- Title: Can phosphorus application and cover cropping alter the arbuscular mycorrhizal 1 fungal communities and soybean performance in a 5-year phosphorus-unfertilized crop 2 rotational system? 3 4 Masao Higo^{1*}, Ryohei Sato¹, Ayu Serizawa¹, Yuichi Takahashi¹, Kento Gunji¹, Katsunori 5 Isobe¹ 6 7 1) Department of Agricultural Bioscience, College of Bioresource Sciences, Nihon 8 9 University, Fujisawa, Kanagawa 252-0880, Japan Tel: +81-466-84-3502; Fax: +81-466-84-3525 10 * Corresponding author 11 12 E-mail: higo.masao@nihon-u.ac.jp 13 14 **Abstract** Comment [1]: Do you mean varies **Background:** Phosphorus (P) application and mycorrhizal cover cropping can be a primary 15 according to.... Leonela Carriedo 8/29/2017 12:53 PM factor improving soybean growth, P nutrition, and grain yield, and the benefit from 16 Deleted: se arbuscular mycorrhizal fungi (AMF) is highly valuable to soybean P uptake and growth in 17 Leonela Carriedo 8/29/2017 12:55 PM 18 a P-limited soil. However, it is not clear how soybean growth and P nutrition responds to Comment [2]: This still an awkward 19
- AMF root colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover 20 cropping on AMF root colonization and diversity in soybean roots, and their responses to 21 soybean growth and P nutrition under the five-year P-unfertilized crop rotation. 22 **Methods:** In this study, we established three cover crops managements (wheat, red clover, 23 and oilseed rape) or bare fallow in rotation with soybean. The P fertilizer application rates 24 before the seeding of soybeans were 52.5 and 157.5 kg ha⁻¹ in 2014 and 2015, respectively. 25 Results: The increase in the root colonization at the flowering stage was small as a result 26 of P-application, even when P-application significantly impacted on root colonization. The 27 P-application had positive effects on the soybean performance such as plant P uptake, 28

biomass and grain yield in 2015. The results of a permutational multivariate analysis of

variance (PERMANOVA) showed that the AMF communities colonizing soybean roots

29

30

Leonela Carriedo 8/29/2017 12:59 PM

Leonela Carriedo 8/29/2017 12:59 PM

Comment [3]: This is an odd sentence

as well, "their responses to soybean

growth and P-nutrition..." this reads

like you are investigating the effect of

soybean growth on AMF colonization

and diversity, and not the other way

sentence.

around.

Comment [4]: Better stated as a regime?

32	were also significantly different among the cover crop rotations and were influenced by
33	P-application throughout the two years. Moreover, the abundance of <i>Rhizophagus</i>
34	irregularis and Cetraspora pellucida in the roots reduced as a result of P-application in
35	2015. The Network analysis determined that the AMF root colonization did not increase
36	the soybean growth performance, whereas the diversity index and species richness of AMF
37	communities in roots were positively correlated with the soybean biomass, P uptake and
38	grain yield throughout the two years.
39	Discussion: Our results indicated that the AMF diversity in roots rather than root
40	colonization could be partially related to the soybean growth performance with
41	P-application. To increase AMF diversity may be a key factor improving soybean growth
42	performance in P-limited cover cropping systems. P management may also be integrated
43	with cover cropping to ensure the improvement of soybean performance and benefit from
44	AMF partners in cover crop rotational systems. However, other more important factors
45	such as soil organic matter, soil biological activities, and interactions of soil microbial
46	communities in cover crop rotational systems could be involved in improving soybean
47	performance in the P-limited cover cropping systems.
48	
49	Introduction

Introduction

50

51

52

53

54

55

56

57

58

59

60

61

Phosphorus (P) is an essential nutrient with a central role in numerous biochemical processes of plants. P also limits crop production in many arable soils, and P-application is often required to achieve high productivity (Lynch, 2007). P in synthetic fertilizer is derived from phosphate rock which is a finite resource, and their prices are expected to increase in the following decades (Brunelle et al., 2015). Alternative P sources are becoming increasingly important (Penuelas et al., 2013) because the global average cash production costs of phosphate rock in 1983 and 2013 increased by 27% to \$38 per fob tonne mine in this 30 year period (Mew, 2016). Although increasing soil P concentrations will not result in greater crop yields, it will increase the fertilization cost to farmers and the potential risk and danger of environmental pollution (Bai et al., 2013). Therefore, managing soil P availability is required to maintain agricultural crop production (Mishima et al., 2003), and then the next green revolution seeks to decrease the demand of fertilizer

Leonela Carriedo 8/29/2017 1:03 PM

Comment [5]: Is your expectation that the AMF are solubilizing P in the soil rather than interacting directly with the root? Please see review by Zhang, Vivanco and Shen, Current Opinion in Microbiology 2017, 37:8-14.

Leonela Carriedo 8/29/2017 1:14 PM

Comment [6]: Check your first paragraph for redundancy and ensure logical set-up for your question.

Leonela Carriedo 8/29/2017 1:06 PM

Deleted: Most P

Leonela Carriedo 8/29/2017 1:06 PM

Deleted: s are made from

Leonela Carriedo 8/29/2017 1:10 PM

Comment [7]: These sentences are redundant.

Leonela Carriedo 8/29/2017 1:12 PM

Comment [8]: This sentence contradicts sentence on line 50-51. Do you intend to say that increasing P application does not increase P availability? You haven't mentioned that a lot of applied P is lost due to mineralization/reactivity of P in the soil, making it unavailable to the plant. So you're right, adding extra P doesn't always help, but you need to explain that better and add a citation.

to crop productions (White et al., 2013). Arbuscular mycorrhizal fungi (AMF) can increase 64 host plant P uptake and growth, and AMF may especially improve plant P and 65 micronutrients uptake (Smith & Read, 2008). AMF also may act against the depletion of 66 global P reserves (Gilbert, 2000). These benefits from AMF can be remarkably improved 67 via appropriate agricultural managements (Kahiluoto et al., 2001, 2012; Gosling et al., 68 69 2006). Some species of the family Glomeraceae, such as Funneliformis mosseae, Rhizophagus irregularis and Gigasporaceae have been shown to have a positive impact on 70 growth and nutrient uptake of plants (Verbruggen & Kiers, 2010; Gosling et al., 2016). 71 72 Thus, one strategy to efficiently utilize P in soil is to improve the contribution of AMF on crop growth and nutrient uptake in agricultural management systems. 73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

In general, soybeans [Glycine max (L.) Merr.] that highly rely on AMF function for P nutrition are often grown as a summer crop in rotation with winter cover crops such as wheat (Triticum aestivum L.), oilseed rape (Brassica napus L.) or leguminous crops because soybean grain yields decline over time under continuous cropping. Johnson et al. (1993) reported that there was a link between yield declines under continuous soybean cropping and the shift in AMF communities. Continuous cropping selects for the most rapidly growing and sporulating AMF species, and crop performance decreases in mono-cropping over time, and then the abundance of detrimental AMF species increases and abundance of beneficial AMF species declines in the AMF communities (Johnson et al., 1993). Furthermore, the introduction of mycorrhizal cover crops during the winter season can be necessary for maintenance and increase indigenous AMF inoculum or diversity in soil and roots for subsequent crops (Higo et al., 2010, 2015a, 2016). Thus, the introduction of cover crops in temperate agricultural ecosystems, such as wheat, barley, oilseed rape or leguminous crops, reduces seasonal fallow and thus provides many benefits for subsequent crops and soil fertility (Karasawa et al., 2015).

A diverse AMF species composition and diversity can maximize the benefits from AMF (Maherali & Klironomos, 2007; Powell et al., 2009). Moreover, increasing AMF diversity in agroecosystems has been suggested to have the ability to boost crop growth, nutrient uptake and sustainability can be widespread (Hart & Forsythe, 2012). The diversity of AMF communities can be influenced by agricultural management practices such as crop

Leonela Carriedo 8/29/2017 1:15 PM

Comment [9]: What is the contribution of AMF to support this claim?

Leonela Carriedo 8/29/2017 1:16 PM

Comment [10]: Are the seeds/soil inoculated or are growers relying on the native AMF population? That's not clear here as it is written.

Leonela Carriedo 8/29/2017 1:19 PM

Comment [11]: And species of the family Gigasporaceae...

Leonela Carriedo 8/29/2017 1:20 PM

Comment [12]: It would be good for you to write 1-2 sentences on the mechanism that AMF improve P uptake.

Via direct interaction/modulation of the root, chemical fixation of P...

Leonela Carriedo 8/29/2017 1:22 PM

Comment [13]: Italicize et al.

Leonela Carriedo 8/29/2017 1:23 PM

Comment [14]: This sentence needs simplification. And it's not clear what you mean by detrimental AMF species.

Be concise here.

Leonela Carriedo 8/29/2017 1:26 PM

Comment [15]: What other leguminous crops than soy are used?

rotation (Higo et al., 2013, 2015a), tillage (Alguacil et al., 2008) and P-application
(Kahiluoto et al., 2009, 2012). The diversity of AMF communities can impact their
contribution to plant P nutrition (van der Heijden et al., 1998; Verbruggen et al., 2013).

Recent studies have also shown that P-application impacts (Jansa et al., 2014; Islas et al.,
2016) or decreases the diversity of AMF communities in soils (Lin et al., 2012; Camenzind
et al., 2014). Also, P-application may reduce (Liu et al., 2012; Gosling et al., 2013) or not
impact (Beauregard et al., 2013; Liu et al., 2016) the AMF diversity in roots.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

Furthermore, Isobe et al. (2014) found that the yield and growth of soybeans under a P-unfertilized four-year winter crop-soybean rotational system gradually decreased over time because of a decrease in AMF root colonization of soybeans and due to the continuous nutrient removal from the soil by continuous crop rotations. They also found that there was a positive correlation between AMF root colonization and soybean grain yield in a four-year consecutive winter cover crop-soybean rotational system without P fertilizer, suggesting that higher AMF root colonization can be a better solution for improving soybean growth and grain yield in the P-limited soil. Cover cropping alone would also appear not to supply enough P nutrition to recover soybean performance as much as the use of an alternative way of using moderate P application in the consecutive P-unfertilized cover crop rotational system. Thus, we will need to understand which factor such as P-application or cover cropping is driving increases in soybean performance via AMF benefits. To improve the reliability and the robustness of the agricultural managements, we need to understand how the P-application and cover cropping link to the AMF benefits soybean growth, and the effectiveness of AMF in cover crop-soybean rotational systems.

In this study, we hypothesized that P-application and cover cropping in a P-limited soil would increase the diversity of AMF communities and the increase would link to the soybean growth responses in the five-year P-unfertilized cover crop study. Therefore, our study objective is to understand whether P-application and cover cropping would recover soybean growth performance regarding the diversity of AMF communities in the P-limited cover crop rotations.

Leonela Carriedo 8/29/2017 1:27 PM

Comment [16]: Redundant.

Leonela Carriedo 8/29/2017 1:29 PM

Comment [17]: Start your paragraph
with the intended subject of the
paragraph. You may just need to
re-phrase this.

Leonela Carriedo 8/30/2017 3:35 PM

Comment [18]: Search for redundancies
like this one. Highlighted as well on line

Leonela Carriedo 8/30/2017 3:35 PM

Formatted: Highlight

Leonela Carriedo 8/30/2017 3:35 PM

Formatted: Highlight

Leonela Carriedo 8/29/2017 1:36 PM

Deleted: and

Leonela Carriedo 8/30/2017 3:38 PM

Comment [19]: Please simplify this sentence. You are trying to fit too much into 1 sentence. In this study you have two objectives: 1) understand how P application and cover cropping affects soybean growth. 2) How AMF diversity is affected under P application and cover cropping. I think it is absolutely fine to separate these two ideas as suggested.

Materials and methods

Experimental design

125 126

129

130

134

135

136

137

138

139

140

141

142

143

144

145

146147

148149

150

151

152

153

154

We conducted a field trial of winter cover crop-soybean rotation at Nihon University, in

128 Kanagawa, Japan (35°22'N 139°27'E). The soil at the field site is classified as a volcanic

ash soil (Allophonic andosol). The climate is characterized by relatively high temperatures

and evenly distributed precipitation throughout the year. The average temperature for the

131 year in this area is around 16.2°C. The average maximum temperature and average

minimum temperature is around 25.2°C and 7.8°C, respectively. The average precipitation

for the year in this prefecture is around 133.2 mm. Climate data were calculated from Japan

Meteorological Agency (http://www.jma.go.jp/jma/indexe.html).

seeding and sampling are presented in Higo et al. (2014).

This cover crop experiment was started from 2007 to 2012 and comprised four winter cover crop treatments such as winter wheat (*Triticum aestivum* L.), red clover (*Trifolium pratense* L.), oilseed rape (*Brassica napus* L.) and fallow for phase one of this study (Fig. 1). There were three replicate plots per treatment arranged in a randomized complete block design. Each plot had an area of 9 m² (4.5 m × 2 m). The experimentla field in our study had not received P fertilizers for over five years for the phase one of this study. In the field plots used for the experiments, soybean (*Glycine max* (L.) Merr., cv: Enrei) had been cultivated to standardize soil biochemical conditions before the field trial started. As a preliminary investigation of soil chemical characteristics at this experimental site in 2014 before the study of phase two (Fig. 1), the soil pH ranged from 6.0 to 6.1. Total nitrogen (N) and nitrate nitrogen content ranged from 0.41 to 0.48% and from 6.0 to 15.9 mg kg⁻¹, respectively. Phosphate absorption coefficient ranged from 2320 to 2660. Further management details about the general information of the cover crop rotational system,

In this study of phase two experiment, three cover crops (wheat, red clover and oilseed rape) were sown in rows, with spacing of 30 cm, in the cropped treatment on November 9, 2013, and November 18, 2014. Winter wheat (cv: Bandowase, mycorrhizal crop) seeds were sown at 200 kg ha⁻¹ with N (ammonium sulfate) and K (potassium chloride) application rates of 100 and 90 kg ha⁻¹, respectively. Oilseed rape seeds (cv: Michinokunatane, non-mycorrhizal crop) were sown at 30 kg ha⁻¹ with N and K

Leonela Carriedo 8/30/2017 3:44 PM

Comment [20]: How are these phases divided? Describe that before you mention them.

Leonela Carriedo 8/30/2017 3:41 PM

Comment [21]: Misspelling

Leonela Carriedo 8/30/2017 3:41 PM

Comment [22]: Awkward sentence.

Leonela Carriedo 8/30/2017 3:43 PM

Comment [23]: Prepare your reader to know the different phases determined in your experiment.

application rates of 100 and 50 kg ha⁻¹, respectively. Red clover seeds (cv: Makimidori, 155 mycorrhizal crop) were sown at 30 kg ha⁻¹ with N and K application rates of 30 and 50 kg 156 ha⁻¹ in 2014. In 2015, red clover seeds were sown on March 16, 2015. The tops of the 157 cover crops were cut close to the ground and removed on June 3, 2014, and June 16, 2015. 158 In the fallow, weeds were manually removed during the winter period. 159 160 We investigate the impact of P-application and cover cropping on the diversity of AMF communities in soybean roots and soybean growth after a five-year consecutive cover 161 crop-soybean rotational system. The 4.5 × 2 m of the cover crop experimental plots were 162 divided into 2.25×2 m plots for the two P treatment plots (no P-application and 163 P-application) of the phase two experiment (Fig. 1). Then, both no P and P-application 164 treatments were replicated three times in 2.25 × 2 m plots. The soybean (cv: Enrei) seeds 165 were sown at a spacing of 60×15 cm on June 17, 2014, and June 17, 2015. In 2014 and 166 2015, the N and K application rates were 30 and 50 kg ha⁻¹, respectively. In 2014, the 167 amount of P (triple superphosphate) in the P-application plots was applied at 17.5 kg ha⁻¹. 168 The P-application did not increase the available soil P in 2013 because of the high P 169 absorption coefficient. In 2014, the amount of P in the P-application plots was applied at 170 57.5 kg ha⁻¹ as the amount of P fertilizer and the results of 2014 are shown as Tables S1-S4. 171 In 2015, the amount of P in the P-application plots was applied at 157.5 kg ha⁻¹ at three 172 times the normal amount of P fertilizer of 2014. The content of available soil P (Truog P) 173 was analyzed according to Truog (1930). 174 175

Soil and root sampling and root staining

176177

178

179

180

181

182

183

184

The soil samples were randomly taken from ten points in each replicate and pooled to one composite sample on June 17, 2014, and June 17, 2015, respectively. Soybean root samples were taken at the full bloom stage (R2 growth stage) on July 31, 2014, and August 6, 2015. The full bloom stage corresponds to the stage when the mycorrhizal colonization of soybean roots is usually at its highest (Zhang et al. 1995). In each rotation, the root samples were randomly collected from ten plants (to a depth of 15 cm, the diameter of 20 cm) per replicate. The root samples were collected from the soil sample and maintained at -80° C for DNA extraction and measurement of AMF root colonization. The root samples were

stained with a 5% (w/v) black ink-vinegar solution (Vierheilig et al. 1998), and the AMF 185 root colonization in the soybean roots was measured as described by Giovannetti & Mosse 186 187 (1980).188 189 Analysis of plant P and measurement of soybean grain yield The aboveground plant parts of the ten soybean plants were cut close to the ground at the 190 full bloom stage and were randomly sampled on July 31, 2014, and August 6, 2015. The 191 aboveground soybean plant biomass and plant length were measured in all plots. The 192 193 aboveground plant biomass and P uptake by soybeans were determined after the samples were oven dried at 80°C for 48 h. The P uptake was determined using the molybdenum 194 yellow colorimetric method (Koenig & Johnson 1942). 195 To obtain the soybean grain yield, ten soybean samples per plot in each treatment 196 197 were collected at maturity stage in early to late October in each year. Leonela Carriedo 8/30/2017 3:49 PM 198 Comment [24]: Move this sentence up to 199 DNA extraction and nested polymerase chain reaction (PCR) line 191. Total genomic DNA was extracted from 150 mg of fresh root samples using the DNeasy 200 Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. 201 The genomic DNA pellet was stored at -30°C until use in the nested PCR. The region in 202 203 the fungal small subunit ribosomal DNA (SSU rDNA) was conducted using nested PCR method (Liang et al. 2008). The fungus-specific primer AM1 204 (5'-GTTTCCCGTAAGGCGCCGAA-3') (Helgason et al. 1998) and the universal 205 Leonela Carriedo 8/30/2017 3:51 PM eukaryotic primer NS31 (5'- TTGGAGGGCAAGTCTGGTGCC-3') (Simon et al. 1992) 206 Comment [25]: Is this forward or were used in the first PCR to amplify the 5' end of the SSU rDNA region for 207 reverse? Is there a reason why you 208 comprehensive taxon sampling for the Glomeromycota (Schüßler et al., 2001a,b). Three didn't include both? subsamples per plot were amplified in a 20-µl reaction mixture containing 2 µl of 10-fold 209 diluted genomic DNA, 0.2 μM of each primer and 2 × GoTaq Green Master Mix (Promega, 210 Leonela Carriedo 8/30/2017 3:52 PM Madison, WI, USA) using a Mastercycler ep Gradient (Eppendorf, Hamburg, Germany). 211 Comment [26]: To achieve how many The PCR condition was composed of initial treatment at 94°C for 1 min; 30 cycles at 94°C 212 ng/reaction?

for 1 min, 66°C for 1 min and 72°C for 90 s; and a final extension at 72°C for 10 min. The

first PCR products were diluted 10-fold and used as templates for the second PCR using the

 $\frac{213}{214}$

215	nested primers Glo1 (5'-GCCTGCTTTAAACACTCTA-3') (Cornejo et al. 2004) and
216	NS31-GC
217	(5'-CGCCCGGGGCGCCCCGGGCGGGGGGGCACGGGGGTTGGAGGGCAA
218	GTCTGGTGCC-3') (Kowalchuk et al. 2002). Three subsamples per plot were amplified in
219	a 20-μl reaction mixture containing 2 μl of 10-fold genomic DNA, 0.2 μM of each primer
220	and 2 × GoTaq Green Master Mix (Promega, Madison, WI, USA) using a Mastercycler ep
221	Gradient (Eppendorf). The PCR protocol was composed of initial treatment at 95°C for 5
222	min; 35 cycles at 94°C for 45 s, 52°C for 45 s and 72°C for 1 min; and a final extension at
223	72°C for 30 min. Gel electrophoresis separated amplification products on 1% agarose gel,
224	and the DNA was visualized by staining with ethidium bromide.
225	
226	PCR-denaturing gradient gel electrophoresis (DGGE)
227	Three independent PCR products were pooled together, and then 20 μL of the nested PCR
228	product was subsequently analyzed by DGGE on a DCode Universal Mutation Detection
229	System (Bio-Rad Laboratories, Piscataway, NJ, USA). Standard DNA markers were
230	created by individually PCR-amplifying DNA extracted from root samples by Higo et al.
230 231	created by individually PCR-amplifying DNA extracted from root samples by Higo et al. (2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The
231	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The
231 232	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The gels containing 6.5% acrylamide were poured with a gradient of 35–55% denaturant. All
231 232 233	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The gels containing 6.5% acrylamide were poured with a gradient of 35–55% denaturant. All DGGE analyses were performed in a $1 \times TAE$ buffer at a constant temperature of 55°C at
231 232 233 234	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The gels containing 6.5% acrylamide were poured with a gradient of 35–55% denaturant. All DGGE analyses were performed in a 1 × TAE buffer at a constant temperature of 55°C at 50 V for 60 min, followed by 50 V for 960 min. The gels were stained with SYBR Green
231 232 233 234 235	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The gels containing 6.5% acrylamide were poured with a gradient of 35–55% denaturant. All DGGE analyses were performed in a 1 × TAE buffer at a constant temperature of 55°C at 50 V for 60 min, followed by 50 V for 960 min. The gels were stained with SYBR Green diluted in 1 × TAE buffer (1:10,000) for 20 min, UV illuminated and digitally
231 232 233 234 235 236	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The gels containing 6.5% acrylamide were poured with a gradient of 35–55% denaturant. All DGGE analyses were performed in a 1 × TAE buffer at a constant temperature of 55°C at 50 V for 60 min, followed by 50 V for 960 min. The gels were stained with SYBR Green diluted in 1 × TAE buffer (1:10,000) for 20 min, UV illuminated and digitally photographed (Figs. S1 and S2). Pictures were digitized by Phoretix 1D Pro (Nonlinear
231 232 233 234 235 236 237	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The gels containing 6.5% acrylamide were poured with a gradient of 35–55% denaturant. All DGGE analyses were performed in a 1 × TAE buffer at a constant temperature of 55°C at 50 V for 60 min, followed by 50 V for 960 min. The gels were stained with SYBR Green diluted in 1 × TAE buffer (1:10,000) for 20 min, UV illuminated and digitally photographed (Figs. S1 and S2). Pictures were digitized by Phoretix 1D Pro (Nonlinear Dynamics Ltd., Newcastle upon Tyne, UK). We calculated species richness from these data,
231 232 233 234 235 236 237 238	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The gels containing 6.5% acrylamide were poured with a gradient of 35–55% denaturant. All DGGE analyses were performed in a 1 × TAE buffer at a constant temperature of 55°C at 50 V for 60 min, followed by 50 V for 960 min. The gels were stained with SYBR Green diluted in 1 × TAE buffer (1:10,000) for 20 min, UV illuminated and digitally photographed (Figs. S1 and S2). Pictures were digitized by Phoretix 1D Pro (Nonlinear Dynamics Ltd., Newcastle upon Tyne, UK). We calculated species richness from these data, expressed by the number of DGGE bands in each root sample. Fromin et al. (2002) and
231 232 233 234 235 236 237 238 239	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The gels containing 6.5% acrylamide were poured with a gradient of 35–55% denaturant. All DGGE analyses were performed in a 1 × TAE buffer at a constant temperature of 55°C at 50 V for 60 min, followed by 50 V for 960 min. The gels were stained with SYBR Green diluted in 1 × TAE buffer (1:10,000) for 20 min, UV illuminated and digitally photographed (Figs. S1 and S2). Pictures were digitized by Phoretix 1D Pro (Nonlinear Dynamics Ltd., Newcastle upon Tyne, UK). We calculated species richness from these data, expressed by the number of DGGE bands in each root sample. Fromin et al. (2002) and Schneider et al. (2015) mentioned that visual observation of the DGGE gel revealed the
231 232 233 234 235 236 237 238 239 240	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The gels containing 6.5% acrylamide were poured with a gradient of 35–55% denaturant. All DGGE analyses were performed in a 1 × TAE buffer at a constant temperature of 55°C at 50 V for 60 min, followed by 50 V for 960 min. The gels were stained with SYBR Green diluted in 1 × TAE buffer (1:10,000) for 20 min, UV illuminated and digitally photographed (Figs. S1 and S2). Pictures were digitized by Phoretix 1D Pro (Nonlinear Dynamics Ltd., Newcastle upon Tyne, UK). We calculated species richness from these data, expressed by the number of DGGE bands in each root sample. Fromin et al. (2002) and Schneider et al. (2015) mentioned that visual observation of the DGGE gel revealed the presence of multiple bands in all samples (a band represents a distinct taxon in theory). The
231 232 233 234 235 236 237 238 239 240 241	(2015b). The PCR-DGGE condition was based on the method of Higo et al. (2015b). The gels containing 6.5% acrylamide were poured with a gradient of 35–55% denaturant. All DGGE analyses were performed in a 1 × TAE buffer at a constant temperature of 55°C at 50 V for 60 min, followed by 50 V for 960 min. The gels were stained with SYBR Green diluted in 1 × TAE buffer (1:10,000) for 20 min, UV illuminated and digitally photographed (Figs. S1 and S2). Pictures were digitized by Phoretix 1D Pro (Nonlinear Dynamics Ltd., Newcastle upon Tyne, UK). We calculated species richness from these data, expressed by the number of DGGE bands in each root sample. Fromin et al. (2002) and Schneider et al. (2015) mentioned that visual observation of the DGGE gel revealed the presence of multiple bands in all samples (a band represents a distinct taxon in theory). The Shannon <i>H</i> ′ of each treatment was also calculated as an additional measure of AMF

Leonela Carriedo 8/30/2017 3:52 PM

Comment [27]: Forwar/reverse primer???

Leonela Carriedo 8/30/2017 3:53 PM

Comment [28]: DNA conc. Of what? 2uL of 10-fold genomic is just a volume, not a concentration.

Leonela Carriedo 8/30/2017 3:53 PM

Comment [29]: Amplicons/products

245	The abundance of six-selected typical AMF taxa was measured using qPCR with
246	taxon-specific primers and hydrolysis (TaqMan) probes targeting large ribosomal subunit
247	DNA (LSU rDNA) genes. The specific primers were designed to quantify the abundance of
248	six-selected AMF taxa including Rhizophagus irregularis, Funneliformis mosseae,
249	Claroideoglomus claroideum, Gigaspora margarita, Cetraspora pellucida and
250	Diversispora celata (Wagg et al., 2011; Thonar et al., 2012; Jansa et al. 2014). The partial
251	LSU rDNA genes of R. irregularis, F. mosseae, C. claroideum, G. margarita and Ce.
252	pellucida followed the method described by Thonar et al. (2011). We also used the method
253	described by Wagg et al. (2011) to quantify <i>Diversispora celata</i> . Each PCR sample
254	contained a total volume of 10 µL that consisted of 2 µL water, 400 nM each of forward
255	primer and reverse primer, 100 nM TaqMan probe and 2 × FastStart TaqMan Probe Master
256	Mix + 2 μL of 10-diluted genomic DNA. The qPCR was carried out using a LightCycler 96
257	(Roche Diagnostics, Rotkreuz, Switzerland). The qPCR cycling conditions were as follows
258	initial denaturation at 95°C for 15 min, followed by 45 cycles with denaturation at 95°C for
050	10 s and annealing at the optimized temperature for each primer/probe combination for 30 s
259	10's and annearing at the optimized temperature for each primer/probe combination for 50's
260	and elongation at 72°C for 1 s.
	• • •
260	• • •
260 261	and elongation at 72°C for 1 s.
260 261 262	and elongation at 72°C for 1 s. Statistical analysis
260261262263	and elongation at 72°C for 1 s. Statistical analysis We used an arcsine-square root transformation to normalize the data of AMF root
260 261 262 263 264	and elongation at 72°C for 1 s. Statistical analysis We used an arcsine-square root transformation to normalize the data of AMF root colonization in the soybean. The available soil P, growth parameters and AMF diversity
260 261 262 263 264 265	and elongation at 72°C for 1 s. Statistical analysis We used an arcsine-square root transformation to normalize the data of AMF root colonization in the soybean. The available soil P, growth parameters and AMF diversity data were transformed using a natural logarithm. The abundance of AMF tax was log(x+1)
260 261 262 263 264 265 266	and elongation at 72°C for 1 s. Statistical analysis We used an arcsine-square root transformation to normalize the data of AMF root colonization in the soybean. The available soil P, growth parameters and AMF diversity data were transformed using a natural logarithm. The abundance of AMF tax was log(x+1) transformed to reduce heteroscedasticity in the data. Differences between means where
260 261 262 263 264 265 266 267	and elongation at 72°C for 1 s. Statistical analysis We used an arcsine-square root transformation to normalize the data of AMF root colonization in the soybean. The available soil P, growth parameters and AMF diversity data were transformed using a natural logarithm. The abundance of AMF tax was log(x+1) transformed to reduce heteroscedasticity in the data. Differences between means where analysis of variance (ANOVA) was significant were assessed using Tukey's honestly
260 261 262 263 264 265 266 267 268	and elongation at 72°C for 1 s. Statistical analysis We used an arcsine-square root transformation to normalize the data of AMF root colonization in the soybean. The available soil P, growth parameters and AMF diversity data were transformed using a natural logarithm. The abundance of AMF tax was log(x+1) transformed to reduce heteroscedasticity in the data. Differences between means where analysis of variance (ANOVA) was significant were assessed using Tukey's honestly significant difference (HSD) test (P-values < 0.05) using the multcomp package in R 3.3.2
260 261 262 263 264 265 266 267 268 269	and elongation at 72°C for 1 s. Statistical analysis We used an arcsine-square root transformation to normalize the data of AMF root colonization in the soybean. The available soil P, growth parameters and AMF diversity data were transformed using a natural logarithm. The abundance of AMF tax was log(x+1) transformed to reduce heteroscedasticity in the data. Differences between means where analysis of variance (ANOVA) was significant were assessed using Tukey's honestly significant difference (HSD) test (P-values < 0.05) using the multcomp package in R 3.3.2 (https://cran.r-project.org/). Two-way ANOVA was used to determine the effects of
260 261 262 263 264 265 266 267 268 269 270	Statistical analysis We used an arcsine-square root transformation to normalize the data of AMF root colonization in the soybean. The available soil P, growth parameters and AMF diversity data were transformed using a natural logarithm. The abundance of AMF tax was log(x+1) transformed to reduce heteroscedasticity in the data. Differences between means where analysis of variance (ANOVA) was significant were assessed using Tukey's honestly significant difference (HSD) test (P-values < 0.05) using the multcomp package in R 3.3.2 (https://cran.r-project.org/). Two-way ANOVA was used to determine the effects of P-application and cover crop and their interactions on each parameter in this study. Data for
260 261 262 263 264 265 266 267 268 269 270	Statistical analysis We used an arcsine-square root transformation to normalize the data of AMF root colonization in the soybean. The available soil P, growth parameters and AMF diversity data were transformed using a natural logarithm. The abundance of AMF tax was log(x+1) transformed to reduce heteroscedasticity in the data. Differences between means where analysis of variance (ANOVA) was significant were assessed using Tukey's honestly significant difference (HSD) test (P-values < 0.05) using the multcomp package in R 3.3.2 (https://cran.r-project.org/). Two-way ANOVA was used to determine the effects of P-application and cover crop and their interactions on each parameter in this study. Data for the significance of differences between P-application treatments among cover crop

managements on AMF community structure (Hammer et al., 2001). To analyze the relationship of cover cropping and P-application with respect to AMF community structures (AMF communities), the redundancy analysis (RDA) (gradient length <4) was performed as the multivariate analysis using the vegan package in R 3.3.2. The presence/absence data matrix was composed of the abundance of DGGE bands and cover crop management or P-application. The environmental variable of cover cropping and P-application was coded as a dummy variable (0 and 1). Goodness-of-fit statistics (R^2) of measured factors fitted to the RDA ordination of the AMF community were calculated using the envfit function in the vegan package with P-values based on 999 permutations (Oksanen, 2017). To investigate if AMF community structure differed significantly between P-application or cover crop management, the PERMANOVA was performed with 999 permutations using the adonis function in the vegan package in R.

The network graph included the correlation coefficients between soybean growth performance and AMF parameters using the igraph package in R, and then the network graph was described using Cytoscape for visualizing complex networks (www.cytoscape.org/). In this model, the AMF taxa abundance was represented by the scores of the first component of the PCA in this study. Pearson's correlation coefficient was expressed as the indication of the strength of the connections.

Results

Available soil P and AMF root colonization

In this study, our data showed that the P-application significantly increased the available soil P in all of the cover crop managements compared with no P-application plots although cover cropping did not have a significant effect on the available soil P according to Tukey's test and two-way ANOVA (Fig 2A). The P-application significantly affected the available soil P according to two-way ANOVA (P < 0.001), and there were significant differences in the available soil P between P- and no P-application plots at all of the cover crop managements (P < 0.05).

In the no P-application plots, the AMF root colonization at the full bloom stage in the wheat was significantly higher than compared to red clover, oilseed rape, and fallow (Fig.

Leonela Carriedo 8/30/2017 4:00 PM

Comment [30]: So in other words, there was no effect of cover-cropping on soil P.

The sig. dif. Is only when P was added?

Was this really noteworthy?

Leonela Carriedo 8/30/2017 4:01 PM

Comment [31]: Also, consider simplifying this sentence.

Leonela Carriedo 8/30/2017 4:01 PM

Comment [32]: This is saying the same thing that you mentioned in lines 292-295.

305 2B). The AMF root colonization in the red clover and oilseed rape was significantly higher 306 than compared to the fallow. Contrary to the results of the no P-application plots, there 307 were no significant differences in the AMF root colonization among the cover crop 308 managements with the P-application plots according to Tukey's test. Moreover, the AMF root colonization in the red clover (P < 0.01) or oilseed rape (P < 0.05), and fallow (P < 0.05)309 310 0.05) as a result of the P-application significantly increased compared to the no P-application except for the wheat. Also, the AMF root colonization in soybean roots at the 311 312 full bloom stage was significantly influenced by the P-application (P < 0.001) and the cover crop management (P < 0.001) according to two-way ANOVA. 313 314 Plant growth, P uptake and grain yield 315 316 The aboveground plant biomass in soybeans at the full bloom stage varied among cover crop managements in the field trial (Fig. 3A). In the P-application plots, the aboveground 317 plant biomass of soybeans was highest with oilseed rape, and the soybean biomass was all 318 higher than compared to no-P-application plots. There were significant differences in the 319 aboveground biomass between the P- and no P-application plots for each of the red clover 320 (P < 0.01), oilseed rape (P < 0.01), and fallow (P < 0.05). Moreover, cover cropping did 321 not have a statistically significant effect on aboveground plant biomass according to 322 323 Tukey's test and two-way ANOVA, although the P-application had a significant effect on aboveground plant biomass according to two-way ANOVA ($P \le 0.001$). 324 325 Our results showed that the aboveground plant P concentration in soybeans at the full bloom stage did not change among the cover crop managements except the fallow 326 management (Fig. 3B). In the P-application plots, the plant P uptake in soybeans was all 327 328 higher than compared to no-P-application plots throughout the study. The P-application and 329 cover cropping did not have a significant effect on the both parameters according to Tukey's test and two-way ANOVA (Figs. 3B). Likewise, cover cropping did not have a 330 significant effect on the plant P uptake of soybeans regardless of the P-application plots 331

according to Tukey's test and two-way ANOVA (Figs. 3C). However, the plant P uptake in

soybeans was significantly influenced by the P-application according to two-way ANOVA

(P < 0.001). Moreover, there was a significant difference in the plant P concentration and

332

335	uptake between the P- and no P-application plots for the fallow (Figs. 3B and C).
336	We found that the grain yield in soybeans was not different among the cover crop
337	managements by Tukey's test and two-way ANOVA, whereas the P-application had a
338	significant effect on grain yield of soybean according to two-way ANOVA ($P \le 0.001$) (Fig.
339	3D). The grain yield in soybeans in the P-application plots was all higher than in the no
340	P-application plots, regardless of the cover crop management. The soybean yields were
341	more than double in the P-application plots in the experiment. We also found that there
342	were significant differences in the grain yield between the P- and no P-application plots for
343	each of the red clover $(P \le 0.05)$ and oilseed rape $(P \le 0.05)$ management. However, there
344	were no significant differences in the grain yield between P- and no P-application plots at
345	the wheat and fallow.
346	
347	Diversity of AMF communities and taxa abundance
348	The P-application significantly influenced the species richness ($P < 0.001$) and the
349	diversity index (H) ($P < 0.001$) in soybeans at the full bloom stage according to two-way
350	ANOVA (Figs. 4A and B). The species richness in soybeans was significantly influenced
351	by the cover crop management according to two-way ANOVA ($P \le 0.05$), although the
352	species richness and H' in the P-application plots were all higher than compared with the
353	no P-application plots. There were significant differences in the species richness and H'
354	between the P- and no P-application plots for each of the wheat $(P < 0.05)$ and fallow
355	management ($P < 0.01$), whereas there were no significant differences in species richness
356	and H' among the cover crop managements regardless of the P-application.
357	Our results showed that the abundance of the six-selected AMF taxa in the roots did
358	not change among the cover crop managements (Fig. 5). Cover cropping did not have a
359	significant effect on the each AMF taxa according to Tukey's test and two-way ANOVA.
360	The abundance of <i>Rhizophagus irregularis</i> and <i>Cetraspora pellucida</i> in the P-application
361	plots significantly decreased compared with that in the no P-application plots at the wheat
362	(P < 0.05), red clover $(P < 0.05)$, and oilseed rape $(P < 0.05)$. The P-application had a
363	significant effect on the abundance of <i>R.irregularis</i> ($P < 0.001$) and <i>C.pellucida</i> ($P < 0.01$).

Also, cover cropping had also a significant effect on the abundance of C.pellucida (P <

364

Leonela Carriedo 8/30/2017 3:59 PM

Comment [33]: Simplify this sentence.

365	0.05). However, the abundance of other AMF taxa (Claroideoglomus claroideum,
366	Funneliformis mosseae, and Diversispora celata) did not change with P-application.
367	
368	Relationships among AMF communities, cover cropping, and P-application
369	We used a RDA to identify the relationships among AMF communities in soybean roots
370	with cover crop management and P-application (Fig 6). The RDA trends were clear that the
371	P-application noticeably altered the AMF community structure in the soybean roots. The
372	AMF communities in the no P-application plots were in the first and fourth quadrants,
373	while most of the AMF communities in the P-application plots were in the second and third
374	quadrants. The ordination diagram indicates that red clover ($R^2 = 0.704$, $P = 0.001$)
375	contributed significantly to the variation in the AMF root communities (Fig 1). However,
376	wheat $(R^2 = 0.154, P = 0.181)$, oilseed rape $(R^2 = 0.129, P = 0.255)$ and fallow $(R^2 = 0.173, P = 0.181)$
377	P = 0.141) did not contribute to the variation in the AMF root communities. Furthermore,
378	the P-application treatment ($R^2 = 0.743$, $P = 0.001$) and no P-application treatment ($R^2 =$
379	0.743, $P = 0.001$) contributed to the variation in the AMF root communities. A
380	PERMANOVA was also carried out to examine the relative importance of each agricultural
381	management to the AMF root communities. The PERMANOVA showed that P-application
382	significantly affected the AMF root community structure ($F = 4.226$, $P = 0.001$), but cover
383	crop management did not impact the AMF root communities ($F = 1.669$, $P = 0.057$).
384	
385	Response of soybean growth to AMF parameters
386	In the soybean growth response, the relationships between available soil P and soybean
387	growth performance was not linear in the cropping system with no P-application (Figs
388	7A-C). The difference in the soybean growth performance was small with no P-application.
389	The relationships between available soil P and soybean growth performance such as plant
390	biomass ($r = 0.874$), plant P uptake ($r = 0.821$) and grain yield ($r = 0.801$) was significantly
391	linear in the cropping system with P-application. With the AMF contributions to soybean

growth performance, the relationships between AMF root colonization and soybean growth

P-application significantly improved the linear relationships between the diversity index or

was not linear in the cropping system with and without P-application (Figs. 7D-F). The

391

392 393

394

Leonela Carriedo 8/30/2017 4:21 PM

Comment [34]: What direction are the quadrants listed in? This was not written in the legend of the figure or added as text into each quadrant.

AMF species abundance and soybean growth performance. The relationships between the diversity index and soybean growth performance such as plant biomass (r = 0.969), plant P uptake (r = 0.973), grain yield (r = 0.920) was positively correlated in the cropping system with P-application (Figs. 7G-I). The relationships between AMF species abundance and soybean growth performance such as plant biomass (r = 0.967), plant P uptake (r = 0.967) and grain yield (r = 0.928) was positively correlated in the cropping system with P-application (Figs. 7J-L).

We also used a network analysis to identify the relationships between AMF parameters in soybean roots and soybean growth in this study (Fig 8). The results showed the same tendency with the linear analysis in the two-year experiment. The relationships between the diversity index or AMF species richness and available soil P were related to the soybean growth performance such as plant P uptake, plant biomass, and grain yield grain yield. However, each AMF taxa abundance and AMF root colonization were not relate to the soybean growth responses, especially grain yield, throughout the experiment.

408

Discussion

395

396

397 398

399

400

401

402 403

404

405 406

407

409

410

411 412

413

414

415

416 417

418 419

420

421

422

423 424

Impact of P-application and cover cropping on the AMF root colonization in soybeans

Our results indicated that P-application might have a slight impact on the AMF root colonization (Fig. 2B). It is well-known that AMF root colonization is inhibited under high P-application (Kahiluoto et al., 2001; Balzergue et al., 2011). Decreases in the AMF root colonization of soybean have been well reported regarding their response to P-application or concentration in soil (Isobe et al., 2008). In general, plants can fail to react to AMF when available soil P is extremely low (Ryan et al., 2002). Miranda & Harris (1994) reported that deficient of available soil P inhibited AMF root colonization. On the contrary, Gosling et al. (2013) indicated that there was no significant decrease in AMF soybean root colonization under high P availability in soil. Plants can control AMF root colonization depending on their nutritional status (Smith & Read, 2008) as well as under high P soil conditions. Bolan et al. (1984) also reported that a moderate amount of P-application in P-limited soils might increase mycorrhization and benefits such as P availability for crop growth performance. Similarly, AMF root colonization among almost all the cover crop managements in the

Leonela Carriedo 8/30/2017 4:08 PM

Comment [35]: Correct this redundancy.

425	P-application plots was slightly increased by the P-application. For these results, one
426	possible reason for the result of slightly higher AMF colonization may be that the
427	indigenous AMF population in the field might be becoming a little responsive to
428	P-application to promote mycorrhization in the five-year P-unfertilized condition.
429	Furthermore, it is well known that cultivation of preceding crops or fallow as well as
430	P-application impacts AMF root colonization of subsequent crops (Karasawa et al., 2002;
431	Karasawa & Takebe, 2012; Isobe et al., 2014). Likewise, the wheat and red clover cropping
432	with no P-application significantly increased AMF root colonization of subsequent soybean
433	and oilseed rape cropping, while fallow with no P-application decreased the AMF root
434	colonization in this study.
435	
436	Impact of P-application and cover cropping on the diversity of root AMF
437	communities
438	Surprisingly, our results indicate that the diversity of AMF communities in soybeans,
439	regardless of cover crop management, increased as a result of P-application (Fig. 4). Also,
440	the shift of AMF communities were obvious from the results of RDA trends that showed
441	that the P-application significantly changed the AMF community structure in the soybean
442	roots rather than the cover crop managements (Fig. 6). Previous studies have reported that
443	P-application had negative impacts on the diversity of AMF community in roots and soils.
444	Islam et al. (2011) and Lin et al. (2012) found that chemical fertilizers decreased AMF
445	diversity. Moreover, Alguacil et al. (2010) indicated that moderate amounts of
446	P-application could even affect AMF community dynamics. Gosling et al. (2013) also
447	reported that the AMF community diversity in soybean roots decreased due to the high
448	availability of soil P. In addition, plants can directly gain enough nutrient from the soil in a
449	nutrient-rich environment without the benefit from AMF. As a result, the mycorrhizal
450	dependency gradually reduces, and then the diversity of AMF communities can also
451	decrease (Liu et al., 2015). Likewise, Ryan et al. (2005) suggested that fertilization can
452	change the mycorrhizal symbiosis performance, thereby making soil microbial partners
453	costly and parasitic. Thus, appropriate P management would be considered a major factor
454	in the diversity of AMF communities in response to soil P fertility.

Leonela Carriedo 8/30/2017 4:28 PM

Comment [36]: It is not clear with what is intended with this.

455	Furthermore, we found that cover cropping did not impact the AMF root communities
456	in soybeans from the result of PERMANOVA (Fig. 6). Previous studies reported that cover
457	cropping might not affect AMF root communities in subsequent crops in rotations (Higo et
458	al., 2014; Turrini et al., 2016). Turrini et al. (2016) and Higo et al. (2017) indicated that a
459	shift in indigenous AMF communities in the subsequent maize roots was independent of
460	cover crop identity and diversity. Higo et al. (2014) also found that cover crop rotations did
461	not impact AMF communities in the roots of subsequent soybean. However, rotation year
462	affected the AMF communities in soybean roots suggesting that climate or other
463	environmental conditions were more imperative than cover crop management. Therefore,
464	the P-application may have influences on AMF communities in soybean roots, suggesting
465	that fertilizer application or other factors such as soil chemical properties and other
466	environmental factors can be more important than cover cropping.
467	
468	Impact of P-application and cover cropping on the abundance of root AMF taxa
469	In this study, qPCRs were used with specific AMF taxon primers (Wagg et al., 2011;
469 470	In this study, qPCRs were used with specific AMF taxon primers (Wagg et al., 2011; Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root
470	Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root
470 471	Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root samples. We found that the abundance of <i>R. irregularis</i> was significantly affected by
470 471 472	Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root samples. We found that the abundance of <i>R. irregularis</i> was significantly affected by P-application, which meant P-application might be a stronger determinant that impacts the
470 471 472 473	Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root samples. We found that the abundance of <i>R. irregularis</i> was significantly affected by P-application, which meant P-application might be a stronger determinant that impacts the abundance of AMF taxa rather than cover cropping (Fig. 5). The fluctuation in abundance
470 471 472 473 474	Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root samples. We found that the abundance of <i>R. irregularis</i> was significantly affected by P-application, which meant P-application might be a stronger determinant that impacts the abundance of AMF taxa rather than cover cropping (Fig. 5). The fluctuation in abundance of AMF taxa as a result of P-application could link to the preference of fertilization or
470 471 472 473 474 475	Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root samples. We found that the abundance of <i>R. irregularis</i> was significantly affected by P-application, which meant P-application might be a stronger determinant that impacts the abundance of AMF taxa rather than cover cropping (Fig. 5). The fluctuation in abundance of AMF taxa as a result of P-application could link to the preference of fertilization or inhabiting soil conditions among AMF in soybean roots. Wakelin et al. (2012) found that <i>R</i>
470 471 472 473 474 475 476	Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root samples. We found that the abundance of <i>R. irregularis</i> was significantly affected by P-application, which meant P-application might be a stronger determinant that impacts the abundance of AMF taxa rather than cover cropping (Fig. 5). The fluctuation in abundance of AMF taxa as a result of P-application could link to the preference of fertilization or inhabiting soil conditions among AMF in soybean roots. Wakelin et al. (2012) found that <i>R irregularis</i> decreased as a component of the AMF communities with increasing available
470 471 472 473 474 475 476 477	Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root samples. We found that the abundance of <i>R. irregularis</i> was significantly affected by P-application, which meant P-application might be a stronger determinant that impacts the abundance of AMF taxa rather than cover cropping (Fig. 5). The fluctuation in abundance of AMF taxa as a result of P-application could link to the preference of fertilization or inhabiting soil conditions among AMF in soybean roots. Wakelin et al. (2012) found that <i>R irregularis</i> decreased as a component of the AMF communities with increasing available soil P, in agreement with our study. Johnson (1993) reported that AMF have different
470 471 472 473 474 475 476 477 478	Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root samples. We found that the abundance of <i>R. irregularis</i> was significantly affected by P-application, which meant P-application might be a stronger determinant that impacts the abundance of AMF taxa rather than cover cropping (Fig. 5). The fluctuation in abundance of AMF taxa as a result of P-application could link to the preference of fertilization or inhabiting soil conditions among AMF in soybean roots. Wakelin et al. (2012) found that <i>R irregularis</i> decreased as a component of the AMF communities with increasing available soil P, in agreement with our study. Johnson (1993) reported that AMF have different niches and are well known to prefer to inhabit different soils. Moreover, fertilization may
470 471 472 473 474 475 476 477 478 479	Thonar et al., 2012; Jansa et al., 2014) for the six-selected AMF taxa on the soybean root samples. We found that the abundance of <i>R. irregularis</i> was significantly affected by P-application, which meant P-application might be a stronger determinant that impacts the abundance of AMF taxa rather than cover cropping (Fig. 5). The fluctuation in abundance of AMF taxa as a result of P-application could link to the preference of fertilization or inhabiting soil conditions among AMF in soybean roots. Wakelin et al. (2012) found that <i>R irregularis</i> decreased as a component of the AMF communities with increasing available soil P, in agreement with our study. Johnson (1993) reported that AMF have different niches and are well known to prefer to inhabit different soils. Moreover, fertilization may directly favor species that grow better in enriched soils (Dumbrell et al., 2010). It is likely

soybean roots.

485	P-application contributed to the growth performance of soybean and AMF diversity
486	more than cover cropping
487	In the results of network analysis and growth response of soybean to AMF parameters, we
488	found that the aboveground plant P and biomass of soybeans during the flowering stage
489	and the grain yield of soybeans were positively correlated with the AMF diversity in the
490	roots of soybeans with increasing of P-application (Figs. 7 and 8). Similarly, Jansa et al.
491	(2008) reported that the growth of Allium porrum with three inoculated AMF species
492	(Funneliformis mosseae, Claroideoglomus claroideum, and Rhizophagus irregularis) was
493	enhanced compared to that of Allium porrum when each AMF species was
494	mono-inoculated. Gosling et al. (2016) also reported that increased benefit from high AMF
495	diversity on the growth of Allium cepa was found compared to mono-inoculated. However
496	increasing the diversity more than three species (C. caledonium, F. mosseae, and R.
497	irregularis) did not result in a higher shoot dry weight or P concentration in Allium cepa.
498	Cover crop cultivation can provide carbon (C) source, which may impact soil
499	microbial activities and nutritional function, and the introduction of cover crops can
500	increase the amount of C, such as organic matter, to serve as an energy source for
501	biological activity (Jokela et al., 2009). C sources, such as organic matter by the
502	introduction of cover crops may promote some soil microbial activity to boost plant P
503	uptake (Chabot et al., 1996). In this study, the cover crop managements did not improve
504	growth performance such as plant biomass and P uptake of soybean at the full bloom stage,
505	whereas the P-application enhanced the growth and yield of soybean (Figs. 3 and 8).
506	Therefore, further investigation into the relationships among AMF diversity, P-application
507	and cover cropping on soybean growth performance would be required to gain more benefit
508	from AMF in cover crop rotational systems.
509	
510	Conclusions
511	We found that the P-application did not improve AMF root colonization of soybean and
512	cover cropping in the five-year P-unfertilized continuous crop rotational system, although
513	P-application and cover cropping altered the diversity and communities of AMF in soybean
514	roots at flowering seasons. Also, different AMF community structures may relate to

515	soybean productivity and P-use efficiency in cover crop rotational systems. On the contrary
516	AMF root colonization in the soybean was not found to link to the soybean growth
517	performance, and the P-application into the P-limited soil did not recover the AMF root
518	colonization in the soybean. Other more important factors such as soil microbial activities
519	and interactions of other soil microbial communities rather than P-application can also be
520	involved to achieve a high level of AMF root colonization of soybean in the P-limited crop
521	rotations. Thus, we still need to investigate how to improve agronomic benefits from AMF
522	taxa associated with soybean plants, which will give useful information on appropriate P
523	management and cover crop choices in cover crop rotational systems.
524	
525	References
526	Alguacil MM, Lozano Z, Campoy MJ, Roldán A. 2010. Phosphorus fertilisation
527	management modifies the biodiversity of AM fungi in a tropical savanna forage
528	system. Soil Biology and Biochemistry 42(7):1114–1122
529	Alguacil MM, Lumini E, Roldán A, Salinas-García JR, Bonfante P, Bianciotto V. 2008.
530	The
531	impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical
532	crops. Ecological Application 18(2):527–36
533	Bai Z, Li H, Yang X, Zhou B, Shi X, Wang B, Li D, Shen J, Chen Q, Qin W, Oenema O,
534	Zhang F. 2013. The critical soil P levels for crop yield, soil fertility and environmental
535	safety in different soil types. Plant and Soil 372(1-2):27-37
536	Balzergue C, Puech-Pagès V, Bécard G, Rochange SF. 2011. The regulation of arbuscular
537	mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling
538	events. Journal of Experimental Botany 62(3): 1049-1060
539	Beauregard MS, Gauthier MP, Hamel C, Zhang T, Welacky T, Tan CS, St-Arnaud M. 2013
540	Various forms of organic and inorganic P fertilizers did not negatively affect soil-and
541	root-inhabiting AM fungi in a maize-soybean rotation system. Mycorrhiza 23(2):
542	143–154
543	Bolan NS, Robson AD, Barrow NJ. 1984. Increasing phosphorus supply can increase the
544	infection of plant-roots by vesicular arbuscular mycorrhizal fungi. Soil Biology and

545	Biochemistry 16(4):419–420
546	Brunelle T, Dumas P, Souty F, Dorin B, Nadaud F. 2015. Evaluating the impact of rising
547	fertilizer prices on crop yields. Agricultural Economics 46(5):653-666
548	Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC. 2014.
549	Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and
550	molecular diversity in a tropical montane forest. Global Chang Biology 20(12):3646-
551	3659
552	Chabot R, Antoun H, Cescas MP. 1996. Growth promotion of maize and lettuce by
553	phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant and Soil
554	184 (2):311–321
555	Cornejo P, Azcón-Aguilar C, Miguel Barea J, Ferrol N. 2004. Temporal temperature
556	gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular
557	mycorrhizal fungi. FEMS Microbiology Letters 241(2): 265-270
558	Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. 2010. Relative roles of niche
559	and neutral processes in structuring a soil microbial community. ISME Journal 4:
560	337–345
561	Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N,
562	Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P. 2002. Statistical analysis of
563	denaturing gel electrophoresis (DGE) fingerprinting patterns. Environmental
564	Microbiology 4(11):634–643
565	Gilbert GA, Knight JD, Vance CP, Allan DL. 2000. Proteoid root development of
566	phosphorus deficient lupin is mimicked by auxin and phosphonate. Annals of Botany
567	85 (6):921–928
568	Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring
569	vesicular-arbuscular mycorrhizal infection in roots. New Phytologist 84(3):489-500
570	Gosling P, Hodge A, Goodlass G, Bending GD. 2006. Arbuscular mycorrhizal fungi and
571	organic farming. Agriculture, Ecosystems and Environment 113(1-4):17-35
572	Gosling P, Mead A, Proctor M, Hammond JP, Bending GD. 2013. Contrasting arbuscular
573	mycorrhizal communities colonizing different host plants show a similar response to a
574	soil phosphorus concentration gradient. New Phytologist 198(2):546-556
	19

576	mycorrhizal fungi and implications for agroecosystem management. Mycorrhiza
577	26 (1):77–83
578	Hammer Ø, Harper DAT, Ryan PD. 2001. PAST-Palaeontological statistics software
579	package for education and data analysis. Palaeontologia Electronica 4(1):1-9
580	Hart MM, Forsythe JA. 2012. Using arbuscular mycorrhizal fungi to improve the nutrient
581	quality of crops; nutritional benefits in addition to phosphorus. Scientia Horticulturae
582	148 :206–214
583	Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. 1998. Ploughing up the
584	wood-wide web? Nature 394:431
585	Higo M, Isobe K, Drijber RA, Kondo K, Yamaguchi M, Takeyama S, Suzuki Y, Niijima D
586	Matsuda Y, Ishii R, Torigoe Y. 2014. Impact of a 5-year winter cover crop rotational
587	system on the molecular diversity of arbuscular mycorrhizal fungi colonizing roots of
588	subsequent soybean. Biology and Fertility of Soils 50(6):913-926
589	Higo M, Isobe K, Kang DJ, Ujiie K, Drijber RA, Ishii R. 2010. Inoculation with arbuscular
590	mycorrhizal fungi or crop rotation with mycorrhizal plants improves the growth of
591	maize in limed acid sulfate soil. Plant Production Science 13(1):74-79
592	Higo M, Isobe K, Kondo T, Yamaguchi M, Takeyama S, Drijber RA, Torigoe Y. 2015a.
593	Temporal variation of the molecular diversity of arbuscular mycorrhizal communities
594	in three different winter cover crop rotational systems. Biology and Fertility of Soils
595	51 (1):21–32
596	Higo M, Isobe K, Matsuda Y, Ichida M, Torigoe Y. 2015b. Influence of sowing season and
597	host crop identity on the community structure of arbuscular mycorrhizal fungi
598	colonizing roots of two different gramineous and leguminous crop species. Advances
599	in Microbiology 5 (2):107–116
600	Higo M, Isobe K, Miyazawa Y, Matsuda Y, Drijber RA, Torigoe Y. 2016. Molecular
601	diversity and distribution of indigenous arbuscular mycorrhizal communities
602	colonizing roots of two different winter cover crops in response to their root
603	proliferation. Journal of Microbiology 54(2):86–97
604	Higo M, Isobe K, Yamaguchi M, Drijber RA, Ishii R. 2013. Diversity and vertical

Gosling P, Jones J, Bending GD. 2016. Evidence for functional redundancy in arbuscular

605	distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational
606	systems. Biology and Fertility of Soils 49(8):1085-1096
607	Higo, M, Takahashi Y, Gunji K, Isobe K. 2017, Accepted. How are arbuscular mycorrhizal
608	associations related to maize growth performance during short-term cover crop
609	rotation?". Journal of the Science of Food and Agriculture DOI: 10.1002/jsfa.8606
610	Islam MR, Chauhan PS, Kim Y, Kim M, Sa T. 2011. Community level functional diversity
611	and enzyme activities in paddy soils under different long term fertilizer management
612	practices. Biology and Fertility of Soils 47(5):599-604
613	Islas AT, Guijarro KH, Eyherabide M, Rozas HS, Echeverría HE, Covacevich F. 2016. Can
614	soil properties and agricultural land use affect arbuscular mycorrhizal fungal
615	communities indigenous from the Argentinean Pampas soils? Applied Soil Ecology
616	101 :47–56
617	Isobe K, Sugimura H, Maeshima T, Ishii R. 2008. Distribution of Arbuscular Mycorrhizal
618	Fungi in Upland Field Soil of Japan: 2. Spore Density of Arbuscular Mycorrhizal
619	Fungi and Infection Ratio in Soybean and Maize Fields. Plant Production Science
620	11 (2):171–177
621	Isobe K, Higo M, Kondo T, Sato N, Takeyama S, Torigoe Y. 2014. Effect of winter crop
622	species on arbuscular mycorrhizal fungal colonization and subsequent soybean yields.
623	Plant Production Science 17(3):260–267
624	Jansa J, Erb A, Oberholzer HR, Šmilauer P, Egli S. 2014. Soil and geography are more
625	important determinants of indigenous arbuscular mycorrhizal communities than
626	management practices in Swiss agricultural soils. Molecular Ecology 23(8):2118-
627	2135
628	Jansa J, Smith FA, Smith SE. 2008. Are there benefits of simultaneous root colonization by
629	different arbuscular mycorrhizal fungi?. New Phytologist 177(3): 779-789
630	Johnson NC, Copeland PJ, Crookston RK, Pfleger FL. 1992. Mycorrhizae: Possible
631	explanation for yield decline with continuous corn and soybean. Agronomy Journal
632	84 (3): 387–390
633	Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM. 2010a. Resource
634	limitation is a driver of local adaptations in mycorrhizal symbioses. Proceedings of the

635	National Academy of Sciences of the United States of America 107(5): 2093–2098
636	Johnson NC. 1993. Can fertilization of soil select less mutualistic mycorrhizae? <i>Ecological</i>
637	Application 3 (4): 749–757
638	Johnson NC. 2010b. Resource stoichiometry elucidates the structure and function of
639	arbuscular mycorrhizas across scales. New Phytologist 185(3): 631-647
640	Jokela WE, Grabber JH, Karlen DL, Balser TC, Palmquist DE. 2009. Cover crop and liquid
641	manure effects on soil quality indicators in a corn silage system. Agronomy Journal
642	101 (4):727–737
643	Kahiluoto H, Ketoja E, Vestberg M, Saarela I. 2001. Promotion of AM utilization through
644	reduced P fertilization 2. Field studies. Plant and Soil 231(1): 65-79
645	Kahiluoto H, Ketoja E, Vestberg M. 2009. Contribution of arbuscular mycorrhiza to soil
646	quality in contrasting cropping systems. Agriculture Ecosystems and Environment
647	134 (1-2): 36–45
648	Kahiluoto H, Ketoja E, Vestberg M. 2012. Plant-available P supply is not the main factor
649	determining the benefit from arbuscular mycorrhiza to crop P nutrition and growth in
650	contrasting cropping systems. Plant and Soil 350(1): 85-98
651	Karasawa T, Takahashi S. 2015. Introduction of various cover crop species to improve soil
652	biological P parameters and P uptake of the following crops. Nutrient Cycling in
653	Agroecosystems 103(1):15–28
654	Karasawa T, Takebe M. 2012. Temporal or spatial arrangements of cover crops to promote
655	arbuscular mycorrhizal colonization and P uptake of upland crops grown after
656	nonmycorrhizal crops. Plant and Soil 353(1-2):355-366
657	Karasawa T, Kasahara Y, Takebe M. 2002. Differences in growth responses of maize to
658	preceding cropping caused by fluctuation in the population of indigenous arbuscular
659	mycorrhizal fungi. Soil Biology and Biochemistry 34(6):851-857
660	Koenig R, Johnson C. 1942. Colorimetric determination of phosphorus in biological
661	material. Industrial and Engineering Chemistry, Analytical Edition 14(2):155-156
662	Kowalchuk GA, de Souza FA, van Veen JA. 2002 Community analysis of arbuscular
663	mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes.
664	Molecular Ecology 11(3):571–581

666	DGGE-cloning method to characterize arbuscular mycorrhizal community structure in
667	soil. Soil Biology and Biochemistry 4:956–966
668	Lin X, Feng Y, Zhang H, Chen R, Wang J, Zhang J, Chu H. 2012. Long-term balanced
669	fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in
670	north China revealed by 454 pyrosequencing. Environmental Science and Technology
671	46 (11): 5764–5771
672	Liu W, Zhang Y, Jiang S, Deng Y, Christie P, Murray PJ, Li X, Zhang J. 2016. Arbuscular
673	mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an
674	intensively managed calcareous agricultural soil. Scientific Reports 6:24902
675	Liu Y, Johnson NC, Mao L, Shi G, Jiang S, Ma X, Du G, An L, Feng H. <mark>2015</mark> .
676	Phylogenetic structure of arbuscular mycorrhizal community shifts in response to
677	increasing soil fertility. Soil Biology and Biochemistry 89:196-205
678	Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Collins Johnson N, Feng H.
679	2012. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on
680	Glomeromycota in an alpine meadow ecosystem. New Phytologist 194(2):523-535
681	Lynch JP. 2007. Roots of the second green revolution. Australian Journal of Botany
682	55 (5):493-512
683	Maherali H, Klironomos JN. 2007. Influence of phylogeny on fungal community assembly
684	and ecosystem functioning. Science 316(5832):1746–1748
685	Mew MC. 2016. Phosphate rock costs, prices and resources interaction. Science of The
686	Total Environment 542(Part B):1008–1012
687	Miranda JD, Harris PJ. 1994. Effects of soil phosphorus on spore germination and hyphal
688	growth of arbuscular mycorrhizal fungi. New Phytologist 128(1):103-108
689	Mishima S, Itahashi S, Kimura R, Inoue, T. 2003. Trends of phosphate fertilizer demand
690	and phosphate balance in farmland soils in Japan. Soil Science and Plant Nutrition
691	49 (1):39–45
692	Njeru EM, Avio L, Sbrana C, Turrini A, Bocci G, Bàrberi P, Giovannetti M. 2014. First
693	evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic
694	maize growth. Agronomy for Sustainable Development 34(4):841-848

Liang ZB, Drijber RA, Lee DJ, Dwiekat IM, Harris SD, Wedin DA. 2008. A

695	Oksanen, J. 2017. Multivariate analysis of ecological communities in R: vegan tutorial.
696	URL:http://cran.r-project.org.
697	Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis
698	Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA. 2013.
699	Human-induced nitrogen-phosphorus imbalances alter natural and managed
700	ecosystems across the globe. Nature Communications 4:2934
701	Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig M, Maherali H. 2009.
702	Phylogenetic trait conservatism and the evolution of functional trade-offs in
703	arbuscular mycorrhizal fungi. Proceedings of the Royal Society B: Biological Sciences
704	276 :4237–4245
705	Ryan MH, Norton RM, Kirkegaard JA, McCormick KM, Knights SE, Angus JF. 2002.
706	Increasing mycorrhizal colonization does not improve growth and nutrition of wheat
707	on Vertosols in south-eastern Australia. Crop Pasture Science 53(10):1173-1181
708	Ryan MH, Herwaarden AF van, Angus JF, Kirkegaard JA. 2005. Reduced growth of
709	autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular
710	mycorrhizal fungi. Plant and Soil 270(1):275-86
711	Schneider KD, Lynch DH, Dunfield K, Khosla K, Jansa J, Voroney RP. 2015. Farm system
712	management affects community structure of arbuscular mycorrhizal fungi. Applied
713	Soil Ecology 96 :192–200
714	Schüßler A, Gehrig H, Schwarzott D, Walker C. 2001a. Analysis of partial Glomales SSU
715	rRNA gene sequences: implications for primer design and phylogeny. Mycological
716	Research 105 (1):5–15
717	Schüßler A, Schwarzott D, Walker C. 2001b. A new fungal phylum, the <i>Glomeromycota</i> :
718	phylogeny and evolution. Mycological Research 105(12):1413-1421
719	Simon L, Lalonde M, Bruns TD. 1992. Specific amplification of 18S fungal ribosomal
720	genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and
721	Environmental Microbiology 58 (1):291–295
722	Smith SE, Read DJ. 2008. Arbuscular mycorrhizaes. In Smith SE, Read DJ (Eds),
723	Mycorrhizal symbiosis 3rd Edition. Academic Press, London, pp. 13-187

Thonar C, Erb A, Jansa, J. 2012. Real-time PCR to quantify composition of arbuscular

725	mycorrhizal fungal communities-marker design, verification, calibration and field
726	validation. Molecular Ecology Resources 12(2):219–232
727	Truog E. 1930. The determination of the readily available phosphorus of soils. <i>Journal of</i>
728	The American Society of Agronomy 22:874–882
729	Turrini A, Sbrana C, Avio L, Njeru EM, Bocci G, Bàrberi P, and Giovannetti M. 2016.
730	Changes in the composition of native root arbuscular mycorrhizal fungal communities
731	during a short-term cover crop-maize succession. Biology and Fertility of Soils
732	52 (5):643–653
733	van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T,
734	Wiemken A, Sanders IR. 1998. Mycorrhizal fungal diversity determines plant
735	biodiversity, ecosystem variability and productivity. Nature 396(5):72-75
736	Verbruggen E, van der Heijden MGA, Rillig MC, Kiers ET. 2013. Mycorrhizal fungal
737	establishment in agricultural soils: factors determining inoculation success. New
738	Phytologist 197 (4):1104–1109
739	Verbruggen E, Kiers ET. 2010. Evolutionary ecology of mycorrhizal functional diversity in
740	agricultural systems. Evolutionary Applications 3(5-6):547-560
741	Vierheilig H, Coughlan AP, Wyss U, Piché Y. 1998. Ink and vinegar, a simple staining
742	technique for arbuscular-mycorrhizal fungi. Applied and Environmental Microbiology
743	64 (12):5004–5007
744	Wagg C, Jansa J, Schmid B, van der Heijden MGA. 2011. Belowground biodiversity
745	effects of plant symbionts support aboveground productivity. Ecological Letters
746	14 (10):1001–1009
747	White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM. 2013.
748	Matching roots to their environment. Annals of Botany 112(2):207-222
749	Zhang F, Hamel C, Kianmehr H, Smith DL. 1995. Root-zone temperature and soybean
750	[Glycine max (L.) Merr.] vesicular-arbuscular mycorrhizae: development and
751	interactions with the nitrogen fixing symbiosis. Environmental Experimental Botany
752	35 (3):287–298