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ABSTRACT
Background. Haemophilus parasuis is a common porcine respiratory pathogen that
causes high rates of morbidity and mortality in farmed swine. We performed a
molecular characterization of antimicrobial resistance genes harbored by H. parasuis
from pig farms in China.
Methods. We screened 143 H. parasuis isolates for antimicrobial susceptibility against
six fluoroquinolone antibiotics testing by the broth microdilution method, and the
presence of 64 antimicrobial resistance genes by PCR amplification and DNA sequence
analysis. We determined quinolone resistance determining region mutations of DNA
gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE). The genetic relatedness
among the strains was analyzed by pulsed-field gel electrophoresis.
Results. Susceptibility test showed that all isolates were low resistance to lomefloxacin
(28.67%), levofloxacin (20.28%), norfloxacin (22.38%), ciprofloxacin (23.78%), how-
ever, high resistance levels were found to nalidixic acid (82.52%) and enrofloxacin
(55.94%). In addition, we found 14 antimicrobial resistance genes were present
in these isolates, including blaTEM-1, blaROB-1, ermB, ermA, flor, catl, tetB, tetC, rmtB,
rmtD, aadA1, aac(3′)-llc, sul1, and sul2 genes. Interestingly, one isolate carried five
antibiotic resistance genes (tetB, tetC, flor, rmtB, sul1). The genes tetB, rmtB, and flor
were themost prevalent resistance genes in H. parasuis in China. Alterations in the gyrA
gene (S83F/Y, D87Y/N/H/G) were detected in 81% of the strains and parC mutations
were often accompanied by a gyrA mutation. Pulsed-field gel electrophoresis typing
revealed 51 unique patterns in the isolates carrying high-level antibiotic resistance genes,
indicating considerable genetic diversity and suggesting that the genes were spread
horizontally.
Discussion. The current study demonstrated that the high antibiotic resistance of
H. parasuis in piglets is a combination of transferable antibiotic resistance genes
and multiple target gene mutations. These data provide novel insights for the better
understanding of the prevalence and epidemiology of antimicrobial resistance in
H. parasuis.
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INTRODUCTION
Haemophilus parasuis is the etiological agent of Glässer’s disease that causes significant
morbidity and mortality as well as economic losses in the global pig industry (Oliveira
& Pijoan, 2004). Antimicrobial therapy is used to prevent and control this infection even
though antimicrobial agents are also used for growth promotion in pigs (Lancashire et al.,
2005). However, extended agricultural use of antibiotics poses a risk for selecting antibiotic
resistant pathogens, and antibiotic resistance in H. parasuis is increasing (Aarestrup,
Seyfarth & Angen, 2004; De la Fuente et al., 2007; Markowska-Daniel et al., 2010; Walsh &
Fanning, 2008; Wissing, Nicolet & Boerlin, 2001; Xu et al., 2018). In China, the resistance
rate of H. parasuis to antimicrobials is also increasing, resulting in limited therapeutic
choices (Zhou et al., 2010).

Increases in antibiotic resistance among bacteria is most often the result of antibiotic
resistance gene (ARG) transfer mediated by mobile DNA elements such as plasmids,
transposons and integrons in Gram-negative bacteria (Lancashire et al., 2005; San Millan
et al., 2007). A long history of antibiotic use in the swine industry has generated a strong
selective pressure for resistance transfer mediated by plasmids and transposons within and
between bacterial species. Plasmids play a key role in this process by acting as vehicles
for horizontal gene transfer (San Millan et al., 2016). The most prominent ARG types
associated with resistance in H. parasuis include blaROB−1, tetB, tetL, qnrA1, qnrB6, aac
(6′)-Ib-cr, lnu(C) and flor (Dayao et al., 2016; Guo et al., 2011; Kehrenberg et al., 2005;
Lancashire et al., 2005; Li et al., 2015; San Millan et al., 2007). In China, blaROB−1, qnrA1,
qnrB6, aac (6

′

)-Ib-cr, lnu(C) and flor have been identified in H. parasui s (Guo et al., 2012;
Guo et al., 2011; Li et al., 2015). Horizontal gene transfer of ARG-carrying mobile elements
and vertical gene transfer by the proliferation of ARG hosts facilitate resistance spread
(Xu et al., 2018). Moreover, quinolone resistance determining region mutations (QRDR)
of gyrA and parC were related to resistance. Therefore, studying ARG fates and their
horizontal and vertical transfer-related elements and QRDRs can provide a comprehensive
insight into resistance mechanisms.

H. parasuis is one of the most important respiratory pathogens in pigs (Guo et al., 2012;
Zhang et al., 2014; Zhou et al., 2010), somore information is needed on the characterization
of resistance genes associated with the increase in antibiotic resistance for this bacterium.
In the present study, we examined resistance determinants, QRDRs and genetic relatedness
in H. parasuis strains from pig farms in China.

MATERIALS AND METHODS
Bacterial strains
We isolated 143 H. parasuis strains from different diseased swine suffering polyserositis,
pneumonia ormeningitis between February 2014 andMarch 2017 in China. All strains were
isolated from lung, brain, heart blood, pericardial effusion, pleural effusion, peritoneal
effusion and joint fluid by aseptic inoculation ring, and cultured on tryptic soy agar
(TSA) or tryptic soy broth (TSB) (Becton Dickinson, Owings Mills, MD, USA) containing
10 µg/ml nicotinamide adenine dinucleotide (NAD; Sigma, St. Louis, MO, USA) and
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Table 1 Antibiotic resistance gene testing of theH. parasuis isolates in this study.

Antibiotic Resistance genes Primers

quinolones qepA, qnrA, qnrB, qnrC, qnrD, qnrS, oqxAB, aac(6′)-Ib-cr Cavaco et al. (2009), Yang et al. (2017), Zhao et al. (2010)
β-lactams blaTEM−1, blaROB−1, SHV, CTX-M-1G, CTX-M-9G, CTX-

M-2G, CTX-M-64, CTX-M-25 DHA, VIM-1, VIM-2, SPM-
1, CMY-2, npmA, OXA, NDM, KPC, IMP, SPM, FOX

Grobner et al. (2009), Liu et al. (2007), San Millan et al.
(2007),Weill et al. (2004)

tetracyclines tetA, tetB, tetC, tetD, tetE, tetG, tetH, tetL-1, tetL-2 De Gheldre et al. (2003),Matter et al. (2007),Miranda,
Rodriguez & Galan-Vidal (2009)

aminoglycosides rmtB, rmtC, armA, rmtA, rmtD, aadB[ant(2′)-la], aacC2
[aac(3)-Iic], aacC4 [aac(3)-Iva], aadA1,aac(6)-31

Doi & Arakawa (2007),Matter et al. (2007)

macrolides ermA, ermB, ermC, mefA/E Hou et al. (2013),Matter et al. (2007), Sutcliffe et al. (1996)
chloramphenicol catl, cmlA, flor, cfr Maka & Popowska (2016),Wang et al. (2015)
sulfonamides sul1, sul2, sul3, dfrA1, dfrB Matter et al. (2007)
integrase gene intl1, intl2, intl3 Shibata et al. (2003)

5% bovine serum (Gibco, Auckland, New Zealand). Plates were incubated at 37 ◦C for
24–48 h. All isolates were identified by PCR (Angen et al., 2007). The study was approved
(No.2014-025).

Fluoroquinolone antimicrobial susceptibility testing
Nalidixic acid, ciprofloxacin, levofloxacin, enrofloxacin, norfloxacin and lomefloxacin
were obtained from the National Institute for the Control of Pharmaceutical and Biological
Products, Beijing, China. Minimal inhibitory concentrations (MIC) were determined in
fastidious medium consisting of TSB with 5% bovine serum and 10 µg/mL NAD in 96-well
microtiter plates. All plates were inoculated following the guidelines of the Clinical and
Laboratory Standards Institute (CLSI) using Haemophilus influenzae and Haemophilus
parainfluenzae M02 and M07(CLSI, 2015). The plates were incubated in an atmosphere
containing 5%CO2 at 37 ◦C for 24 h. TheMIC valuewas defined as the lowest concentration
resulting in no visible bacterial growth. The reference strains H. influenzae ATCC 49247
and Escherichia coli ATCC 25922 served as quality controls for MIC determinations.

ARGs and integrons detection
DNA was extracted from whole organisms using the quick boiling method (Sambrook
& Russell, 2001). PCR assays were used to screen for the presence of 64 ARG types
including resistance to quinolones, β-lactams, macrolides, tetracycline, aminoglycosides,
chloramphenicol, sulfonamides as well as for the integrase gene (Table 1). Purified PCR
products were directly sequenced from both ends or cloned into plasmid vector pMD18-
T, and then sequenced. DNA sequence similarity searches were performed against the
GenBank database using BLAST software to confirm gene identity.

Detection of mutations in QRDRs of gyrA, gyrB, parC, and parE
Mutations in the quinolone resistance determining regions (QRDR) mutations in the
gyrA, gyrB, parC and parE genes were identified after DNA sequencing of PCR products
generated with the primers listed in Table 2.
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Table 2 PCR primer sequences used to amplify QRDR genes.

Gene Primers Sequence (5′-3′) Size (bp) Reference

gyrA GyrA-F
GyrA-R

AGCGTTACCAGATGTGCGAGATG
TTGCCACGACCTGTACGATAAGC

620 This study

gyrB GyrB-F
GyrB-R

TACATACGCTGTAGGTTCAAGGA
CAAGATAATACGGAAATGGAGC

500 This study

parC ParC-F
ParC-R

AACTTCAACATTACCACTTAGCCCTCG
TACCTCACCAAGCCTCGCCATCT

1,445 This study

parE ParE-F
ParE-R

CGATAATTCCCTTGAAGTCGTTG
ATTGATCTGCTCGCCACCCTCTG

609 This study

Pulsed-field gel electrophoresis
Genetic relatedness of H. parasuis strains carrying ARGs was determined by pulsed field
electrophoresis (PFGE) of CpoI - (TaKaRa, Beijing, China) digested genomic DNA samples
(Zhang et al., 2011). PFGE typing used a CHEF Mapper electrophoresis system (BioRad,
Hercules, CA, USA) with 2.16–63.8 sfor 21 h. Salmonella enterica serovar Braenderup
H9812 DNA digested with CpoI was used for a size standard. Interpretation of the PFGE
patterns was accomplished using BioNumerics 6.6 software (Applied Maths, Sint-Martens-
Latem, Belgium) (Tenover et al., 1995).

RESULTS
Bacterial strains analysis
In the current study, 143H. parasuis strainswere isolated and 73 carried antibiotic resistance
genes. Information on isolation site, isolation time and resistance gene content are listed
in Table 3.

Fluoroquinolone antimicrobial susceptibility testing
The results of the fluoroquinolone antimicrobial susceptibility of 143 H. parasuis isolates
are listed in Supplemental Information 1. It showed that 82.52% and 55.94% of all
isolates were resistant to nalidixic acid and enrofloxacin, respectively. Resistance of
lomefloxacin, levofloxacin, norfloxacin, ciprofloxacin were 28.67%, 20.28%, 22.38%,
23.78%, respectively.

ARG and integron prevalence and detection
We examined 143 H. parasuis strains and 16 (11.2%) carried β-lactamases including
blaTEM−1 and blaROB−1. Tetracycline resistant strains carried tetB and tetC. There were two
isolates (1.40%) also yielded the erythromycin resistance genes: 1 for ermA, and 1 for ermB.
A higher proportion (16.1%) carried chloramphenicol resistance genes including 10 catl
and 13 flor. Aminoglycoside resistance was also high (11.9%) and included the genes rmtB,
rmtD, aadA1 and aac(3′)- llc. The sulfonamide resistance genes were represented by sul1
and sul2 and were found in 9 (6.3%) and 2 (1.4%) of the isolates, respectively (Table 4).

The resistance gene patterns were diverse and 39 isolates carried one gene, 24 carried
two and nine isolates carried three genes. Interestingly, strain HP142 carried five genes
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Table 3 ListH. parasuis strains with their separation site, date, organ and resistance gene.

Isolates Separation site Date Organ Resistance gene

HP001 Fujian 2016 lung rmtB
HP008 Fujian 2015 nasal cavity tetB
HP011 Meizhou 2014 pericardial effusion sul2+ blaROB−1
HP012 Jinan 2017 lung blaTEM−1
HP013 Zengcheng 2016 nasal cavity catl1+tetB+ blaROB−1
HP016 Laiyang 2015 brain ermA
HP017 Dongguan 2015 joint fluid tetB+tetC
HP018 Qingdao 2016 lung ermB
HP019 Hebei 2017 lung sul2+tetB
HP020 Jilin 2016 lung tetB
HP022 Huadou 2015 lung blaTEM−1
HP025 Zengcheng 2016 joint fluid catl1+tetB+aac(3′)-IIc
HP026 Guangxi 2014 lung tetB+flor
HP029 Guangxi 2015 heart blood tetB+flor+ aac(3′)-IIc
HP032 Chengde 2014 joint fluid aadA1
HP035 Guangxi 2017 heart blood catl1
HP037 Fujian 2015 nasal cavity rmtB
HP039 Hebei 2015 pericardial effusion aac(3′)-IIc
HP040 Jiangmen 2016 lung sul1+ aac(3′)-IIc
HP044 Jiangsu 2014 lung tetB
HP050 Jiangsu 2016 pleural effusion tetB
HP051 Jiangsu 2014 heart blood tetC
HP053 Yunnan 2016 lung tetB+flor
HP054 Guangzhou 2016 lung tetB
HP056 Zhucheng 2017 lung rmtB+sul1
HP059 Guangxi 2016 lung catl1 +tetB
HP060 Guangxi 2015 heart blood tetC+flor
HP061 Qingdao 2016 lung rmtB
HP063 Hebei 2015 lung blaTEM−1
HP065 Qingyuan 2015 lung rmtB+ blaTEM−1
HP066 Guangxi 2016 lung sul1+ aac(3′)-IIc
HP067 Qingdao 2015 lung tetB+aadA1
HP068 Qingyuan 2015 heart blood tetB
HP069 Hunan 2017 heart blood flor
HP071 Hebei 2015 lung tetB
HP072 Zhucheng 2017 nasal cavity tetB
HP073 Zhuhai 2016 joint fluid blaROB−1
HP075 Fujian 2014 pericardial effusion sul1
HP076 Henan 2017 heart blood tetB
HP078 Henan 2015 lung rmtB+ blaTEM−1
HP079 Jining 2016 lung rmtB

(continued on next page)
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Table 3 (continued)

Isolates Separation site Date Organ Resistance gene

HP080 Jinan 2014 joint fluid rmtB+sul1
HP082 Qingdao 2016 lung tetB
HP085 Liaoning 2016 lung tetB
HP091 Shaoguan 2017 pericardial effusion catl1+tetB
HP094 Hebei 2015 lung catl1+tetB+ blaROB−1
HP095 Huadou 2017 lung catl1+tetB
HP096 Zhengzhou 2014 heart blood rmtB
HP097 Hunan 2016 pericardial effusion tetB
HP098 Hebei 2014 lung tetB
HP102 Anyang 2015 lung blaROB−1+aadA1
HP103 Hunan 2017 lung catl1+tetB+flor
HP104 Jiangsu 2016 joint fluid flor+aadA1
HP108 Guangxi 2016 lung tetB+flor+rmtB
HP109 Zhaoqing 2017 heart blood tetB
HP111 Jiangxi 2015 lung rmtB
HP112 Sihui 2016 heart blood tetB+blaROB−1
HP113 Henan 2015 lung tetB+tetC+flor
HP116 Boluo 2014 lung blaTEM−1
HP117 Hebei 2017 heart blood rmtD+rmtB+blaTEM−1
HP118 Huizhou 2016 lung rmtB+aac(3′)-IIC
HP120 Hebei 2016 lung tetB
HP121 Hebei 2016 heart blood flor
HP123 Anhui 2015 lung flor
HP127 Jilin 2015 joint fluid flor
HP131 Yunnan 2014 heart blood sul1
HP133 Huizhou 2016 lung catl1+rob-1
HP134 Zhucheng 2014 lung rmtB+sul1
HP135 Shaoguan 2016 pleural effusion tetB
HP137 Yangzhou 2015 lung catl1+tetB+ blaTEM−1
HP140 Conghua 2014 heart blood rmtB+ blaTEM−1
HP141 Yangzhou 2017 lung rmtB+sul1
HP142 Henan 2016 lung tetB+tetC+flor+rmtB+sul1

tetB, tetC, flor, rmtB and sul1. Overall, tetB, rmtB and flor were themost prevalent resistance
genes in these H. parasuis isolates from Chinese pig farms (Table 5). Other genes were not
detected in this study.

Mutations in QRDRs of gyrA, gyrB, parC, and parE
We also identified several QRDR mutations among the resistant H. parasuis strains.
Mutations in gyrA (S83F/Y, D87Y/N/H/G) were detected in 116 (81%) of the strains. In
addition, 79 strains had parC mutations (L379I/ Y557C/ V648I/E678D) and most of these
were accompanied by gyrA mutations. Only nine strains had single parC mutations that
were either L379I, Y557C, E678D, L379I or Y557C. The strains with gyrA mutations at
either codon 83 or 87 showed higher MIC values compared with the 18 strains lacking
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Table 4 Prevalence of ARG types isolated fromH. parasuis.

Gene Number identified Prevalence (%)

ermA 1 0.70
ermB 1 0.70
catl 10 6.99
flor 13 9.09
tetB 34 23.78
tetC 5 3.50
rmtD 1 0.70
rmtB 17 11.89
aadA1 4 2.80
aac(3′)- IIc 6 4.20
sul1 9 6.29
sul2 2 1.40
blaTEM−1 9 6.29
blaROB−1 7 4.90

Table 5 Resistance gene patterns and the number of resistant strains.

Pattern No. of isolates Pattern No. of isolates

ermA 1 flor+aadA1 1
ermB 1 catl1+tetB 3
tetB 16 rmtB+ aac(3′)-IIc 1
catl1 1 rmtB+ blaTEM−1 3
tetC 1 rmtB+sul1 4
rmtB 6 sul1+ aac(3′)-IIc 2
flor 4 sul2+ blaROB−1 1
sul1 2 sul2+tetB 1
aadA1 1 blaROB−1+aadA1 1
aac(3′)-IIc 1 catl1+tetB+ blaTEM−1 1
blaTEM−1 4 catl1+tetB+ blaROB−1 2
blaROB−1 1 catl1+tetB+flor 1
catl1+blaROB−1 1 catl1+tetB+aac(3′)-IIc 1
tetB+flor 2 tetB+flor+rmtB 1
tetB+aadA1 1 tetB+flor+ aac(3′)-IIc 1
tetB+ blaROB−1 1 tetB+tetC+flor 1
tetB+tetC 1 rmtD+rmtB+ blaTEM−1 1
tetC+flor 1 tetB+tetC+flor+rmtB+sul1 1
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Table 6 QRDRmutations and antibiotic MIC values for 143H. parasuis isolates.

QRDRmutation Number of
strains

MICs (µg/mL)

gyrA parC Nalidixic acid Levofloxacin Ciprofloxacin Enrofloxacin Norfloxacin Lomefloxacin
– – 18 0.25–128 <0.25–2 <0.25–4 <0.25–2 <0.25–4 <0.25–1

S83F/Y – 8 1–>512 0.25–16 0.25–16 <0.25–8 0.25–256 <0.25–4
S83F/Y,
D87Y/N/H/G

– 38 4–>512 0.25–32 1–>512 0.25–32 0.25–>512 0.25–64

S83F/Y aL379I/Y557C/
V648I

20 32->512 0.25–64 0.25–32 <0.25–32 0.25–16 <0.25–128

D87Y/H bL379I/Y557C 2 4, 16 0.25, 0.5 0.25, 0.5 2 1, 4 0.25, 0.5
S83F/Y,
D87Y/N/Y/G/H

cL379I/Y557C/
V648I/E678D

48 1–>512 2–128 2–64 0.25–32 0.25–>512 <0.25–64

– dL379I/Y557C/
L379I, Y557C,
E678D/L379I,
Y557C

9 0.5–>512 0.25–8 0.25–16 0.5-16 0.25–>512 0.5–64

Notes.
Mutation mode

aL379I; L379I+ Y557C+V648I; Y557C+ V648I; L379I+ Y557C; L379I+V648I.
bL379I +Y557C; L379I.
cL379I; Y557C; L379I+Y557C+V648I; L379I+Y557C+E678D; L379I+Y557C; Y557C+V648I.
dL379I; Y557C; L379I+ Y557C+E678D; L379I+Y557C.

mutations. The MIC values of the strains with single parC mutations were not significantly
different from controls. No mutations were found in gyrB and parE (Table 6).

PFGE
The 73 H. parasuis strains carrying resistance determinants were typed by PFGE and
were genomically heterogenic. We identified 51 unique CpoI patterns but no evidence of
clonality (Fig. 1).

DISCUSSION
In the current study, we observed high-level resistance to nalidixic acid and enrofloxacin.
Similar results have been reported such as 84.8% to nalidixic acid (Xu et al., 2011) and
60.1% and 45.5% to enrofloxacin (Xu et al., 2011; Zhang et al., 2013). These differed from
results in the United Kingdom and Spain (0 and 20%) (De la Fuente et al., 2007). We
described the fluoroquinolone antimicrobial resistance profiles for H. parasuis strains
isolated between 2014–2017. When compared with 2002–2009 and 2008-2010, our data
indicated that fluoroquinolone antimicrobial resistance in H. parasuis was very serious in
China during the last 15 years.

There have been few complete and systematic molecular studies of antimicrobial
resistance in H. parasuis. The genes blaROB−1, tetB, tetL, qnrA1, qnrB6, aac (6

′

)-Ib-cr,
lnu(C) and flor were the only that were previously identified and that correlated with
resistance (Dayao et al., 2016; Guo et al., 2011; Kehrenberg et al., 2005; Lancashire et al.,
2005; Li et al., 2015; San Millan et al., 2007). Cephalosporinases, which are naturally present
in some enterobacterial species, can be mobilized by transposons and migrate via plasmids
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Figure 1 Dendrogram of patterns generated by PFGE of 73 ARG-containingH. parasuis isolates
Full-size DOI: 10.7717/peerj.4613/fig-1

into other species. Moreover, the abuse of antimicrobial agents increases the number of
carbapenem-resistant strains generating a public health concern (Yang et al., 2017). In the
Enterobacteriaceae, the blaTEM−1 β-lactamase is the predominant genotype (Yang et al.,
2017). In our study, we identified both blaTEM−1 and blaROB−1 β-lactamase genes which are
widespread amongH. parasuis andPasteurella spp (Guo et al., 2012; San Millan et al., 2007).
blaTEM−1 and blaROB−1 are usually present in H. influenzae and have particular geographic
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distributions in different countries (Farrell et al., 2005). These geographic differences may
also be present in H. parasuis. The first reports of blaTEM−1 and blaROB−1 were in China
and Spain, respectively(Guo et al., 2012; San Millan et al., 2007). blaROB−1 was located on
plasmid pB1000 and recently a novel 2,661 bp plasmid (pJMA-1) bearing blaROB−1 has
been identified. This plasmid possessed a backbone found in small Pasteurellaceae plasmids
and was 100% stable with a lower biological cost than pB1000 (Moleres et al., 2015).

We also identified genes encoding tetracycline efflux pumps (tetB and tetD) in this
study. The first tetracycline resistant gene identified in H. parasuis was tetB and this gene
is the most common tetracycline resistance gene in Actinobacillus pleuropneumoniae and
Pasturella multocida (Dayao et al., 2016; Matter et al., 2007). The genes tetH and tetM
are present in other members of the Pasteurellaceae (Roberts, 2012). Furthermore, the
tetB-carrying plasmid pHS-Tet in H. parasuis was similar to a tetL-carrying plasmid in
Pasteurella isolates (Kehrenberg et al., 2005; Lancashire et al., 2005). This is the first report
of the tetD gene in H. parasuis isolates from China and needs further study. Tetracycline
resistance genes are often associated with conjugative andmobile genetic elements enabling
horizontal transfer (Dayao et al., 2016; Roberts, 2012). The presence of tetD suggests that
tetracycline resistance in H. parasuis relies on efflux pumps.

In bacteria with animal origins, five florfenicol resistance genes (floR, fexA, fexB, cfr
and optrA) have been reported (Schwarz et al., 2004; Wang et al., 2015). In Gram-negative
bacteria, floR makes the greatest contribution to florfenicol resistance and this has been
described for a number of bacterial species (He et al., 2015;Meunier et al., 2010; Schwarz et
al., 2004; Wang et al., 2015). The emergence of florfenicol resistance in H. parasuis isolates
was attributable to a novel small plasmid pHPSF1 bearing floR. This novel plasmid was
similar to other Pasteurellaceae plasmids suggesting these species prefer to exchange genetic
elements with each other.

High-level aminoglycoside resistance mediated by the production of the 16S rRNA
methylases armA, rmtA toH and npmA, and resistance is increasing among Gram-negative
pathogens (Du et al., 2009), being sometimes clonal spread of a single pulsotype (Hopkins
et al., 2010). In our case, a clone bearing rmtB HP118 and HP037, was present in two
different regions. However, until now, few studies have described the presence of the armA
and rmtB genes in H. parasuis isolates, although they have been frequently reported on
Enterobacteriaceae from food animals. The strains in our study also carried rmtB, rmtD,
aadA1 and aac (3′) IIc and these warrants further investigation.

The macrolide-resistance genes erm A and erm B showed a low frequency in our
H. parasuis isolates. These genes are responsible for ribosomal binding site modifications
that are the most important macrolide resistance mechanisms(Takaya et al., 2010).

The sul1, sul2 and sul3 genes are dihydropteroate synthases involved in sulfonamide
resistance of Gram-negative bacteria and are usually associated with an integron system and
a conjugative plasmid (Vo et al., 2006). In the current study, we identified both sul1 and
sul2, and these genes most likely accounted for the observed resistance to trimethoprim-
sulfamethoxazole. These results are similar to others in Gram-negative bacteria (Koljalg et
al., 2009;Matter et al., 2007).
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This is the first report describing the presence of the tetC, sul1, sul2, ermA, ermB, catl,
rmtB, rmtD, aadA1 and aac (3′)-IIc genes in H. parasuis, to the best of our knowledge.
Nevertheless, we did find several isolates with reduced antibiotic susceptibility that did
not harbor any of the tested resistance genes. This suggests that H. parasuis possesses
other resistance mechanisms such as mutations, decreases in permeability and increases
in efflux pump activity or yet unknown antibiotic resistance mechanisms. In addition, the
widespread dissemination of resistance genes and integrons could potentially fuel the rapid
development of antimicrobial resistance due to their high transfer capabilities (Hussein et
al., 2009). Therefore, more study is needed on this subject.

There have been numerous studies demonstrating gyrA and parC mutations engendering
fluoroquinolone resistance in Gram-negative bacteria and Gram-positive bacteria from
pigs such as Salmonella spp., E. coli or Streptococcus suis (Cao et al., 2017; Escudero et al.,
2007). InH. parasuis, the gyrAmutations S83Y, S83F, D87Y, D87N andD87G are correlated
with fluoroquinolone resistance. In addition, the parC mutations Y577C, V648I, E678D,
S669F, A464V and A466S and parE mutations S283G, A227T and G241S were also found
in these strains(Guo et al., 2011). In another study, mutations of gyrA D87N, parC S73R
and parE T551A were involved in fluoroquinolone resistance, but other mutations such as
in gyrA (452D∧V/G, 627G∧E), gyrB (211V∧I, 254D∧G), parC (73S∧R/I, 227Q∧H, 379L∧I,
578C∧Y) and parE (551T∧A) occurred less frequently (Zhang et al., 2013). However, the
parE mutation in A. pleuropneumoniae is possibly not involved in enrofloxacin resistance
(Wang et al., 2010). In our study, most strains possessed gyrA mutations, and six strains
possessed a gyrA mutation (D87H) not been previously reported. However, we do not
know whether this mutation is directly related to fluoroquinolone resistance. We also
identified four parC mutations. Unlike other studies, we found the parC 578 mutation in
both resistant and sensitive strains, suggesting this mutation is not involved in resistance
(Zhang et al., 2013). Overall, the QRDR analysis in our study suggested that the mutations
at codon 83 or 87 of gyrA were responsible for fluoroquinolone resistance and that gyrB
and parE were not.

Interestingly, our PFGE results indicated that almost 70% of our H. parasuis were
genetically diverse, similar to a recent report (Guo et al., 2012). These results are in contrast
to a previous study presenting evidence for the clonal spread of β-lactam resistance (San
Millan et al., 2007). Our data suggests that resistance genes are spread via transferable
elements such as plasmids and transposons in addition to clonal spread. Therefore,
research on mechanisms for the spread of antimicrobial resistance in H. parasuis needs
further investigation.

CONCLUSIONS
In this study, we comprehensively and systematically investigated for the first time the
distribution of the most common resistance genes in H. parasuis in China. These genes
included tetB, tetC, sul1, sul2, ermA, ermB, blaTEM−1, blaROB−1, catl, flor, rmtB, rmtD,
aadA1 and aac (3′)-IIc. The gyrA mutations S83F/Y and D87Y/N/H/G correlated with
fluoroquinolone resistance in H. parasuis. These strains were also genetically diverse as
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judged by PFGE. These data suggest that antimicrobial resistance inH. parasuis is primarily
the result of transferable determinants and multiple target gene mutations. The exact roles
for these detected resistance determinants in H. parasuis await further study.
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