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Background. Rohingya refugee camp in Cox’s Bazar, Bangladesh experienced a large-scale

diphtheria epidemic in 2017. The background information of previously immune fraction

among refugees cannot be explicitly estimated, and thus, we conducted an uncertainty

analysis of the basic reproduction number, R0. Methods. A renewal process model was

devised to estimate the R0 and ascertainment rate of cases, and loss of susceptible

individuals was modeled as the depletion due to initially immune fraction and also to

natural infections during the epidemic. To account for the uncertainty of initially immune

fraction, we employed a Latin Hypercube sampling (LHS) method. As part of sensitivity

analysis, partial rank correlation coefficient (PRCC) was computed between every single

pair of parameters. Results. R0 ranged from 3.6 to 12.9 with the median estimate at 5.8.

Residuals of R0 showed a negative correlation with the residuals of the ascertainment rate

after improvement of the case definition (Spearman’s rank correlation = -0.50).

Discussion. Estimated R0 was consistent with published estimate from endemic data,

indicating that the vaccination coverage of 83% has to be satisfied to prevent the

epidemic by means of mass vaccination. LHS appeared to be particularly useful in the

setting of refugee camp in which the background health status is hardly quantified.
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Abstract  19 

Background 20 

Rohingya refugee camp in Cox’s Bazar, Bangladesh experienced a large-scale 21 

diphtheria epidemic in 2017. The background information of previously immune 22 

fraction among refugees cannot be explicitly estimated, and thus, we conducted an 23 

uncertainty analysis of the basic reproduction number, R0.  24 

Methods 25 

A renewal process model was devised to estimate the R0 and ascertainment rate of 26 

cases, and loss of susceptible individuals was modeled as the depletion due to initially 27 

immune fraction and also to natural infections during the epidemic. To account for the 28 

uncertainty of initially immune fraction, we employed a Latin Hypercube sampling 29 

(LHS) method. As part of sensitivity analysis, partial rank correlation coefficient 30 

(PRCC) was computed between every single pair of parameters. 31 

Results 32 

R0 ranged from 3.6 to 12.9 with the median estimate at 5.8. Residuals of R0 showed a 33 

negative correlation with the residuals of the ascertainment rate after improvement of 34 

the case definition (Spearman’s rank correlation = -0.50).  35 

Discussion 36 

Estimated R0 was consistent with published estimate from endemic data, indicating 37 

that the vaccination coverage of 83% has to be satisfied to prevent the epidemic by 38 

means of mass vaccination. LHS appeared to be particularly useful in the setting of 39 

refugee camp in which the background health status is hardly quantified. 40 

 41 
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Introduction  42 

Diphtheria, a bacterial disease caused by Corynebacterium diphtheriae, is one of 43 

vaccine preventable diseases. Symptomatic patients initially complain sore throat and 44 

fever, and if exacerbated, the airway is blocked leading to a barking cough or the so-45 

called “croup”, and a grey or white patch is sometimes developed in the throat or any 46 

other part of the respiratory tract. Due to widespread use of Diphtheria-Tetanus-47 

Pertussis (DTP) vaccine for the long time across the world, the incidence has steadily 48 

declined over time, and thus, diphtheria has been perceived as almost a disease of pre-49 

vaccination era. Nevertheless, sporadic cases and even epidemics of the disease have 50 

been yet reported especially in politically unstable areas, and many cases have been 51 

considered as arising from susceptible pocket of the vulnerable population (Rusmil et 52 

al., 2015; Hosseinpoor et al., 2016; Sangal et al., 2017).  53 

The year 2017 was undoubtedly an epidemic year of diphtheria involving 54 

outbreaks in multiple refugee camps including those in Yemen and Bangladesh 55 

(World Health Organization (WHO), 2017a). Of these, a Rohingya refugee camp in 56 

Bangladesh, which is temporarily located in Cox’s Bazar, experienced a large-scale 57 

diphtheria epidemic. As of 26 December 2017, the cumulative number of 2,526 cases 58 

including 27 deaths have been reported (WHO, 2017a). To cut continued chains of 59 

transmission, emergency vaccination has been conducted among children since 12 60 

December 2017, achieving the overall coverage greater than 90% by the end of 2017. 61 

Due to vaccination effort and other countermeasures including contact tracing and 62 

hospital admission of cases, the epidemic has been considered to be gradually brought 63 

under control and the incidence started to decline in the end of December 2017 (WHO, 64 

2017a).  65 
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Considering that diphtheria has become a rare disease in industrialized 66 

countries, epidemiological information on model parameters that govern the 67 

transmission dynamics has become very limited, and thus, it is valuable to assess how 68 

transmissible diphtheria would be through the analysis of the recent outbreak data. 69 

The basic reproduction number, R0, is interpreted as the average number of secondary 70 

cases that are produced by a single primary case in a fully susceptible population, 71 

acting as the critical measure of the transmissibility. To date, an explicit 72 

epidemiological estimate of R0 for diphtheria has been reported only by Anderson and 73 

May (1982): using a static modeling approach to age-dependent incidence data with 74 

an assumption of the endemic equilibrium, R0 was estimated as 6.6 in Pennsylvania, 75 

1910s and 6.4 in Virginia and New York from 1934-47. Subsequently, a few 76 

additional modeling studies of diphtheria took place (Kolibo, 2001; Sornbundit, 2017; 77 

Torrea, 2017), but none of them offered an empirical estimate of R0. 78 

Here we analyze the epidemiological dataset of diphtheria in Rohingya 79 

refugee camp, 2017, aiming to estimate R0 in this particular epidemic setting. Given 80 

that the epidemic occurred among refugees, we explicitly account for uncertainties 81 

associated with unknown background information including the fraction of previously 82 

immune individuals and ascertainment rate of cases. 83 

Materials & Methods 84 

Epidemiological data 85 

The latest epidemic curve was extracted from the report of the World Health 86 

Organization (WHO) Regional Office for South East Asia (SEARO) (WHO, 2017a). 87 

Figure 1 shows the latest available epidemic curve. As of 26 December 2017, a total 88 

of 2,526 cases have been diagnosed. Cases consist of (i) confirmed cases: cases 89 
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reported as positive for C. diphtheriae by multiplex assay, (ii) probable cases: cases 90 

with upper respiratory tract illness with laryngitis or nasopharyngitis or tonsillitis 91 

AND sore throat or difficulty swallowing and an adherent membrane 92 

(pseudomembrane) OR gross cervical lymphadenopathy, and (iii) suspected cases: 93 

any case with a clinical suspicion of diphtheria including cases that are unclassified 94 

due to missing values (WHO, 2017b). Such case definition had not been fully 95 

formulated by 11 December 2017, but the definition was improved on and after 12 96 

December (WHO, 2017c). For this reason, cases reported by 11 December are 97 

considered to have been perhaps over-ascertained compared with cases that were 98 

reported later under improved case definition. Mass child vaccination started on 12 99 

December and the vaccination coverage greater than 90% was achieved by 30 100 

December. Assuming that vaccine-induced immunity requires at least 7-14 days to 101 

become effective, it is likely that the following analysis of the epidemiological dataset 102 

by 22 December was not considerably influenced by emergency vaccination. 103 

Modeling methods 104 

Let it be the number of new cases on day t. gτ represents the distribution of the serial 105 

interval. We assume that secondary transmission does not take place before illness 106 

onset. According to a classical study by Stocks (1930) in the United Kingdom (UK), 107 

the time interval from first to second diphtheria cases in the household revealed a 108 

bimodal shape. Following Klinkenberg and Nishiura (2011), the first peak 109 

corresponds to an independent infection in the community and the second peak 110 

reflects within-household transmission. As the mode of second peak was observed on 111 

day 5, we assumed that the mean serial interval was 5 days, and we imposed an 112 

assumption that the coefficient of variation (CV) of the serial interval distribution was 113 
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50% (Nishiura, personal communications) and later varied it from 25% to 75% as part 114 

of the sensitivity analysis.  115 

The renewal process to describe the time-dependent incidence it on day t is 116 
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where st represents the fraction of susceptible individuals on day t. It should be noted 118 

that the incidence it includes both symptomatic and asymptomatic cases. Let ct be the 119 

reported number of cases on calendar day t. Supposing that only the fraction αt among 120 

the total number of infections are diagnosed and reported, ct satisfies 121 
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where αt is modeled as a function of t. Because the case definition was improved from 123 

12 December 2017 onward, the ascertainment rate likely varied around that time. 124 

Namely, we set αt =a1 for time by 11 December and a2 on 12 December and later.  125 

We model the fraction susceptible st on day t in the following way. Let v 126 

represent the previously immunized fraction so that only fraction (1-v) of the 127 

population is susceptible at the beginning of the epidemic. In addition to the 128 

previously immune fraction, st decreases when natural infection takes place. Suppose 129 

that the total population size was N, st is written as 130 
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We assume that N is equal to the population size of epidemic site in Rohingya refugee 132 

camp as 579,384 persons (Banerji & Ahmed, 2017). Accordingly, the renewal 133 

equation is written as 134 
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We assume that ct follows a Poisson distribution. The likelihood to estimate θ 136 

consisting of the parameters R0, v and αt is derived as 137 
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where T is the latest time of observation (i.e., 22 December in our case study) and 139 

cT=(c1,c2,…,cT). The dataset of last 5 days (i.e. from 23-27 December) was discarded 140 

as the number of cases may be biased by the reporting delay. 141 

Uncertainty and sensitivity analyses 142 

While we specified unknown parameters as R0, v and αt, it is expected that R0 is 143 

correlated with initially immune fraction v and also αt. Thus, it is vital to quantify R0 144 

while accounting for the uncertainty of other model parameters. Uncertainty in 145 

parameter values can be addressed by randomly sampling the uncertain parameter 146 

value from probability distributions (Gilbert et al., 2014). Here we use the Latin 147 

Hypercube sampling (LHS) method (Sanchez & Blower, 1997) in which a symmetric 148 

triangular distribution of v was assumed to be in the range from 0.0 to 0.7; the health 149 

survey of Rohingya population indicated that overall 30.8% of children had received 150 

no vaccinations (Guzek et al, 2017) and we expect that the actual coverage is nearby 151 

the mid-point of the range. As part of sensitivity analyses, we computed partial rank 152 

correlation coefficient (PRCC) between every single pair of parameters. To do so, we 153 

(i) rank transformed LHS of input parameters and output parameter samples, (ii) 154 

computed two linear regression models using the samples, (iii) computed correlation 155 

coefficient between the two residuals, and (iv) subsequently calculated PRCC. 156 
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Ethical considerations 157 

The present study analyzed data that is publicly available. As such, the datasets used 158 

in our study were de-identified and fully anonymized in advance, and the analysis of 159 

publicly available data without identity information does not require ethical approval.  160 

Results  161 

Figure 2 shows univariate distributions of estimated parameters R0 and αt based on 162 

Latin hypercube sampling (n=1000). a1 reflects ascertainment by 11 December 2017, 163 

while a2 shows the same on and after 12 December. R0 took the minimum and 164 

maximum estimates at 3.6 and 12.9, respectively, with the median estimate at 5.8. The 165 

distribution was skewed to the right with the mode at 5.6. Excluding lower and upper 166 

tails, 950 samples (95%) of R0 were in the range of 3.9 to 10.5. Distributions of a1 and 167 

a2 were also right skewed. a1 ranged from 0.02 to 5.00 with the median 0.91, while α2 168 

ranged from 0.005 to 0.014 with the median 0.007.  Lower and upper 95% tolerance 169 

intervals of a1 and a2 were (0.22, 1.18) and (0.005, 0.012), respectively. 170 

Figure 3 shows the distributions of two estimated parameters in two 171 

dimensional spaces and also the comparison between observed and predicted 172 

epidemic curve. As can be expected from equation (4), R0 and v were positively 173 

correlated given an epidemic curve. Namely, if v was greater, R0 should have been 174 

greater so that an identical epidemic curve can be observed. The relationship between 175 

R0 and a1 was an interesting hyperbola, because α1 contained the value of 1 within its 176 

range. The value of a1 at around 1.0 was considered as plausible, because the time 177 

period corresponded to the initial growth phase of the epidemic before introduction of 178 

improved case definition, and the value greater than 1.0 could reflect the efflux of 179 

reported cases that can partly be attributed to over-ascertainment and inclusion of 180 
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non-diphtheria cases in the dataset. On the contrary, the relationship between R0 and 181 

a2 was a positive linear pattern. While the ascertainment might have been lowered due 182 

to more strict case definition, the small estimate of a2 can also indicate that substantial 183 

fraction of undiagnosed individuals existed and the susceptible fraction was then 184 

gradually depleted in the population. While the model is kept simple with four 185 

unknown parameters, the predicted epidemic curve overall captured the observed 186 

pattern. 187 

Estimated PRCC is shown in Figure 4. Again, residuals of R0 and those of v 188 

are positively correlated (Spearman’s rank correlation coefficient=0.78). It is 189 

interesting that the residuals of R0 and those of a1 were both evenly distributed around 190 

the value of zero, and thus, R0 was not sensitive to the value of a1 (Spearman’s rank 191 

correlation coefficient <0.005).  On the other hand, residuals of R0 showed negative 192 

correlation with the residuals of a2 (Spearman’s rank correlation coefficient = -0.50). 193 

This dependency is anticipated, because R0 would influence how many susceptibles to 194 

be depleted to curb the epidemic curve and that is regulated by the value of a2. 195 

Residuals of a1 and those of a2 were not strongly correlated (Spearman’s rank 196 

correlation coefficient =0.02). 197 

We also varied the CV of the serial interval distribution from 25% to 75%. 198 

When the CV was 25%, the median and mode of R0 from Latin hypercube sampling 199 

were 6.6 and 7.9, respectively. When the CV was 75%, the median and mode of R0 200 

were estimated to be 4.9 and 4.2, respectively. Namely, the estimate was sensitive to 201 

increased variance of the serial interval distribution. 202 
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Discussion  203 

The present study estimated R0 of diphtheria in the Rohingya refugee camp, explicitly 204 

accounting for case ascertainment and previously immune fraction. Since previously 205 

immune fraction v of the refugee population was not precisely known, uncertainty 206 

analysis of R0 was conducted with an input parameter assumption for v employing the 207 

Latin Hypercube sampling method. R0 ranged from 3.6 to 12.9 with the median 208 

estimate at 5.8. To our knowledge, the present study is the first to statistically estimate 209 

R0 of diphtheria from an epidemic data. 210 

Estimated median R0 was broadly consistent with the value ranging from 6 to 211 

7 as indicated by Anderson and May (1982) based on a static model for endemic data 212 

that uses the age-dependent incidence in the UK. We have shown that the frequently 213 

quoted estimate agrees well with dynamically estimated R0 from the refugee camp in 214 

the present day. To control diphtheria by means of mass vaccination, the coverage 215 

greater than 83% must be satisfied. Since our study focused on uncertainty and 216 

sensitivity analyses, the exact estimate of R0 cannot be pointed out. However, the 217 

possible distribution of R0 given uncertain information of the distribution of v was 218 

obtained. While the mode of distribution for R0 was seen at around 5.6, the validity of 219 

representative value depends on the validity of our underlying assumption that the 220 

vaccination coverage in the beginning of an epidemic was most likely at 35%, which 221 

was not supported by any published evidence of this refugee population. Nevertheless, 222 

the demographic health survey data of the Rohingya population in Myanmar indicated 223 

a close value from 40-50% as the coverage of DTP (Ministry of Health and Sports, 224 

2017).  It is remarkable that ascertainment rates were jointly estimated only by using 225 

the epidemiological case data and the population size. 226 
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What we have shown in the present study is that when we have an access to 227 

not only the initial growth rate of the epidemic but also the incidence data around the 228 

time at which peak incidence is observed, R0 and susceptible fraction can potentially 229 

be jointly quantified. Even without explicit estimate of the initially immune fraction, 230 

we have shown that an indication of the possible value of R0 can be obtained through 231 

uncertainty analysis. LHS appeared to be particularly useful in the setting of refugee 232 

camp in which the background health status is not well quantified (Helton & Davis, 233 

2002; Nishiura et al., 2017). LHS can offer probabilistic distribution of the outcome 234 

measure, R0 in our case, and this method appeared to be particularly useful when one 235 

or more uncertain input information exist (Elderd et al., 2006; Coelho et al., 2008; 236 

Samsuzzoha et al., 2013; Gilbert et al., 2014). While Bayesian modeling has replaced 237 

LHS to some extent of uncertainty analysis as it can also offer posterior distributions 238 

of even uncertain parameters (Elderd et al., 2006; Coelho et al., 2008), there could be 239 

an issue of identifiability when two or more parameters are evidently correlated, e.g. 240 

as anticipated between R0 and v in our model (4). In such an instance, we cannot be 241 

sure if the limited epidemic data with the Bayesian estimation method can offer 242 

identifiable distributions for all parameters, and then LHS can remain to act as a 243 

useful tool for uncertainty analysis. 244 

Several limitations must be noted. First, our model rested on a homogeneous 245 

mixing assumption. No heterogeneous patterns of transmission including contact 246 

patterns and age-dependency were taken into account due to shortage of information. 247 

Second, for similar reasons, no spatial information was explicitly incorporated into 248 

the model. Third, a little more realistic features of refugee population, such as the 249 

impact of migration on the epidemic were unfortunately discarded in the present study. 250 

Similarly, one could investigate how overcrowding and malnutrition in the deprived 251 
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population would help enhance the spread of diphtheria, given sufficient data backup 252 

from epidemiological investigations. 253 

While these features need to be explicitly quantified in the future, we believe 254 

that our study adds an important piece of evidence to the literature on diphtheria. The 255 

transmissibility of diphtheria in the refugee population was estimated to be consistent 256 

with that in an endemic setting and mass vaccination must satisfy at least the coverage 257 

of 83% to halt the major epidemic of diphtheria. 258 

Conclusions  259 

The present study estimated R0 of diphtheria in the Rohingya refugee camp, explicitly 260 

accounting for case ascertainment and previously immune fraction. Since previously 261 

immune fraction v of the refugee population was not precisely known, uncertainty 262 

analysis of R0 was conducted with an input parameter assumption for v employing the 263 

Latin Hypercube sampling. R0 ranged from 3.6 to 12.9 with the median estimate at 5.8. 264 

LHS can offer probabilistic distribution of the outcome measure, and this method 265 

appeared to be particularly useful in the setting of refugee camp in which the 266 

background health status is hardly quantified. 267 
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Figures 344 

Figure 1. Daily incidence of diphtheria cases in Rohingya refugee camp, 2017 345 

Daily number of new cases as extracted from the latest open data (WHO, 2017a). The 346 

vertical axis represents the total of confirmed, probable and suspected cases. By 11 347 

December 2017, the count represents suspected cases. On and after 12 December 348 

2017, the case definition was improved, and probable cases replaced the majority. 349 

Figure 2. Estimated values of the basic reproduction number and case 350 

ascertainment rate 351 

Univariate probability distribution of the basic reproduction number, a1 by 11 352 

December and a2 from 12 December from Latin Hypercube sampling (n = 1,000). 353 

During the Latin Hypercube sampling, the vaccination coverage, v, has a symmetric 354 

triangular distribution ranging from 0.0 to 0.7. 355 

Figure 3. Estimated correlations in each pair of estimated parameters, and 356 

comparison between observed and predicted epidemic curves 357 

Three panels except for right lower panel represent two-dimensional plot of estimated 358 

parameters. During the Latin Hypercube sampling (n = 1,000), the vaccination 359 

coverage, v, has a symmetric triangular distribution ranging from 0.0 to 0.7. Lower 360 

right panel is the comparison between observed and predicted epidemic curves. Bars 361 

constituting the epidemic curve show the observed data, while dark dots indicate 362 

predicted epidemic curve from Latin Hypercube sampling (n = 1,000).  363 

PeerJ reviewing PDF | (2018:02:24069:0:0:NEW 6 Feb 2018)

Manuscript to be reviewed



 - 17 - 

Figure 4. Sensitivity analysis: Partial rank scatterplots 364 

Partial ranks for each pair of parameters. Scatter plots were generated from Latin 365 

Hypercube sampling with the sample size of 1,000. Residuals of two parameters were 366 

plotted to determine the monotonicity between the two. 367 

 368 
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Figure 1

Daily incidence of diphtheria cases in Rohingya refugee camp, 2017

Daily number of new cases as extracted from the latest open data (WHO, 2017a). The

vertical axis represents the total of confirmed, probable and suspected cases. By 11

December 2017, the count represents suspected cases. On and after 12 December 2017, the

case definition was improved, and probable cases replaced the majority.
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Figure 2

Estimated values of the basic reproduction number and case ascertainment rate

Univariate probability distribution of the basic reproduction number, a1 by 11 December and

a2 from 12 December from Latin Hypercube sampling (n = 1,000). During the Latin

Hypercube sampling, the vaccination coverage, v, has a symmetric triangular distribution

ranging from 0.0 to 0.7.
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Figure 3

Estimated correlations in each pair of estimated parameters, and comparison between

observed and predicted epidemic curves

Three panels except for right lower panel represent two-dimensional plot of estimated

parameters. During the Latin Hypercube sampling (n = 1,000), the vaccination coverage, v,

has a symmetric triangular distribution ranging from 0.0 to 0.7. Lower right panel is the

comparison between observed and predicted epidemic curves. Bars constituting the

epidemic curve show the observed data, while dark dots indicate predicted epidemic curve

from Latin Hypercube sampling (n = 1,000).
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Figure 4

Sensitivity analysis: Partial rank scatterplots

Partial ranks for each pair of parameters. Scatter plots were generated from Latin Hypercube

sampling with the sample size of 1,000. Residuals of two parameters were plotted to

determine the monotonicity between the two.
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