, positively 203 correlated (p<0.05) with each other (Figure 1(a)). The Log foliar N concentration was 204 significantly, positively correlated with the log N: P (Figure 1 (b)). Foliar P concentration 205 206 and N: P were significantly, negatively correlated (p<0.05) with each other (Figure 1 (c)). Patterns of N and P and N: P in mineral soil and litter 207 208 Nitrogen concentrations and N: P varied markedly across mineral soil at 0-30 cm 209 depth, ranging from $0.60\pm0.05~\text{mg}\cdot\text{g}^{-1}$ to $2.40\pm0.10~\text{mg}\cdot\text{g}^{-1}$ and $2.60\pm0.41~\text{to}~6.81\pm0.51$, respectively (Table 4). However, P in mineral soil at 0-30 cm depth was significantly 210 different, ranging from 0.23±0.03 mg·g⁻¹ to 0.36±0. 03 mg g⁻¹ (Table 4). Bulk density of 211 mineral soil increased with soil depth (Table 4). The indices, N: P, and concentrations of N 212

Formatted: Font color: Red

Commented [AOA9]: Applies to Line 32.

Formatted: Font color: Red

Commented [AOA10]: Verify the accuracy of your calculator. I got 9.87

Commented [AOA11]: Is IV in this work "importance value" or "important value"? Foot note of Table 3 must be consistent with manuscript text.

Commented [AOA12]: For clarity, use ".. mathematical log of foliar N...." to distinguish tree log from mathematical log.

This is more so when it involves foliage but notice that log N:P is perfectly okay as in Line 204

Commented [AOA13]: I would have been surprised if this was not the case.

Having said that, no statistical analysis was shown on the Table to justify the claim. What are the statistical p-values?

and P were far higher in litter than in mineral soil (Table 4).

Relationships among between N and P concentrations in litter and mineral soil were 214 complex and none was mostly nonsignificant (Figure 2(a)-(f)). At 0-10 cm depth, mineral soil N 215 216 concentration increased with litter N concentration when litter N concentration was <17.9 mg g ¹, and vice versa (Figure 2(a)). Soil P concentration increased with litter P concentration (Figure 217 2(d)). At 11–20 cm depth, mineral soil N concentration decreased with litter N concentration 218 when litter N concentration was <19.0 mg g⁻¹, and vice versa (Figure 2 (b)). Soil P concentration 219 showed an exponential relationship with litter P concentration (Figure 2(e)). At 21–30 cm depth, 220 mineral soil N concentration increased with litter N concentration when litter N concentration 221 was <17.9 mg g⁻¹, and vice versa (Figure 2(c)). Phosphorus concentration of mineral soil 222 increased linearly with litter P concentration (Figure 2(f)). 223 Relationship between foliar N and P concentration in the tree layer and mineral soil 224 225 At 0–10 cm depth, foliar N concentration in the tree layer was significantly, positively correlated (p>0.05) with N concentration of mineral soil (Figure 3(a)). In contrast, foliar P 226 concentration in the tree layer showed a significant, cubic relationship with P concentration of 227 mineral soil (p<0.05) (Figure 3(d)). Although foliar N and P concentrations in the tree layer 228 229 were not significantly correlated with mineral soil at 11-20 cm depth, foliar N concentration in 230 the tree layer increased with N concentration of mineral soil (Figure 3(b) and (e)). There was no relationship between foliar N concentration in the tree layer and N concentration of mineral soil 231 at 21-30 cm depth (Figure 2(c)). Foliar P concentration in the tree layer increased with P 232 concentration of mineral soil at 21–30 cm depth (Figure 2(f)). 233

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

Commented [AOA14]: I was unable to open the figures of this manuscript but from the little I could glean off the pdf document I received from the Editor, it seems Fig. 2(d) has litter nitrogen on the X-axis and not P. If this is correct, the figure and manuscript need revision to address this finding.

Commented [AOA15]: The problem with Fig 2(d) applies to Fig 2(e)

Commented [AOA16]: I do not see the increased relationship with N. The relationship is spread through the sampling area and show no increase or decrease with depth or Neopophystica.

Commented [AOA17]: No litter P was analyzed in Fig. 2. All x-axis analyses are nitrogen. See 2a-2f.

Commented [AOA18]: Make sure that the correct figures are used in this research. It seems that Fig 3a has p=0.28 and not p>0.05.

Commented [AOA19]: Fig 3e shows foliar and soil P, not nitrogen. Revise sentence to reflect this. As the sentence is currently stated, it seems figures 3b and 3e are about foliar N increases with soil N. Only 3b is; 3e is not.

Commented [AOA20]: Although these are important findings, it is important to state clearly that none of the stoichiometry of N and P in relation to tree layer, and mineral soil was significant.

DISCUSSION

Foliar N and P stoichiometric traits in the tree layer in mixed pine-oak stand

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

The positive correlation between foliar N and P concentrations in the tree layer is consistent with stoichiometric stability criteria of a fixed ratio of nutrient absorption in the plant (Koerselman 1996). Previously, mean foliar N and P and N: P were reported as 18.6, 1.21 mg g ¹, and 14.4, respectively for 753 species of terrestrial plants across China (Han et al. 2005) and 18.3, 1.42 mg g⁻¹, and 11.8, respectively for 1251 world terrestrial plants (Reich and Oleksyn 2004). This study indicated that foliar N: P of dominant tree species (P. tabuliformis, P. armandii, and Quercusaliena var. acuteserrata.) and in the tree layer were lower than both Chinese and global terrestrial plants. Similarly, foliar N concentration of P. tabuliformis and P. armandii, and foliar P concentration of P. armandii were also lower. The overall element composition of plants in an ecosystem is determined by the mix of species and by the physiological status of the dominant plants (Güsewell 2004). Therefore, potential explanations for the observed patterns are that foliar element concentrations and ratios were strongly determined by genetic and physiological controls, and that the secrucial factors prevented plants from responding to the natural availability of nutrients (Castle and Neff 2009). Furthermore, the nutrient status of terrestrial plants has a strong local and regional signal due to acquiring nutrients via weathering and microbial decomposition in situ (Chadwick et al. 1999). In the study area, low air temperature (<10°C) (Hou et al. 2017) may have hindered rock weathering and microbial activity. However, the concentration of foliar N and P in O. aliena var. acuteserrata was higher than that reported for Chinese and global mean levels. Foliar P concentration of P. tabuliformis was higher than the Chinese

Commented [AOA21]: Where are these positive correlations? No statistical p-values support it from your figures. The trend lines can point up or down but that does not mean positive or negative agreement when it is not statistically supported.

Commented [AOA22]:, and that these critical factors prevented

mean, but lower than the global mean. The growing period (from mid-May to late-September) in the study area was relatively short for elevation of the, _plots on high elevation (more than 1600 m) (Hou et al. 2017). Therefore, shorter leaf life span and growing season may have caused

Response of foliar nutrients in the tree layer to soil nutrients

higher N and P concentrations (Castle and Neff 2009; He et al. 2006).

256

257

258

259260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

The N and P concentrations in mineral soil were generally low. The N concentration in the top layer of mineral soil (0–10 cm) was above the standard of first class soil (>2.0 g kg⁻¹); however, at 11-20 cm depth it only met the standard of third class soil (1-1.5 g kg⁻¹), and at 21-30 cm it met the standard of fifth class soil (0.5–0.75 g kg⁻¹) (National Soil Survey Office of China 1998). The level of soil P concentration at 0-30 cm only reached the standard of third class soil (0.2-0.4 g kg⁻¹) (National Soil Survey Office of China 1998). Litter decomposition and rock weathering are the main nutrient sources for mineral soil in natural forests. Plant element concentrations are largely determined by supplies of elements in soil and the chemical and physical characteristics of soil environments (Castle and Neff 2009). However, our findings demonstrated that elements in litter did not significantly affect mineral soil. We found most of the relationships between foliar N and P concentrations in the tree layer and mineral soil at various depths were nonsignificant not significant, and soil nutrients did not explain more than 14% of foliar nutrients in the tree layer. Therefore, these results were not able to provide a better understanding and interpretation of the effects of litter and soil nutrients on mineral soil and foliar nutrients in the tree layer. Possible explanations for the observed patterns include high non-soluble chemical compounds in litter and low temperature (Hou et al. 2017), which slowed down litter decomposition. Furthermore, soil available N and P absorbed by plants have strong mobility and are easily leached (Thompson et al. 2010). The thickness of mineral soil (at 30-50

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

cm depth), pore ratio from 32.0 to 62.28%, high precipitation (800-1200 mm), and low temperature (Hou et al. 2010, 2017) in the study area may have accelerated leaching of N and P in decomposed litter and mineral soil, leaving less N and P to be assimilated into leaves in the tree layer.

Nutrient limitation of the tree layer

It has been suggested that biomass N: P may be a better indicator of N or P deficiency than nutrient concentrations (Güsewell et al. 2003). Previous studies have reported that plant growth is limited by concurrent N concentration <20 mg g⁻¹ and N: P<14; while P limits plant growth at concentrations of<1 mg g⁻¹ and N: P>16. Therefore, co-limitation of N and P will occur when the concentrations and ratio of N and P meet these conditions (Aerts and Chapin 1999; Koerselman 1996). The foliar N: P (10.3) and N concentration (9.08 mg g⁻¹) of the tree layer in the mixed pine-oak (Table 3) stand showed N limitation according to above mentioned criteria (Aerts and Chapin 1999; Koerselman 1996).

The relationships between soil nutrient storage and foliar N: P of the tree layer indicated that foliar N: P of the tree layer was correlated with soil N storage (Figure 4(a)). One possible reason may be that the growth of the tree layer was limited by N, and foliar N: P of the tree layer responses to soil N were more sensitive. However, N storage in mineral soil only explained 40% (Figure 4(a)) of the variation in foliar N: P of the tree layer, and foliar N: P of the tree layer was not significantly correlated with soil P storage (Figure 4(b)). This may have been a result of low P concentration in mineral soil, which also affected foliar N: P of the tree layer.

Our results showed that the total standing crop of elements in litter was estimated as $0.31\pm0.07~t~ha^{-1}$ for N, and $0.02\pm0.01~t~ha^{-1}$ for P; and $4.58\pm0.15~t~ha^{-1}$ for N and $0.95\pm0.09~t~ha^{-1}$ for P in mineral soil at 0–30 cm depth (Table 4). This suggested that trees might assimilate N and P entirely from that stored in mineral soil and litter. According to the criteria (Aerts and

Formatted: Font color: Red

Chapin 1999; Koerselman 1996), 1.49 t ha⁻¹ pure N should be used to fertilize forest land to relieve N limitation on tree growth.

Limitations of the analysis

We analyzed stoichiometric traits of leaves in the tree layer, mineral soil, and litter to explore the effects of N and P concentrations and N: P of litter and mineral soil on leaves in the tree layer. We also investigated the relationships between foliar N: P in the tree layer and N and P storage in mineral soil. The factors included in this study only explained 40% of the variation, which prevented us from fully understanding and interpreting total variation. Furthermore, besides criteria we used in the study, a more conservative estimate of a-N: P threshold is_<10 for N limitation and >20 for P limitation (Güsewell 2004; Sardans et al. 2012). Since there are multiple criteria for assessing nutrient limitation (Aerts and Chapin 1999; Güsewell 2004; Koerselman 1996; Sardans et al. 2012), we lack sufficient evidence to support an accurate estimation of fertilizer application rate. Finally, nutrient use efficiency and its influence on tree growth was not included in the estimation of pure N application rate, as it would have underestimated N. To verify these preliminary results, more study is required to detect the effects of fertilizer on stoichiometric traits of trees and mineral soil, and N and P interactions.

CONCLUSIONS

Our results indicated that N and P concentrations were low in leaves in the tree layer and mineral soil, but high in litter. Concentrations of N and P in mineral soil were insufficient to explain the variation in foliar N: P in the tree layer. However, N storage in mineral soil at 0–30 cm depth was correlated with foliar N: P. The growth of the tree layer was limited by N; therefore, 1.49 t ha⁻¹ pure N should be added to forest land to relieve this limitation. We further recommend that appropriate fertilization rates should be included in the process of big timber cultivation. This result offers important insights into fertilizing forest land.

328	We thank staff at Huoditang Forest Farm, Northwest A&F University for their assistance
329	with sampling.
330	ADDITIONAL INFORMATION AND DECLARATIONS
331	Funding
332	This work was supported by National Key Research and Development Program of China
333	(No. 2017YFD0600504-2) from Ministry of Science and Technology of the People's Republic
334	of China. The funders had no role in study design, data collection and analysis, decision to
335	publish, or preparation of the manuscript.
336	Grant Disclosures
337	The following grant information was disclosed by the authors:
338	National Key Research and Development Program of China: 2017YFD0600504-2.
339	Competing Interests
340	The authors declare that they have no competing interest.
341	Author Contributions
342	• Lin Hou conceived and designed the experiments, and wrote the paper.
343	 Zhenjie Dong calculated importance values of tree species and analyzed nutrients.
344	Yuanyuan Yang and Z.D. analyzed the data.
345	• Shengli Zhang and Shuoxin Zhang reviewed the paper.
346	Data Availability
347	The following information was supplied regarding data availability:

ACKNOWLEDGEMENTS

327

348

The raw data has been supplied as Supplementary File.

349	REFERENCES
350	Aerts R, and Chapin FSI. 1999. The mineral nutrition of wild plants revisited: a re-evaluation
351	of processes and patterns. Advances in Ecological Research 30:1-67.
352	Bao SD. 2000. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press.
353	Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, and Wallenstein MD. 2014.
354	Rhizosphere stoichiometry: are C: N: P ratios of plants, soils, and enzymes conserved at
355	the plant species-level? New Phytologist 201:505-517.
356	Busby PE, Vitousek P, and Dirzo R. 2010. Prevalence of tree regeneration by sprouting and
357	seeding along a rainfall gradient in Hawai'i. Biotropica 42:80-86.
358	Castle SC, and Neff JC. 2009. Plant response to nutrient availability across variable bedrock
359	geologies. Ecosystems 12:101-113.
360	Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, and Hedin LO. 1999. Changing
361	sources of nutrients during four million years of ecosystem development. Nature
362	397 :491-497.
363	Danger M, Gessner MO, and Bärlocher F. 2016. Ecological stoichiometry of aquatic fungi:
364	curruent knowledge and perspectives. Fungal Ecology 19:100-111.
365	Du Y, Pan G, Li L, Hu Z, and Wang X. 2011. Leaf N/P ratio and nutrient reuse between
366	dominant species and stands: predicting phosphorus deficiencies in Karst ecosystems,
367	southwestern China. Environmental Earth Sciences 64:299-309.
368	Ellison AM. 2006. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biology
369	8 :740-747.
370	Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT,
371	Seabloom EW, Shurin JB, and Smith JE. 2007. Global analysis of nitrogen and
372	phosphorus limitation of primary producers in freshwater, marine and terrestrial
373	ecosystems. Ecology Letters 10:1135-1142.
374	Fanin N, Fromin N, Buatois B, and Hättenschwiler S. 2013. An experimental test of the

hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system.

376	Ecology Letters 16:764-772.
377	Finn D, Page K, Catton K, Kienzle M, Robertson F, Armstrong R, and Dalal R. 2016.
378	Ecological stoichiometry controls the transformation and retention of plant-derived
379	organic matter to humus in response to nitrogen fertilisation. Soil Biology and
380	Biochemistry 99:117-127.
381	Güsewell S. 2004. N: P ratios in terrestrial plants: variation and functional significance. New
382	Phytologist 164:243-266.
383	Güsewell S, Koerselman W, and Verhoeven JTA. 2003. Biomass N: P ratios as indicators of
384	nutrient limitation for plant populations in wetlands. <i>Ecological Applications</i> 13 :372-384.
385	Gao Y, Yu G, and He N. 2013. Equilibration of the terrestrial water, nitrogen, and carbon
386	cycles: advocating a health threshold for carbon storage. Ecological Engineering
387	57 :366-374.
388	Gundersen P, Sevel L, Christiansen JR, Vesterdal L, Hansen K, and Bastrup-Birk A.
389	2009. Do indicators of nitrogen retention and leaching differ between coniferous and
390	broadleaved forests in Denmark? Forest Ecology and Management 258:1137-1146.
391	Han W, Fang J, Guo D, and Zhang Y. 2005. Leaf nitrogen and phosphorus stoichiometry
392	across 753 terrestrial plant species in China. New Phytologist 168:377-385.
393	He JS, Fang J, Wang Z, Guo D, Flynn DFB, and Geng Z. 2006. Stoichiometry and
394	large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China.
395	Oecologia 149 :115-122.
396	He JS, Wang L, Dan FBF, Wang X, Ma W, and Fang J. 2008. Leaf Nitrogen:Phosphorus
397	stoichiometry across Chinese grassland biomes. Oecologia 155:301-310.
398	Hong J, Wang X, and Wu J. 2015. Effects of soil fertility on the N:P stoichiometry of
399	herbaceous plants on a nutrient-limited alpine steppe on the northern Tibetan Plateau.
400	Plant and Soil 391 :179-194.
401	Hou L, Lei R, Zhang S, and Liu J. 2010. Temporal and spatial variations of soil respiration in
402	Pinus tabulaeformis forest at Huoditang forest zone in the Qinling Mountains, China.

Acata Ecologica Sinica 30:5225-5236.

404	Hou L, Sun S, Liang L, Liang G, and Jiang L. 2017. Effects of selective thinning and
405	residue removal on ground layer structure and diversity in a mixed pine-oak stand of the
406	Qinling Mountains, China. Australian Journal of Botany 65:485-496.
407	Knoll LB, McIntyre PB, Vanni MJ, and Flecker AS. 2009. Feedbacks of consumer nutrient
408	recycling on producer biomass and stoichiometry: separating direct and indirect effects.
409	Oikos 118:1732-1742.
410	Koerselman W. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient
411	limitation. Journal of Applied Ecology 33:1441-1450.
412	National Soil Survey Office of China. 1998. Soils of China. Beijing, China: Chinese
413	Agriculture Press.
414	Reich PB, and Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to
415	temperature and latitude. Proceedings of the National Academy of Sciences of the United
416	States of America 101:11001-11006.
417	Rong Q, Liu J, Cai Y, Lu Z, Zhao Z, Yue W, and Xia J. 2015. Leaf carbon, nitrogen and
418	phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland,
419	China. Ecological Engineering 76 :57-65.
420	Sardans J, Rivas-Ubach A, and Peñuelas J. 2011. Factors affecting nutrient concentration
421	and stoichiometry of forest trees in Catalonia (NE Spain). Forest Ecology and anagement
422	262 :2024-2034.
423	Sardans J, Rivasubach A, and Peñuelas J. 2012. The elemental stoichiometry of aquatic and
424	terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem
425	structure and function: a review and perspectives. Biogeochemistry 111:1-39.
426	Scharler UM, Ulanowicz RE, Fogel ML, Wooller MJ, Jacobson-Meyers ME, Lovelock
427	CE, Feller IC, Frischer M, Lee R, McKee K, Romero I C, Schmit J P, Shearer C.
428	2015.
429	Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels
430	determines community and ecosystem properties in an oligotrophic mangrove system.
431	Oecologia 179 :863-876.

432	Thompson K, Parkinson JA, Band SR, and Spencer RE. 2010. A comparative study of leaf
433	nutrient concentrations in a regional herbaceous flora. New Phytologist 136:679-689.
434	van Huysen TL, Perakis SS, and Harmon ME. 2016. Decomposition drives convergence of
435	forest litter nutrient stoichiometry following phosphorus addition. Plant and Soil
436	406 :1-14.
437	Venterink HO, and Güsewell S. 2010. Competitive interactions between two meadow grasses
438	under nitrogen and phosphorus limitation. Functional Ecology 24:877-886.
439	Venterink HO, Vliet REVD, and Wassen MJ. 2001. Nutrient limitation along a productivity
440	gradient in wet meadows. Plant and Soil 234:171-179.
441	Venterink HO, Wassen MJ, Verkroost AWM, and Ruiter PCD. 2003. Species
442	richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology
443	84 :2191-2199.
444	Vitousek PM, Porder S, Houlton BZ, and Chadwick OA. 2010. Terrestrial phosphorus
445	$limitation: mechanisms, implications, and nitrogen-phosphorus interactions. {\it Ecological}$
446	Applications A Publication of the Ecological Society of America 20:5.
447	Vrede T, Dobberfuhl DR, Kooijman SALM, and Elser JJ. 2004. Fundamental connections
448	among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology
449	85 :1217-1229.
450	Wang W, Pechacek P, Zhang M, Xiao N, Zhu J, and Li J. 2013. Effectiveness of nature
451	reserve system for conserving tropical forests: a statistical evaluation of Hainan Island,
452	China. Plos One 8:e57561.
453	Xu J. 2011. China's new forests aren't as green as they seem. Nature 477:371-371.
454	Yang X, Huang Z, Zhang K, and Cornelissen JHC. 2015. C:N:P stoichiometry of Artemisia
455	species and close relatives across northern China: unravelling effects of climate, soil and
456	taxonomy. Journal of Ecology 103:1020-1031.
457	Zhan S, Wang Y, Zhu Z, Li W, and Bai Y. 2017. Nitrogen enrichment alters plant N: P
458	stoichiometry and intensifies phosphorus limitation in a steppe ecosystem. Environmental
459	and Experimental Botany 134:21-32.