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ABSTRACT
The common bottlenose dolphin, Tursiops truncatus, is widely distributed along the

western coast of South America. In Ecuador, a resident population of bottlenose

dolphins inhabits the inner estuarine area of the Gulf of Guayaquil located in the

southwestern part of the country and is under threat from different human activities

in the area. Only one genetic study on South American common bottlenose dolphins

has been carried out to date, and understanding genetic variation of wildlife

populations, especially species that are identified as threatened, is crucial for defining

conservation units and developing appropriate conservation strategies. In order to

evaluate the evolutionary link of this population, we assessed the phylogenetic

relationships, phylogeographic patterns, and population structure using

mitochondrial DNA (mtDNA). The sampling comprised: (i) 31 skin samples

collected from free-ranging dolphins at three locations in the Gulf of Guayaquil

inner estuary, (ii) 38 samples from stranded dolphins available at the collection of

the “Museo de Ballenas de Salinas,” (iii) 549 mtDNA control region (mtDNA CR)

sequences from GenBank, and (iv) 66 concatenated sequences from 7-mtDNA

regions (12S rRNA, 16S rRNA, NADH dehydrogenase subunit I–II, cytochrome

oxidase I and II, cytochrome b, and CR) obtained from mitogenomes available in

GenBank. Our analyses indicated population structure between both inner and

outer estuary dolphin populations as well as with distinct populations of T. truncatus

using mtDNA CR. Moreover, the inner estuary bottlenose dolphin (estuarine

bottlenose dolphin) population exhibited lower levels of genetic diversity than the

outer estuary dolphin population according to the mtDNACR. Finally, the estuarine

bottlenose dolphin population was genetically distinct from other T. truncatus

populations based on mtDNA CR and 7-mtDNA regions. From these results, we

suggest that the estuarine bottlenose dolphin population should be considered a

distinct lineage. This dolphin population faces a variety of anthropogenic threats in

this area; thus, we highlight its fragility and urge authorities to issue prompt

management and conservation measures.
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INTRODUCTION
Identifying intraspecific variation of threatened coastal wildlife populations is essential for

defining conservation units and developing appropriate conservation and management

strategies. The evolutionary potential of species depends on genetic variation, which

constitutes genetic diversity, differentiation, and distance (Frankham, Ballou & Briscoe,

2010; Taylor, Martien & Morin, 2010; Allendorf, Luikart & Aitke, 2013). Taken together,

these factors contribute to defining evolutionary units as evolutionary significant units or

management units (MUs) (Funk et al., 2012). However, understanding the intraspecific

variation of species in animals like cetaceans, which inhabit broad geographical ranges

with few or no geographical boundaries, is a challenge. Although cetaceans are highly

mobile, many species have adapted to local conditions (Hoelzel, Potter & Best, 1998),

leading to their local differentiation and subsequent evolution into new species. At the

intraspecific level, the systematics of Tursiops truncatus has not been well-defined,

suggesting different lineages in this species (Moura et al., 2013) due to habitat

specialization (Caballero et al., 2012). In particular, it has been proposed that coastal

populations are genetically well-differentiated from each other globally (Natoli, Peddemors

& Hoelzel, 2004; Tezanos-Pinto et al., 2009).

The genus Tursiops includes two accepted species based on molecular and

morphological differences: T. truncatus (Montagu, 1821) with global distribution and

T. aduncus (Ehrenberg, 1833) restricted to the Pacific and eastern Indian Oceans.

T. truncatus, the common bottlenose dolphin, has two recognized subspecies: T. truncatus

ponticus in the Black Sea and T. truncatus truncatus in the Mediterranean Sea (Wang, Riehl

& Dungan, 2014). Some populations have been proposed as a different species: the

aduncus-type dolphin from South Africa, the western Pacific, and the eastern Indian

Oceans (Natoli, Peddemors & Hoelzel, 2004; Perrin et al., 2007; Oremus et al., 2015); the

Burrunan dolphin (“Tursiops australis”) from the Australian continent (Charlton, Taylor

& McKechnie, 2006;Möller et al., 2008; Charlton-Robb et al., 2011;Moura et al., 2013); and

Tursiops gephyreus from the South Atlantic (Carrion-Wickert et al., 2016), although its

status as a separate species is not currently accepted (Wang, Riehl & Dungan, 2014).

The common bottlenose dolphin (hereafter bottlenose dolphin) is widely distributed in

pelagic and coastal waters, including sounds, bays, and estuaries (Wang, Riehl & Dungan,

2014). The ecological adaptation of T. truncatus to different environmental conditions has

generated two well-differentiated ecotypes (coastal and offshore) based on osteological and

genetic data (Tezanos-Pinto et al., 2009; Perrin et al., 2011; Caballero et al., 2012; Louis et al.,

2014a; Lowther-Thieleking et al., 2015). The coastal ecotype is found within 1–7.5 km from

shore (Torres et al., 2003; Bearzi, Saylan & Hwang, 2009) while the offshore ecotype occurs

less than 1 km from shore (Bearzi, Saylan & Hwang, 2009); however, it may vary according

to the specific ocean basin. Both ecotypes can be considered in sympatry or parapatry

in particular geographic regions (Torres et al., 2003; Bearzi, Saylan & Hwang, 2009;
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Caballero et al., 2012; Costa et al., 2016). The offshore ecotype is present in pelagic, coastal,

and insular waters (Hoelzel, Potter & Best, 1998; Sanino et al., 2005; Tezanos-Pinto et al.,

2009), whereas the coastal ecotype inhabits bays and coastal, estuarine, and continental

areas (Sellas, Wells & Rosel, 2005; Parsons et al., 2006). Additionally, the offshore ecotype

is highly dispersed, has high levels of genetic diversity and lacks population structure

(Hoelzel, Potter & Best, 1998; Natoli, Peddemors & Hoelzel, 2004; Quérouil et al., 2007).

Conversely, most coastal populations show population structure at small geographic scales

with low genetic diversity at the regional scale (Rosel, Hansen & Hohn, 2009;Mirimin et al.,

2011; Fruet et al., 2014).

Although the bottlenose dolphin is widely present along the entirety of the western

coast of South America (Wang, Riehl & Dungan, 2014), only one genetic study has

been carried out to date. Sanino et al. (2005) evaluated the genetic diversity and the

phylogenetic relationships of two offshore groups and two coastal groups from Peru and

Chile. Among these populations, three different populations (one offshore Peruvian–

Chilean population and two different coastal Peruvian and Chilean populations) were

found. In Ecuador, information on the bottlenose dolphin is scarce, but the presence of

coastal and offshore ecotypes in Ecuadorian waters has been proposed in previous studies

(Félix, 1997; Félix et al., 2017a; Jiménez & Alava, 2014; Palacios, Salazar & Day, 2004). The

coastal ecotype, with a sub-structured population in semi-closed communities (Félix,

1997; Félix et al., 2017a), is found in the Gulf of Guayaquil inner estuary, including the

Jambelı́ Channel (Félix, 1994, 1997; Félix et al., 2017a), Estero Salado (Félix et al., 2017a),

Posorja, and El Morro and Bajo Alto mangroves (Jiménez & Alava, 2014; Félix et al.,

2017a), while the offshore ecotype is observed around the Galápagos Islands and in

pelagic waters (Palacios, Salazar & Day, 2004). Although the bottlenose dolphin in the

inner estuary is recognized as a coastal ecotype, no information about its genetic

identity is available.

In the Gulf of Guayaquil inner estuary, two photo identification studies were carried out

in the 1990s focusing on the behavioral ecology, social organization, and social structure of

the bottlenose dolphin population (Félix, 1994, 1997). The social organization of this

population was characterized as a hierarchically structured society in which females are

organized in bands while males form alliances to obtain dominant status and access mature

females (Félix, 1997). In addition, dolphins form small groups ranging from two to eight

individuals and pods ranging from 10 to 25 individuals so they can forage at a specific site

and strand fish on the shore (Jiménez & Alava, 2014). To date, there is no actual estimate of

dolphin population size in the whole Gulf of Guayaquil. However, more recent studies

described two communities: one community of around 70 dolphins in the Estero Salado

(Félix et al., 2017a) and another single resident community of around 43–45 dolphins

inhabiting Morro Channel within the Morro Mangrove Wildlife Refuge (2�39′S and

80�11′W) (Jiménez & Alava, 2014; Félix et al., 2017a), a protected area of approximately

10,130 ha of mangrove forest (Ministerio del Ambiente del Ecuador (MAE), 2010).

The bottlenose dolphins in the Gulf of Guayaquil inner estuary reside in an area

characterized by high biological productivity. During the cold, dry season, the Humboldt

Current and superficial subtropical water mass promote outcrops of high-nutrient waters
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with increased biological productivity (Twilley et al., 2001). There are approximately

122,437 ha of mangrove forest in the estuary; nevertheless, it is one of the most fragile and

threatened ecosystems in the country (MAE, 2010). This ecosystem is located near

Guayaquil, the country’s largest and most populated city and one of its four major ports

(Montaño & Sanfeliu, 2008; Castro et al., 2012). Approximately 45% of Ecuador’s

population lives around the inner estuary, which is its most important production area for

industrial and artisanal fisheries (Montaño & Sanfeliu, 2008).

The bottlenose dolphin population of the Gulf of Guayaquil inner estuary (hereafter

referred to as the estuarine bottlenose dolphin) is one of the most vulnerable populations

due to human population increase and coastal development activities (Jiménez et al., 2011;

Jiménez & Alava, 2014; Félix et al., 2017b). This has resulted in a significant population

reduction in the last decades (Jiménez & Alava, 2014; Félix et al., 2017a). The main

threats affecting the species in the estuary are collisions between vessels and dolphins

(Van Waerebeek et al., 2007; Félix et al., 2017b), bycatch (Van Waerebeek et al., 1997; Félix

et al., 2017b), ship-based tourism that includes mismanaged dolphin tourism carried out by

locals (Félix, 1997; Félix et al., 2017a), habitat degradation, dredging activities, and intense

fishing (Jiménez & Alava, 2014). Furthermore, the presence of biological and chemical

contaminants in both the sediment and the water column (Castro et al., 2012) can

impact dolphin health, generating lobomycosis-like or lacaziosis-like infectious diseases

(Van Bressem et al., 2015). Due to its vulnerability, this species is considered Vulnerable

(VU) according to the Ecuadorian Mammal Red List and is protected by Ecuadorian law,

meaning hunting and trade are prohibited in the country indefinitely (Jiménez et al., 2011).

Despite the species being protected, the dolphin population is facing a variety of hazards

that could, directly and indirectly, affect its survival and long-term adaptability.

The aim of this study is to assess the evolutionary link of the estuarine bottlenose dolphin

in the Gulf of Guayaquil with T. truncatus populations elsewhere based on analyses of several

mitochondrial DNA (mtDNA) regions. The genetic study was conducted using: (i) a 392 bp

fragment of mtDNA control region (mtDNA CR) to estimate the genetic diversity of the

bottlenose dolphin of the Gulf of Guayaquil; (ii) 397 bp mtDNA CR sequences to assess

population divergence, phylogeographic patterns, and phylogeny between the estuarine

bottlenose dolphins and bottlenose dolphin populations elsewhere; and (iii) 7-mtDNA

regions (5,209 bp) to determine phylogenetic relationships including distinct T. truncatus

populations and all species inside the genus Tursiops. To our knowledge, this is the first

genetic study carried out with bottlenose dolphins in the Gulf of Guayaquil. The results will

be discussed in terms of conservation. The estuarine bottlenose dolphin is Ecuador’s most

vulnerable dolphin population because of anthropogenic threats, so understanding

population boundaries is essential to improving local management strategies and ensuring

the short-term conservation of the bottlenose dolphin in the area.

MATERIALS AND METHODS
Study area
The Gulf of Guayaquil, the largest estuary on the southeast Pacific coast, is located in

southwestern Ecuador (3�S and 81�W) (Fig. 1) (Stevenson, 1981;Montaño & Sanfeliu, 2008).
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The entrance to the gulf is 200 km wide, stretching from Santa Elena (2�12′S, Ecuador) to
near Máncora (4�07′S, Peru) and extending 130 km inland. The Gulf of Guayaquil

includes an outer and inner estuary (Twilley et al., 2001) divided by the western part of

Puná Island. The outer estuary begins on the western side of Puná Island (80�15′W) and

ends at 81�W. The inner estuary extends inland in several directions, surrounding a

complex of islands covered in mangroves and channels. The inner estuary includes

most of Puná Island, which lies between three channels: the Morro Channel, stretching

3 km northeast; the Cascajal Channel in the north; and the Jambelı́ Channel, extending

11–28 km wide to the east. In the northern part of Puná Island, the Cascajal Channel

connects the Estero Salado to the Guayas River (Stevenson, 1981) while in the east; the

Jambelı́ Channel connects the outer estuary with the Guayas River.

The weather in the study area is characterized by two seasons: one warm, rainy from

January to May, and the cold, dry from June to November (Stevenson, 1981). Rainfall is

Figure 1 Map of the Gulf of Guayaquil showing sample locations. Stranded samples were obtained

in four locations in the Gulf of Guayaquil. Mar Bravo (Ttr_3–Ttr_8, Ttr_32, Ttr_34-Ttr_37), Punta

Carnero (Ttr_2, Ttr_18), Playas (Ttr_17), Jambelı́ Island (Ttr_10, Ttr_33), and east side of Puná Island

(Ttr_9, Ttr_11, Ttr_12, Ttr_15, Ttr_16, Ttr_19-Ttr_21, Ttr_23, Ttr_25, Ttr_31). The sampling sites in

the inner estuary are represented by the letter P, which indicates the GPS points where skin sampling of

free-ranging dolphins took place. Posorja (n = 22; P1: Ttr_38-Ttr_46, P3: Ttr_49-Ttr_52, P5: Ttr_55-

Ttr_57, P7: Ttr_63-Ttr_68), El Morro (n = 7; P2: Ttr_47-Ttr_48, P6: Ttr_58-Ttr_62), and the east side of

Puná Island (n = 2; P4: Ttr_53, Ttr_54). Full-size DOI: 10.7717/peerj.4589/fig-1
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seasonal, and more than 95% of precipitation occurs from December to May, causing

seasonal river discharge (Stevenson, 1981; Twilley et al., 2001). More than 20 hydrographic

basins contribute to a large drainage area in the Gulf of Guayaquil (Twilley et al., 2001;

Montaño & Sanfeliu, 2008), of which the Guayas River Basin is the main contributor of

freshwater to the estuary (Stevenson, 1981). In the outer estuary, the surface water

temperature varies from 21.5 �C to 25 �C during the dry and rainy seasons, respectively.

In the inner estuary, water surface temperature fluctuates between 25 �C during the dry

season and 28 �C during the rainy season (Stevenson, 1981). Finally, the tides vary from

1.8 m near the upper boundary of the Gulf to 3–5 m near the city of Guayaquil

(Twilley et al., 2001).

Sample collection
We included 38 museum samples, which are available from the “Museo de Ballenas de

Salinas” (Salinas Whale Museum) collection in the Salinas city. The samples belong to the

mentioned museum according to the patent of wildlife management granted by the

Department of Salinas, Ministry of Environment of Ecuador (patent number FAU-0002-

DPSE/VS). Of 38 museum samples, one was a skin sample (Ttr_1) from a Galápagos

free-ranging dolphin, and 37 (Ttr_2–Ttr_37 and Ttr_69) were obtained from stranded

dolphins (eight skin and 29 bone samples). Stranded samples were collected from

different years (1990–1996, 2001, 2005–2010, and 2013) and locations, including the

outer (Mar Bravo and Punta Carnero seashores located in Salinas, and Playas; n = 14) and

inner (eastern part of Puná Island and Jambelı́ Island; n = 13) estuary of the Gulf of

Guayaquil, Galápagos Islands (n = 1), and Santa Rosa, Peru (n = 1). The other stranded

samples (n = 8) were collected in different undefined locations from the Gulf of

Guayaquil. Occipital condyle and mandible bone powder were gathered based on the

technique reported by Morin et al. (2006). Museum sample information is summarized

in Table S1.

Additionally, we collected 31 skin samples (Ttr_38–Ttr_68) from free-ranging dolphins

at three different sites (Posorja: n = 22, El Morro: n = 7, and east side of Puná Island: n = 2)

from the Gulf of Guayaquil inner estuary (Fig. 1). The field work took place between

March and August 2013. We took swab samples from the dorsal-lateral region of the

dolphins based on the non-invasive technique reported by Harlin et al. (1999) with a few

modifications: a sterilized square piece of sand paper 5� 5 cmwas used instead of a nylon

scrub pad wrapped around the tip of a pole. Sample information is summarized in

Table S1. Skin samples were removed with sterilized forceps and stored in 100% ethanol

for subsequent genetic analyses. Free-ranging dolphin samples were collected following

the guidelines specified by the research permits given by the Department of Guayas

Province, Ministry of Environment of Ecuador (permit number 004-IC-FAU-DPG/

MAE). No ethical approval was considered necessary and the sampling technique was

not submitted for ethical analysis because the animals were not handled directly and a

non-invasive sampling technique was used. We performed all genetic analyses in the

Ecology and Genetics Laboratory at the Pontificia Universidad Católica del Ecuador

(Pontifical Catholic University of Ecuador).
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DNA extraction
Total genomic DNA from 40 skin samples (31 free-ranging dolphin samples and nine

museum samples) was isolated using a modified proteinase K digestion protocol and

two chloroform: isoamyl alcohol (24:1) extractions followed by ethanol precipitation

(Green & Sambrook, 2012). We extracted DNA from the bone powder of 29 samples using

a Wizard Genomic DNA Purification Kit (Promega, Madison, WI, USA), following the

manufacturer’s protocol. DNA from bone samples were extracted in a dolphin DNA-free

laboratory, and DNA manipulation was carried out based on those procedures described

byMorin et al. (2006). The concentration and purity of genomic DNAwere analyzed using

a NanoDrop spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA).

Molecular sex determination
We identified the sex of all free-ranging and stranded dolphins (n = 69) with a duplex

polymerase chain reaction (PCR) amplification using two sets of primers, ZFX0582F and

ZFX0923R (Bérubé & Palsbøll, 1996), to target a partial fragment of the ZFX gene, as well

as PMSRYF (Richard, McCarrey & Wright, 1994) and TtSRYR (Rosel, 2003) to amplify a

partial fragment of the SRY gene. PCR amplification reactions were carried out based on

those reported by Rosel (2003), with a few modifications. PCR amplification reactions

were carried out in a 20 ml reaction mixture containing 20–30 ng of DNA, 1X PCR buffer,

1.5 mM MgCl2, 0.3 mM of each primer, 150 mM dNTPs, and 1.0 U of Taq DNA

polymerase (Promega, Madison, WI, USA). PCR thermo-cycling conditions consisted of

an initial denaturation step at 95 �C for 5 min, followed by 35 cycles of denaturation at 94
�C for 30 s, annealing at 51 �C for 45 s, and extension at 72 �C for 45 s with a final

extension step at 72 �C for 10 min. Gender was determined by the banding pattern on a

2.5% agarose gel, stained with ethidium bromide, and visualized under ultraviolet light.

mtDNA sequencing
For all samples (n = 69), we amplified 7-mtDNA regions (12S rRNA, 16S rRNA, NADH

dehydrogenase subunit I–II (ND1-ND2), cytochrome oxidase I and II, (COI and COII),

cytochrome b (Cyt b), and the mtDNA CR) designed on the basis of the T. truncatus

mitochondrial genome. The details of each set of primers are listed in Table S2.

We chose the hypervariable region mtDNA CR (∼500 bp) for population structure and

phylogeographic analyses for several reasons: (i) its fast mutation rate (Taylor, Martien &

Morin, 2010), (ii) the availability of previously published sequences for this species

in other parts of their range, and (iii) the small size of the PCR product is ideal for

amplifying museum DNA samples. For the phylogenetic analyses, we included the

7-mtDNA regions to obtain a high phylogeny resolution due to the many informative

sites of those regions.

Polymerase chain reaction amplification reactions were carried out in a 25 ml reaction

mixture containing 20–30 ng of DNA, 1X PCR buffer, 1.5–2.0 mMMgCl2 (specific to each

primer and detailed in Table S2), 0.4 mMof each primer, 200 mMdNTPs, and 1.0 U of Taq

DNA polymerase (Promega, Madison, WI, USA). PCR thermo-cycling conditions

consisted of 94 �C for 2 min, followed by 35 cycles of 94 �C for 30 s, annealing temperature
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(specific to each primer and detailed in Table S2) for 60 s, and extension at 72 �C for 60 s

with a final extension step at 72 �C for 10 min. The PCR products were electrophoresed on

a 1–1.5% agarose gel containing ethidium bromide, and visualized under ultraviolet light.

All PCR products were purified for sequencing using exonuclease I and shrimp alkaline

phosphatase (ExoSap-IT�). Both strands were sequenced by MACROGEN (Seoul, South

Korea). All sequences were manually assembled and edited using BioEdit 7.2.3 software

(Hall, 1999). In order to validate the data, all consensus sequences obtained were analyzed

using the BLAST algorithm in GenBank (Altschul et al., 1997). Multiple alignments were

performed for each gene using CLUSTALW implemented in MEGA 6 software (Tamura

et al., 2013) and each alignment was edited and checked visually. If we found unique sites,

we rechecked the electropherogram alignments in both directions. All nucleotide

sequences found in this study were deposited in GenBank under accession numbers

KU991990–KU992299. The samples used in each test are summarized in Table S1.

Genetic diversity
We used mtDNA CR from 48 free-ranging and stranded dolphins from the Gulf of

Guayaquil to investigate genetic variability within and among sampling sites. We

compared the variability of the 392 bp mtDNA CR between sequences obtained in the

present study with a sequence of T. truncatus from the Gulf of California (accession

number KF570389.1). This sequence was chosen because it represents the coastal ecotype

mitogenome from the eastern Pacific Ocean (Moura et al., 2013). Unique haplotypes were

detected using DNAsp v.5.10.01 (Librado & Rozas, 2009). We estimated genetic diversity

by calculating the number of haplotypes using DNAsp v.5.10.01 (Librado & Rozas, 2009),

haplotype diversity (h), and nucleotide diversity (p) with Arlequin v.3.5 (Excoffier &

Lischer, 2010), as well as Tajima’s D test (Tajima, 1989) and Fu’s Fs test (Fu, 1997) of

selective neutrality using Arlequin v3.5. We inferred the significance of both neutrality

tests by randomization (10,000 steps).

Population structure analyses
On a smaller spatial scale, we calculated the population genetic differentiation of

48 free-ranging and stranded dolphins from the Gulf of Guayaquil using 397 bp mtDNA

CR truncated alignment. We evaluated the differentiation between the inner estuary

dolphins, constituting four communities (Posorja: n = 22, El Morro: n = 7, Puná Island:

n = 6, Jambelı́ Island: n = 2), and the outer estuary dolphins, represented by three

communities (Mar Bravo: n = 9, Playas: n = 1, Punta Carnero: n = 1). On a broad

geographic scale, population genetic differentiation was evaluated in both the inner and

outer estuary dolphin populations from the Gulf of Guayaquil in addition to global

populations. In the analyses, we incorporated 432 mtDNA CR sequences from different

geographic regions made available in the GenBank. We implemented an analysis of

molecular variance (AMOVA) to compute significance with 10,000 permutations

(Excoffier, Smouse & Quattro, 1992). We used AMOVA based on haplotype data (FST),

haplotype frequency and genetic distance (jST) via Arlequin v.3.5 (Excoffier & Lischer,

2010) to estimate population genetic differentiation. For jST, we inferred the best-fitting
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model for nucleotide evolution under the Akaike information criterion (AIC) using

jModelTest v.2.1.4 software (Darriba et al., 2012). The HKY+ I model was selected by

jModelTest; however, we used the Tamura–Nei model (Tamura & Nei, 1993), as it is the

closest model to the HKY+ I. We tested FST and jST significance levels with 10,000

permutations. We estimated pairwise genetic differentiation of FST and jST between both

populations with 10,000 permutations.

Population divergence analyses
A total of 549 published mtDNA CR sequences were included in the analyses with

50 sequences of this study to compare dolphin populations from the Gulf of Guayaquil

with global populations (accession numbers in Table S3). We excluded populations with

less than five available sequences from the test of divergence. We aligned all sequences

using CLUSTALW implemented in MEGA 6 software (Tamura et al., 2013), and each

alignment was edited and checked visually. Given the sequences were different lengths, the

analyses were based upon 397, 360, and 317 bp truncated alignment. We estimated the

average evolutionary divergence between (dXY) different geographic locations and the

number of net nucleotide substitutions per site between populations (dA) using Tamura–

Nei model via MEGA 6 software (Tamura et al., 2013). The estimator dA calculated the

differentiation between populations and subspecies (Rosel et al., 2017).

mtDNA CR phylogeographic analyses
We incorporated 374 mtDNA CR sequences from different geographic regions made

available in the GenBank database with 53 sequences of this study to investigate the

phylogeographic relationships among haplotypes located in the Gulf of Guayaquil and

other populations of T. truncatus elsewhere (accession numbers in Table S3). We aligned

all sequences using CLUSTALW implemented in MEGA 6 software (Tamura et al., 2013).

Given the sequences were different lengths, the analysis was based on 397 bp truncated

alignment. The genealogical relationships were inferred using median-joining network

implemented in Network v.4.6.0 software (Bandelt, Forster & Röhl, 1999). The consensus

sequence is detailed in Supplemental Information 1.

Phylogenetic analyses
We constructed two phylogenetic trees to infer the phylogenetic relationships of the Gulf

of Guayaquil bottlenose dolphins based on Bayesian inference using MrBayes v.3.2.2

(Ronquist et al., 2012). A single tree was constructed with 257 published mtDNA

CR haplotypes and 14 haplotypes obtained in this study. One outgroup was the

rough-toothed dolphin Steno bredanensis mtDNA CR sequence (accession number

JF339982.1). The details of mtDNA CR haplotypes and their corresponding GenBank

accession number are summarized in Table S4. We inferred the best-fitting model for

nucleotide evolution under the AIC using jModelTest v.2.1.4 software (Darriba et al.,

2012). The model of substitution used was GTR+I+G for 397 bp mtDNA CR.

The second tree included all individuals that amplified 7-mtDNA regions (n = 40).

We aligned all concatenated sequences obtained with 66 concatenated sequences from
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7-mtDNA regions available in the GenBank (65 belonging to different species of Tursiops

and one as outgroup). The 65 concatenated sequences from 7-mtDNA regions belong to

T. truncatus (n = 59), T. aduncus (n = 4), Burrunan dolphin (“T. australis”, n = 2). The

details of the mtDNA regions and their corresponding GenBank accession number are

summarized in Table S5. One outgroup was the rough-toothed dolphin, S. bredanensis

(accession number JF339982.1). We aligned all sequences using CLUSTALW

implemented in MEGA 6 software (Tamura et al., 2013). Given the mitogenome of

S. bredanensis was incomplete, the analyses were based on 5,209 bp truncated

alignment. The concatenated consensus sequence obtained was edited and checked

visually. The concatenated sequences matrix is detailed in Supplemental Information 2.

We analyzed concatenated sequences based on three partitioning schemes and applied

the substitution model onto non-coding (the two partial ribosomal RNA genes, and

eight partial tRNA genes), mtDNA CR, and protein-coding regions. We inferred the

best-fitting model for nucleotide evolution under the AIC using jModelTest v.2.1.4

software (Darriba et al., 2012). The model of substitution used was TPM1uf+I,

TPM3uf+I+G, and TVM+I+G for non-coding partitions, mtDNA CR, and protein

coding regions, respectively.

Posterior probabilities of the trees and parameters in the evolutionary model were

approximated with MCMC. Two independent runs of four chains were carried out to

10,000,000 and 20,000,000 generations with a 100,000 and 200,000 burn-in, sampling

every 5,000 generations. We evaluated the effective sample size (ESS > 200) values using

Tracer v.1.6 software (Rambaut et al., 2014) to ensure mixing and convergence of the

posterior distribution and parameters. In addition, we examined the values of potential

scale reduction factor (PSRF = 1) and the average standard deviation of split frequency

between chains (� 0.01). We visualized and edited the phylogenetic tree using FigTree

v.1.4.2 (Rambaut, 2015).

RESULTS
Of the 29 bone samples included in the study, 13 samples could not be amplified for

mtDNA CR (Table S1). Sex was determined only for 36 individuals. All bone samples

(n = 29) and four skin samples could not be amplified. The five stranded samples were

identified as four females and one male. In estuarine bottlenose dolphins, molecular sex

determination showed a sampling bias in favor of males (22) over females (9) (sex ratio

2.4:1). The details are summarized in Table S1.

Genetic diversity
Overall, we obtained three mtDNA CR fragments of 694 (n = 40), 450 (n = 13), and

350 bp (n = 3), which were truncated to 392 bp. The sequences shorter than 392 bp were

excluded from all analyses. A total of 48 samples were analyzed for the genetic diversity of

Gulf of Guayaquil dolphin populations. Overall, haplotype diversity (h) and nucleotide

diversity (p) were h = 0.7154 ± 0.0676 and p = 0.1510 ± 0.0826, respectively. mtDNA CR

genetic diversity was higher in the outer estuary population than in the inner estuary

population (Table 1). The analysis indicated 32 polymorphic sites, which revealed
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13 distinct haplotypes not previously described for 392 bp mtDNA CR (Fig. 2; Table S6).

Haplotypic diversity varied between two geographic areas and between three inner estuary

locations. The number of haplotypes in the inner estuary population was lower than the

outer estuary population. Eight haplotypes (Hap 1–Hap 6, Hap 10, and Hap 11) were

detected in the outer estuary population: one in a sample from Punta Carnero and the

others for samples from Mar Bravo. Five (Hap 7–Hap 9, Hap 12, and Hap 13) haplotypes

were revealed for the inner estuary population. One haplotype was shared among the sites

at Playas, Posorja, the east side of Puná Island, and the El Morro (Hap 7). Two haplotypes

were shared among inner estuary communities: one between Posorja, the east side of Puná

Island, and the El Morro (Hap 13), and the other with Posorja and the east side of

Puná Island (Hap 9). Two were unique haplotypes, one at Posorja (Hap 12) and one on

the east side of Puná Island (Hap 8) (Fig. 2).

Population structure
On a smaller spatial scale, the AMOVA performed with mtDNA CR showed a moderate

genetic differentiation between both outer and inner estuary populations (mtDNA CR:

percentage of variation among groups = 23.11%, FST = 0.2311, P < 0.05). However, the

analysis of genetic distances (jST) did not indicate differences between locations (CR

region: percentage of variation among groups = 0%, jST = 0, P = 1). On a broad

geographic scale, the analyses indicated a genetic structuring among populations (mtDNA

CR: percentage of variation among groups = 6.20%, FST = 0.0619, P < 0.05) and genetic

distances (percentage of variation among groups = 39.54 %, FST = 0.3954, P < 0.05).

Pairwise FST and jST comparisons confirmed significant differences among estuarine

bottlenose dolphin population and other bottlenose dolphin populations; whereas, the

outer estuary population was significantly different from the majority of the dolphin

population (Table 2).

Table 1 Genetic diversity indices based on 392 bp mtDNA CR sequence for each population of the

Gulf of Guayaquil.

Locations n H S Hd p Tajima’s D Fu’s Fs

Mar Bravo 9 7 29 0.9444 ± 0.0702 0.3400 ± 0.1936 0.3387 ns 0.5223 ns

Punta Carnero 1 1 – – – – –

Playas 1 1 – – – – –

Overall outer estuary 11 9 29 0.9636 ± 0.0510 0.0320 ± 0.1784 0.3860 ns -0.6708 ns

El Morro 7 2 1 0.2857 ± 0.1964 0.0089 ± 0.0122 0.00 ns -0.0947 ns

East side of Puná Island 6 4 3 0.8667 ± 0.1291 0.0375 ± 0.0318 -1.1319 ns -1.4544 ns

Posorja 22 4 3 0.5671 ± 0.1038 0.0240 ± 0.0207 0.6304 ns -0.4431 ns

Jambelı́ Island 2 1 – – – – –

Overall inner estuary 37 5 3 0.5571 ± 0.0864 0.0228 ± 0.0191 -0.5045 ns -1.1606 ns

Overall Gulf of Guayaquil 48 13 32 0.7154 ± 0.0676 0.1510 ± 0.0826 -1.0611 ns -0.0629 ns

Notes:
n, number of samples by population; S, polymorphic sites; H, number of haplotypes; Hd, haplotype diversity;
p, nucleotide diversity; ns, no significant.
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Population divergence analyses
The number of net nucleotide substitutions per site (dA) and the average divergence (dXY)

values showed a divergence (dA = 0.015 and dXY = 0.030) between both outer and inner

estuary populations. At the same time, the population divergence analyses revealed a

high divergence between the estuarine bottlenose dolphin population and all other

populations. The dA values varied between 0.023 and 0.047 and the dXY values varied

between 0.034 and 0.052. Additionally, the analyses of population divergence did not

indicate divergence between the outer estuary population and some bottlenose dolphin

populations, particularly with Gulf of California populations. The dA values varied

between 0.001 and 0.038 and dXY values varied between 0.022 and 0.044 (Table 3).

mtDNA CR phylogeographic and phylogenetic analyses
Of 53 of 397 bp mtDNA CR sequences, we identified 14 haplotypes (Fig. 2; Table S6). The

median-neighbor joining method showed the relationships among haplotypes from

different populations of bottlenose dolphins, revealing evidence of a genetic divergence

between estuarine bottlenose dolphin and North Pacific/Atlantic Ocean dolphin

populations. The network analysis indicated that the group of haplotypes from the free-

ranging dolphins plus the haplotypes from the stranded dolphins collected at different

sites in the Gulf of Guayaquil (Hap 2, Hap 8, Hap 9, Hap 12, and Hap 13) and one from

Figure 2 Mitochondrial control region haplotype polymorphic nucleotides and haplotype frequencies in the Gulf of Guayaquil. Polymorphic

sites and haplotype frequency identified within a 392 bp sequence. The identity of the sequences was compared to the coastal haplotype from the

Gulf of California (Hap GC, GenBank accession number KF570389.1). Numbers in the heading row indicate the base pair position of the poly-

morphic sites. Dots (.) show the identity with the Hap GC and the dash (-) represents a gap or deletion. PC, Punta Carnero-Salinas; MB, Mar

Bravo-Salinas; Pla, Playas; JI, Jambelı́ Island; PI, east part of Puná Island; PO, Posorja; MO, El Morro; GI, Galápagos Islands; SR, Santa Rosa-Peru;

NL, No location; n, number of samples by haplotype. Full-size DOI: 10.7717/peerj.4589/fig-2
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Peru (Hap 14) clustered together and diverged from the other haplotypes of different

geographic locations. The main characteristic of this group was the presence of a central

haplotype (Hap 7) mainly consisting of samples from the Gulf of Guayaquil inner estuary.

The central haplotype was connected to other haplotypes from the inner estuary, and one

from Peru. The other Gulf of Guayaquil haplotypes (Hap 1, Hap 3–6, and Hap 11) were

closely related to other dolphin populations from the northeast Pacific. The Hap 10,

comprising one sequence from the Galápagos Islands and another from Mar Bravo, was

closely related to the offshore ecotype haplotype. Additionally, the network revealed

Table 2 Pairwise FST and jST distance for global common bottlenose dolphin populations.

Strata Ecotype n H Pairwise distance AMOVA Reference

Inner estuary Outer estuary FST jST

FST jST FST jST

Pacific Ocean

GG-Inner estuary C 37 5 – – 0.2310* 0.6979* 0.0794 0.4219 This study

GG–Outer estuary U 11 9 0.2310* 0.6979* – – 0.0627 0.3808 This study

Gulf of California U 40 37 0.2211* 0.7058* 0.0188* 0.0639* 0.079 0.3883 1, 2, 3

Gulf of California C 19 13 0.2095* 0.8748* 0.0387* 0.0796* 0.058 0.4071 1, 2, 3

Gulf of California O 62 55 0.2634* 0.6621* 0.0186* 0.1160* 0.057 0.3848 1, 2, 3

Hawaiian Islands U 26 26 0.2327* 0.7355* 0.0170* 0.1699* 0.061 0.3780 4

China C 16 9 0.3341* 0.8932* 0.1134* 0.4425* 0.058 0.3989 5

Japan U 22 21 0.2406* 0.8207* 0.0195* 0.3449* 0.068 0.3886 6, 7

Atlantic Ocean

Eastern North Atlantic C 9 7 0.2976* 0.8994* 0.0457* 0.2577* 0.064 0.4013 8

Eastern North Atlantic P 11 10 0.2734* 0.8732* 0.0272 0.2295* 0.061 0.3980 8

Eastern North Atlantic C 10 10 0.2693* 0.8781* 0.0183 0.2235* 0.061 0.3985 9

Scotland C 8 3 0.4265* 0.9710* 0.2030* 0.4677* 0.041 0.4232 9, 10

Ireland C 12 12 0.2617* 0.8508* 0.0180* 0.2177* 0.060 0.3930 11

Azores O 82 37 0.2184* 0.7252* 0.0345* 0.3286* 0.058 0.3936 12

Portugal O 13 10 0.2818* 0.8555* 0.0439* 0.2489* 0.062 0.3953 12

Madeira O 25 15 0.2618* 0.8284* 0.0472* 0.3057* 0.061 0.3998 12

Western North Atlantic C 9 8 0.2858* 0.9542* 0.0321 0.5842* 0.063 0.4132 10

Western North Atlantic P 9 9 0.2739* 0.8824* 0.0186 0.2609* 0.062 0.3935 10

Bahamas C 11 11 0.2653* 0.8608* 0.0181 0.3869* 0.061 0.3897 13, 14

Mediterranean Sea

East Mediterranean C 20 15 0.2571* 0.8279* 0.0338* 0.2771* 0.060 0.3959 9, 10

West Mediterranean C 12 12 0.2617* 0.8730* 0.0180* 0.2545* 0.060 0.3968 9

Black Sea C 16 12 0.2699* 0.8775* 0.0391* 0.3885* 0.061 0.3985 9, 10

Notes:
Number of samples by population (n), number of haplotypes (H). GG, Gulf of Guayaquil; C, Coastal; O, offshore; U, unknown. Statistically significant comparisons are
marked by asterisks (P < 0.05 = *). References: (1) Segura et al. (2006) (DQ105702.1–DQ105733.1); (2) Segura-Garcı́a et al. (2018) (HE617258.1–HE617294.1, HE617296.1,
HE617297.1); (3) Perrin et al. (2011) (HQ206659.1–HQ206682.1, HQ206684.1–HQ206714.1); (4) K. Martien & K. Robertson (2008, unpublished data) (EF672700.1–
EF672725.1); (5) G. Ji et al. (2001, 2002, unpublished data) (AF355582.1–AF355587.1, AF459508.1–AF459515, AF459522.1, AF459523.1); (6) S. Kitamura & S. Abe (2013,
unpublished data) (AB610376.1); (7) Kita et al. (2013) (AB303154.1–AB303174.1); (8) M. Nykanen & A. Foote (2016, unpublished data) (KT601188.1–KT601207.1);
(9)Natoli, Peddemors &Hoelzel (2004) (AY963588.1–AY963626.1); (10)Moura et al. (2013) (KF570316.1–KF570334.1, KF570345.1–KF570352.1, KF570370.1–KF570389.1);
(11) Mirimin et al. (2011) (HQ634245.1–HQ634251.1, HQ634253.1–HQ634257.1); (12) Quérouil et al. (2007) (DQ525357.1–DQ525388.1, DQ073641.1–DQ073672.1,
DQ073674.1–DQ073718.1, DQ073720.1–DQ073729.1, GQ241419.1); (13) K. Parsons et al. (2001, unpublished data) (AF378176.1–AF378178.1); (14) Parsons et al. (1999,
2006) (AF155160.1–AF155162.1; DQ118180.1–DQ118184.1).
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Table 3 Calculations of average evolutionary divergence between different geographic locations (dXY) and the number of net nucleotide

substitution per site between populations (dA).

Strata E n H No. of bp dA dXY Reference

Inner Outer Inner Outer

Pacific Ocean

GG-Inner estuary C 37 5 397 – 0.015 – 0.030 This study

GG–Outer estuary U 11 9 397 0.015 – 0.030 – This study

Peru O 9 9 317* 0.032 0.003 0.045 0.029 1

Gulf of California U 40 37 397 0.028 0.001 0.040 0.027 2, 3, 4

Gulf of California C 19 13 397 0.030 0.002 0.037 0.022 2, 3, 4

Gulf of California O 62 55 397 0.029 0.002 0.042 0.028 2, 3, 4

Hawaiian Islands U 26 26 397 0.033 0.005 0.048 0.034 5

China C 16 9 397 0.043 0.015 0.052 0.038 6

Japan U 22 21 397 0.038 0.038 0.050 0.037 7, 8

New Zealand C 25 21 360 0.027 0.005 0.042 0.033 9, 10

Melanesia U 18 15 360 0.032 0.011 0.044 0.035 11

Australia C 5 5 360 0.031 0.008 0.043 0.033 12

Atlantic Ocean

Eastern North Atlantic C 9 7 397 0.033 0.008 0.041 0.030 13

Eastern North Atlantic P 11 10 397 0.031 0.007 0.041 0.030 13

Eastern North Atlantic C 10 10 397 0.030 0.007 0.040 0.030 14

Scotland C 8 3 397 0.040 0.016 0.041 0.031 14, 15

Ireland C 12 12 397 0.031 0.007 0.042 0.041 16

Azores O 82 37 397 0.032 0.008 0.042 0.031 17

Portugal O 13 10 397 0.032 0.007 0.042 0.031 17

Madeira O 25 15 397 0.033 0.009 0.043 0.032 17

United Kingdom U 13 11 360 0.026 0.026 0.035 0.030 18

Western North Atlantic C 9 8 397 0.047 0.025 0.051 0.044 15

Western North Atlantic O 9 9 397 0.033 0.008 0.045 0.033 15

Bahamas C 11 11 397 0.034 0.015 0.046 0.041 19, 20

Florida C 7 7 360 0.024 0.010 0.036 0.034 21

Caribbean Sea C 11 11 360 0.029 0.020 0.036 0.040 22, 23

Caribbean Sea W 12 12 360 0.023 0.007 0.036 0.033 22

Mid-Atlantic O 17 2 360 0.033 0.014 0.034 0.029 24

Mediterranean Sea

East Mediterranean C 20 15 397 0.032 0.008 0.042 0.031 14, 15

West Mediterranean C 12 12 397 0.033 0.007 0.043 0.031 14

Black Sea C 16 12 397 0.038 0.013 0.048 0.035 14, 15

Notes:
Number of samples by population (n), number of haplotypes (H), number of base pairs (No. of bp), Ecotype (E). 317 bp mtDNA CR analysis included two stranded samples
from Puná Island (*). GG, Gulf of Guayaquil; C, Coastal; O, offshore; U, unknown; W, worldwide distribution. References: (1) A. Barreto et al. (2006, unpublished data)
(AF323893.1, AF323895.1, AF323897.1–AF323903.1); (2) Segura et al. (2006) (DQ105702.1–DQ105733.1); (3) Segura-Garcı́a et al. (2018) (HE617258.1–HE617294.1,
HE617296.1, HE617297.1); (4) Perrin et al. (2011) (HQ206659.1–HQ206682.1, HQ206674.1–HQ206714.1); (5) K. Martien & K. Robertson (2008, unpublished data)
(EF672700.1–EF672725.1); (6) G. Ji et al. (2001, 2002, unpublished data) (AF355582.1–AF355587.1, AF459508.1–AF459515, AF459522.1, AF459523.1); (7) S. Kitamura & S. Abe
(2013, unpublished data) (AB610376.1); (8) Kita et al. (2013) (AB303154.1–AB303174.1); (9) Tezanos-Pinto et al. (2009) (EU276389.1–EU276412); (10)Caballero et al. (2008)
(EU1221118.1); (11) Oremus et al. (2015) (KF555574.1–KF555591.1); (12) Charlton-Robb et al. (2011) (JN571470.1–JN571474.1); (13) M. Nykanen & A. Foote (2016,
unpublished data) (KT601188.1–KT601207.1); (14) Natoli, Peddemors & Hoelzel (2004) (AY963588.1–AY963626.1); (15) Moura et al. (2013) (KF570316.1–KF570334.1,
KF570345.1–KF570352.1, KF570370.1–KF570389.1); (16) Mirimin et al. (2011) (HQ634245.1–HQ634251.1, HQ634253.1–HQ634257.1); (17) Quérouil et al. (2007)
(DQ525357.1–DQ525388.1, DQ073641.1–DQ073672.1, DQ073674.1–DQ073718.1, DQ073720.1–DQ073729.1, GQ241419.1); (18) V. Islas-Villanueva et al. (2017, unpublished
data) (KP967565.1–KP967576.1); (19) K. Parsons et al. (2001, unpublished data) (AF378176.1–AF378178.1); (14) Parsons et al. (1999, 2006) (AF155160.1–AF155162.1;
DQ118180.1–DQ118184.1). (21) Lewis et al. (2013) (KC121569.1–KC121575.1); (22) Caballero et al. (2012) (JN596281.1–JN596289.1, JN596293.1, JN596297.1–JN596304.1,
JN596312.1, JN596216.1, JN596318.1, JN596319.1); (23) Barragán-Barrera et al. (2017) (KX833116.1); (24) Castilho et al. (2015) (KC896604.1–KC896620.1).
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several mutational steps (∼10) away from the main group, indicating a divergence of

haplotypes (Fig. 3). Overall, the median-joining network method was consistent,

demonstrating a close relationship among haplotypes of the 397 bp mtDNA CR of

estuarine bottlenose dolphins, signifying phylogeographic separation. The pattern of

genetic divergence is in agreement with the Bayesian inference of 397 bp mtDNA CR.

A phylogenetic Bayesian inference tree built using mtDNACR sequences showed a genetic

divergence between the estuarine bottlenose dolphin and the other regions analyzed,

seeing as all estuarine bottlenose dolphin haplotypes formed a single clade with a

probability value of 1 (Fig. 4).

Figure 3 Median-joining network of common bottlenose dolphin mtDNA CR. Circle size is related to the number of individuals that share the

same haplotype. The circles are colored according to the geographic region shown in the legend. The white circle corresponds to the missing or

intermediate haplotype. The length of the branch is proportional to the number of mutational steps among haplotypes. Hatch marks show the total

number of mutations between haplotypes. GG, Gulf of Guayaquil; NL, No location; NA, North Atlantic; MS, Mediterranean Sea; BS, Black Sea.

Full-size DOI: 10.7717/peerj.4589/fig-3
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Figure 4 Bayesian phylogenetic tree showing the genetic divergence between sequences of the

mtDNA CR of the estuarine bottlenose dolphin and other analyzed regions. Bayesian phylogenetic

tree inferred from the analysis of 397 bp mtDNA CR sequences. Numbers above the main branches

represent posterior probability values. The names of the sequences are colored according to the geo-

graphic region shown in the legend. The names of the sequences obtained from GenBank are labeled

with their location and accession number. Clade 1 is conforming principally by sequences from different

geographic areas obtained from GenBank. Clade 2 is composed exclusively of haplotipes obtained in this

study. Outgroup includes the harbor porpoise (Steno bredanensis). Hap, haplotype; Ttr, Tursiops trun-

catus; GG, Gulf of Guayaquil; GI, Galápagos Islands; SR, Santa Rosa-Peru; GC, Gulf of California; HI,

Hawaiian Islands; NZ, New Zealand; ENAC, Eastern North Atlantic Coastal; ENAP, Eastern North

Atlantic Pelagic; WNAC, Western North Atlantic Coastal; WNAP, Western North Atlantic Pelagic; BSEA/

BS, Black Sea; WEMED, Western Mediterranean; EMED, Eastern Mediterranean; SCO, Scotland.

Full-size DOI: 10.7717/peerj.4589/fig-4
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Figure 5 Bayesian phylogenetic tree showing the genetic divergence between the estuarine

bottlenose dolphin and other populations elsewhere. Bayesian phylogenetic tree inferred from the

analysis of a 5,209 bp concatenated sequence of 7-mtDNA regions. Numbers above the main branches

represent posterior probability values. The names of the sequences obtained in the present study are

colored according to the geographic region shown in the legend. The names of the sequences obtained

from GenBank are labeled with their location and accession number. Clade 1 is conforming principally

by sequences from different geographic areas obtained from GenBank. Clade 2 is composed exclusively

of haplotypes obtained in this study. Outgroup includes rough-toothed dolphin (Steno bredanensis).

Hap, haplotype; Ttr, Tursiops truncatus; GG, Gulf of Guayaquil; GI, Galápagos Islands; SR, Santa Rosa-

Peru; GC, Gulf of California; WNAC, Western North Atlantic Coastal; WNAP, Western North Atlantic

Pelagic; BSEA, Black Sea; EMED, Eastern Mediterranean; SCO, Scotland; ENAC, Eastern North

Atlantic Coastal; ENAP, Eastern North Atlantic Pelagic. Full-size DOI: 10.7717/peerj.4589/fig-5
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7-mtDNA regions phylogenetic analyses
Overall, we obtained a 5,237 bp concatenated consensus sequence of 7-mtDNA regions:

(i) 12S rRNA-16S rRNA of 1,050 bp (n = 40), (ii) 16S rRNA of 562 bp (n = 47), (iii) ND1-

ND2 of 897 bp (n= 40), (iv) COI of 837 bp (n = 40), (v) COII of 738 bp (n =40), (vi) Cyt b

of 436 bp (n = 47), and (vii) CR of 715 bp (n = 45). In Table S7 is detailed haplotypes per

region, per sample, and the accession number of the sequence that has a high percent

of similarity. The samples that did not amplify for all 7-mtDNA regions were excluded

from the phylogenetic analyses. The analyses were based on 5,209 bp truncated alignment.

Of 40 concatenated sequences, we identified 28 haplotypes: (i) 26 unique mtDNA

concatenated haplotypes in the Gulf of Guayaquil (20 from the Gulf of Guayaquil inner

estuary, and six from the Gulf of Guayaquil outer estuary), (ii) one from the Galápagos

Islands, and (iii) one from Santa Rosa, Peru.

The 7-mtDNA regions from the 94 haplotypes presented 550 variable sites, of which

345 were parsimony informative sites and 18 included gaps. The details of sequence

variation and tree characteristics are shown in Table S8. The Bayesian inference produced

a well-defined and strongly supported tree with posterior probability values > 0.9 for

most nodes (Fig. 5). All T. truncatus sequences formed a single clade with a probability

value of 1. The T. truncatus is divided into two well-supported clades 1 and 2. Clade 1 is

composed principally of coastal and offshore ecotypes from different geographic areas,

including five haplotypes from the stranded dolphins. Four haplotypes from stranded

dolphins (Hap 2: Ttr_2 from Punta Carnero, Hap 3: Ttr_4, Hap 4: Ttr_5, and Hap 6:

Ttr_7 from a location in Mar Bravo) were clustered with the single coastal haplotype from

the Gulf of California (accession number KF570389.1), whereas two haplotypes (from the

Galápagos Islands, Hap 27: Ttr_1, and the Mar Bravo location, Hap 5: Ttr_6) were

clustered with the sequences of the pelagic population from Western Atlantic Ocean

as well as with sequences of the coastal populations from the Black Sea, and the

Mediterranean Sea (Fig. 5). Clade 2 is composed exclusively of haplotypes obtained in

the present study: 20 haplotypes from the free-ranging dolphins of the inner estuary

(Hap 7–Hap 26) and two haplotypes from stranded animals (from Peru, Hap 28: Ttr_69,

and Hap 2: Ttr_3 and Ttr_8 from a location in Mar Bravo), grouping them as a

monophyletic group. Overall, the phylogenetic analyses showed that the dolphin

population of the Gulf of Guayaquil inner estuary has a different evolutionary pattern

compared with different T. truncatus populations.

DISCUSSION
To our knowledge, this is the first study that has assessed the evolutionary link between the

estuarine bottlenose dolphin in the Gulf of Guayaquil and T. truncatus populations

elsewhere using analysis of several mtDNA regions. Our results showed a genetic

differentiation and divergence between estuarine bottlenose dolphins and other

T. truncatus populations from other parts of the species’ range. mtDNA CR diversity was

lower in estuarine bottlenose dolphins than in the outer bottlenose dolphin population.

No shared mtDNA CR haplotypes were found between estuarine bottlenose dolphins and

other dolphin populations, suggesting a long-term historical separation. These results
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were consistent with phylogenetic analysis from different mtDNA regions, revealing that

the estuarine bottlenose dolphin population has had a distinct evolutionary history.

The findings from the inclusion of a single sample from Peru show it is closely related to

the estuarine bottlenose dolphin, implying that both south east Pacific coastal populations

are divergent from the entire analyzed T. truncatus population. However, these results

should be accepted with caution because we used a small sample size and only one

molecular marker. It is important to include both nuclear and mitochondrial markers

to assure reliable results in addition to a sufficient number of samples that truly represent

the population size of the study area. We acknowledge the small sample sizes and the

matrilineal marker used for the current study may not have been sufficient to conduct

reliable genetic analyses for the Gulf of Guayaquil bottlenose dolphins. However, it is

important to note the coastal bottlenose dolphins generally occur in small populations

and an estimate of the actual dolphin population size in the Gulf of Guayaquil is not

available. Nevertheless, further work should be done to increase sample sizes as well as the

number of molecular markers to corroborate our conclusions.

Low genetic diversity of the estuarine bottlenose dolphin
The low level of mtDNA CR genetic diversity of both outer and inner estuary dolphin

populations are similar to those observed in coastal dolphins (Natoli, Peddemors &

Hoelzel, 2004; Quérouil et al., 2007; Tezanos-Pinto et al., 2009; Caballero et al., 2012) and

estuarine resident populations (Rosel, Hansen & Hohn, 2009). These results are in

agreement with those described from 29 samples from northeastern Scotland and

other regions from the UK and Ireland, where the genetic diversity showed similar values

(h = 0.697) (Parsons et al., 2002). The genetic diversity reported for the outer population is

comparable to those documented in offshore populations from the northeast Atlantic,

Brazil, and the Gulf of California (Quérouil et al., 2007; Louis et al., 2014a; Fruet et al.,

2014; Lowther-Thieleking et al., 2015). The low genetic diversity detected in the estuarine

bottlenose dolphin population could be due to the small number of resident dolphins

(45 and 70) that inhabit a small, restricted area (Jiménez & Alava, 2014; Félix et al., 2017a).

Similar levels of genetic diversity were previously detected in “inshore” Caribbean

populations (h = 0.578, p = 0.9) (Caballero et al., 2012). The low level of genetic diversity

detected in the estuarine resident populations may result from a single or compounded

situations: (i) small population size (Richards et al., 2013); (ii) a founder event (Oremus

et al., 2015); (iii) younger populations moving from offshore to coastal locations (Parsons

et al., 2002); or (iv) a complete absence of maternal gene flow from neighboring

populations (Richards et al., 2013). Low nucleotide diversity values found in the present

study are similar to those found in populations that have experienced a population

bottleneck (Luikart & Cornuet, 1998). For instance, a strong reduction of genetic diversity

has been previously reported in other cetaceans, such as Orcinus orca (Moura et al., 2014)

and T. aduncus (Oremus et al., 2015; Amaral et al., 2017). However, Tajima’s and Fu’s Fs

selective neutrality tests do not support the population bottleneck hypothesis, but these

tests can be affected by a sample size (n = 31) (see Subramanian, 2016).
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Population structure in Gulf of Guayaquil dolphins
A moderate but significant genetic structure was observed in the outer and inner estuary

populations (FST = 0.231, P < 0.05). The pattern of genetic differentiation among bottlenose

dolphins inhabiting adjacent habitat types has been seen previously in populations of

T. truncatus (Tezanos-Pinto et al., 2009; Fruet et al., 2014, 2017). In particular, T. truncatus

coastal dolphin populations present genetic differentiation at fine geographic scale in

different parts of the world (Rosel, Hansen & Hohn, 2009; Tezanos-Pinto et al., 2009;Mirimin

et al., 2011; Caballero et al., 2012). Similarly, the same levels of population structure have also

been reported for two communities of coastal T. truncatus in Ireland (Mirimin et al., 2011).

The population differentiation may be explained by the estuarine dolphins local site fidelity

(Jiménez & Alava, 2014; Félix et al., 2017a), as well as the geographic differences between the

outer and inner estuaries (see Stevenson, 1981; Twilley et al., 2001). These results suggest that

a historical genetic separation between both populations together with ecological factors

may promote divergence, resulting in fine-scale population structure (Wiszniewski et al.,

2014). Although common bottlenose dolphins are capable of traveling long distances, the

estuarine bottlenose dolphin may remain confined to small geographic areas.

On a broad scale, our results indicated that the estuarine bottlenose dolphins are

genetically differentiated from common bottlenose dolphin populations elsewhere.

Indeed, the dA values above 0.02 showed a high genetic divergence, which could be

interpreted as a subspecies. The phylogenetic and phylogeographic analyses support the

genetic divergence that could be explained by a possible absence of historical interactions

between populations. The presence of unique haplotypes and the mutational steps

of the estuarine bottlenose dolphin suggests a long-term historical separation of the

populations. Differentiation of estuarine bottlenose dolphins could have begun due to

ocean re-structuring and climate variations (Steeman et al., 2009) after the opening of the

Gulf of Guayaquil and the formation of the Morro Channel in the last interglacial period

(Gutscher et al., 1999). The new geography of the inner estuary could provide a refuge

to protect the dolphins from predators as well as serve as a nursery area. The special

characteristics of the estuary, which include a level of ecological diversity with a network

of islands and channels, sand and mud banks, and sandy beaches, as well as a high tidal

range of 2–3 m, among other features, could have driven genetic differentiation and

adaptive divergences, as has occurred with bottlenose dolphins (see Natoli, Peddemors &

Hoelzel, 2004; Rosel, Hansen & Hohn, 2009; Fruet et al., 2014). In this new environment,

the estuarine bottlenose dolphin was capable of specializing in different specific prey types

and adopting specific foraging strategies limited to its home range in the Gulf of

Guayaquil inner estuary (Jiménez & Alava, 2014; Félix et al., 2017a). Finally, a rapid

divergence of the estuarine population may be the result of the low carrying capacity of

estuaries as proposed for coastal populations (Gaspari et al., 2015).

It has been suggested that limited gene exchange supports genetic variation and

isolation that may lead to speciation and endemism (Natoli, Peddemors & Hoelzel, 2004;

Natoli et al., 2005; Möller et al., 2007; Amaral et al., 2017). The possible lack of historical

gene exchange between the estuarine bottlenose dolphin and other populations of
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T. truncatus could have occurred after a possible founder effect of coastal dolphins in

embayment areas (Sellas, Wells & Rosel, 2005; Möller et al., 2007; Tezanos-Pinto et al.,

2009). A similar pattern was proposed for the Mediterranean Sea subpopulations of

T. truncatus (Moura et al., 2013). Founder events may play an important role in adaptation

to new environments (Wiszniewski et al., 2014) with local specialized resources

(Hoelzel, Potter & Best, 1998). It has been suggested that habitat specialization in

T. truncatus occurred independently in different areas over a wide range of its distribution

(Caballero et al., 2012) and was driven by environmental factors (Natoli et al., 2005),

which explains diversification (Moura et al., 2013). Prey availability could be one of

these environmental factors. The mangrove forests in the Gulf of Guayaquil and the

oceanographic characteristics of the estuary (temperature and salinity) contribute to the

high diversity of prey species (Stevenson, 1981; Twilley et al., 2001). This prey availability

and distribution constitute a driving factor for shaping the pattern of dolphin distribution

(Degrati et al., 2013). dA values above 0.02 permit distinguishing between subspecies

(Rosel et al., 2017); however, additional molecular markers need to be analyzed before a

formal distinction at the subspecies level can be considered (Taylor et al., 2017).

Genetic divergence of the Gulf of Guayaquil estuarine bottlenose
dolphin population
The 7-mtDNA regions data show a clear phylogenetic differentiation between estuarine

bottlenose dolphins and T. truncatus populations from other parts of the species’ range.

It is clear that the estuarine bottlenose dolphin followed an independent evolutionary

trajectory, suggesting that this population may be a distinct lineage. The systematics of

T. truncatus is not well-defined at the intraspecific level since bottlenose dolphins are part

of a wider taxonomic problem that involves the entire Delphininae subfamily, particularly

the STD complex (i.e., Stenella, Tursiops, and Delphinus). This is because of the high

intraspecific diversity and low interspecific divergence observed in this subfamily

(Reeves et al., 2004). The taxonomic problem of this subfamily is complicated further by

the effects of hybridism and introgression (Amaral et al., 2012). For example, studies

have suggested that coastal and offshore ecotypes could constitute different lineages of

T. truncatus (Natoli, Peddemors & Hoelzel, 2004; Caballero et al., 2012;Moura et al., 2013).

According to our results, the estuarine bottlenose dolphin showed a different evolutionary

pattern compared to populations elsewhere, including four stranded samples from the

Gulf of Guayaquil outer estuary, which were more related to dolphins from the Gulf of

California. Furthermore, the estuarine bottlenose dolphins differ genetically from the

offshore ecotype, because the Galápagos Islands haplotype was most closely related to

North Atlantic offshore dolphin populations (KF570386.1). The Galápagos Islands

dolphin populations were formerly described as an offshore ecotype based on

morphological data (Palacios, Salazar & Day, 2004). The estuarine bottlenose dolphin

population could be evolutionarily linked to the coastal bottlenose dolphins of the

western coast of South America, in particular to Peruvian populations, since the single

Peruvian haplotype was included in this clade. Differences between Peruvian and

Ecuadorian coastal populations have been reported based on morphological and prey
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composition data (Van Waerebeek et al., 1990; Félix, 1994; Santillán, Félix & Haase, 2008;

Félix et al., 2017c), suggesting different populations. Indeed, it has been suggested that the

coastal Peruvian population is different from the coastal Chilean populations, the latter

being more related to the offshore Peruvian and Chilean population (Sanino et al., 2005).

This evolutionary pattern could be attributed to incomplete lineage sorting or

hybridization events as proposed previously to explain the divergence between the species

of the Family Delphinidae (Amaral et al., 2012). The relationships within this genus can be

linked to the rapid radiation of the species of the Family Delphinidae (Wang, Riehl &

Dungan, 2014) during the Pleistocene epoch (Moura et al., 2013). Particularly, the

estuarine bottlenose dolphin population could have been confined to small areas within

the inner estuary during glacial stages, as suggested by Louis et al. (2014b) for coastal

populations in the northeastern Atlantic. During the interglacial stages, this new coastal

population became adapted to the new habitat with specialized foraging and territorial

behavior (Ebenhard, 1991; Hanski & Gilpin, 1991; Louis et al., 2014b), causing a possible

historical isolation of the estuarine bottlenose dolphin from other populations of

T. truncatus. This population may constitute a distinct population structured in

semi-closed resident communities (Hanski & Gilpin, 1991) with an evident genetic

divergence as a consequence of an early expansion.

Conservation implications
This study provides baseline evidence of the presence of at least two populations with high

mtDNA divergence that should be taken into account to improve the management and

conservation of the dolphin population in the area. Common bottlenose dolphin

populations that inhabit coastal environments are exposed to distinct anthropogenic

activities that negatively affect the viability of dolphin populations (Arcangeli & Crosti,

2009; Reif et al., 2009; Daura-Jorge & Simões-Lopes, 2011). In particular, the population’s

dependence on the estuarine habitat makes it very susceptible to local anthropogenic

disturbances, affecting its ecological and evolutionary processes. In the Gulf of Guayaquil

inner estuary, intense fishing, vessel traffic, tourism, dredging, water pollution, and

habitat destruction have been identified as risks for the resident dolphin population (Félix,

1997; Van Waerebeek et al., 2007; Castro et al., 2012; Jiménez & Alava, 2014; Van Bressem

et al., 2015; Félix et al., 2017a, 2017b) that may have both short- and long-term negative

effects. Therefore, how the impact of human activities differs across species’ ranges should

be considered in population management actions.

One main focus of conservation is the maintenance of divergent populations

(Allendorf, Luikart & Aitke, 2013). The estuarine bottlenose dolphin population inhabits a

unique environment that promotes the formation of different ecological niches, leading to

the population’s local adaptation. Its adjustment to conditions in the Gulf of Guayaquil’s

ecosystem has generated not only a genetic divergence but also a distinction in

morphological (Santillán, Félix & Haase, 2008; Félix et al., 2017c) and prey composition

(Félix, 1994; Van Waerebeek et al., 1990), suggesting that the estuarine population should

be managed as a distinct reproductive unit. In addition to the population size showing

patterns of reduction (Jiménez & Alava, 2014; Félix et al., 2017a), other aspects of major
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concern are low genetic diversity, its restricted geographic home, and its site fidelity, which

can lead to an increased risk of threat or even extinction. These factors make this

population more vulnerable to environmental, demographic, and genetic stochasticity.

Therefore, management and conservation strategies need to be developed to protect this

population before current activities cause irreversible damage.

The conservation status for the T. truncatus population from Gulf of Guayaquil

should be re-evaluated taking into consideration its particular genetic distinctiveness.

It is justifiable to manage the estuarine bottlenose dolphin as a discrete lineage in

order to prioritize conservation efforts, and it should be managed separately from

other populations of T. truncatus elsewhere. Our findings associated with the ecological

adaptation in this unique environment support the hypothesis that this population

should be considered a MU in order to guide short-term management strategies and

safeguard its genetic diversity. Therefore, it is important to take into consideration the

population’s geographic distribution and the variety of threats that affect each group on

different levels throughout their distribution range. Although the sample size is small, our

findings provide a molecular baseline for management as a separate unit; actions should

not be delayed given that the estuarine bottlenose dolphin inhabits a small area and is

vulnerable to increasing coastal stressors.

CONCLUSION
The genetic differentiation between the estuarine bottlenose dolphin and other T. truncatus

populations deserves further attention. The well-defined and strongly-supported cluster

in the phylogenetic tree indicates the Gulf of Guayaquil estuarine bottlenose dolphin

followed an independent evolutionary trajectory, a conclusion we made based on mtDNA

and which carries with it important implications for conservation management.

According to the dA values above 0.02, the estuarine bottlenose dolphin may be a

subspecies; however, additional nuclear and morphological markers need to be analyzed

to considerer the Gulf of the Guayaquil inner estuary population as different subspecies.

In particular, further investigations are needed to clarify the relationships of different

coastal and offshore bottlenose dolphin populations from the southeast Pacific Ocean,

including a combination of environmental, genetic, ecological, and morphometric data.

The estuarine dolphin population is facing specific anthropogenic threats; therefore, it is

justifiable to manage this population as a separate MU. Faced with an uncertain future,

the estuarine bottlenose dolphin population requires that strategies be developed to

minimize the impact of human activities if its conservation is to be made a priority.

Developing special management strategies is crucial at this time because the dolphin

population presents a reduced abundance and has shown a decline in the past years

(Jiménez & Alava, 2014; Félix et al., 2017a). It is important that conservation strategies

include: monitoring the number of dolphins in the area, determining their current

geographic distribution and anthropogenic threats, and establishing their relationships to

other Ecuadorian coastal populations. In addition, improving conservation of the

mangrove ecosystem, which constitutes a refuge not only for the dolphins but also for

other species, is key for developing any future strategy.
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