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With about 5,000 species worldwide, the Heteroptera or true bugs are the most diverse

taxon among the hemimetabolous insects in aquatic and semi-aquatic ecosystems.

Species may be found in almost every freshwater environment and have very specific

habitat requirements, making them excellent bioindicator organisms for water quality.

However, a correct determination by morphology is challenging in many species groups

due to high morphological variability and polymorphisms within, but low variability

between species. Furthermore, it is very difficult or even impossible to identify the

immature life stages or females of some species, e.g. of the corixid genus Sigara. In this

study we tested the effectiveness of a DNA barcode library to discriminate species of the

Gerromorpha and Nepomorpha of Germany. We analyzed about 700 specimens of 67

species, with 63 species sampled in Germany, covering more than 90% of all recorded

species. Our library included various morphological similar taxa, e.g. species within the

genera Sigara and Notonecta as well as water striders of the genus Gerris. Fifty-five

species (82%) were unambiguously assigned to a single Barcode Index Number (BIN) by

their barcode sequences, whereas BIN sharing was observed for 10 species. Furthermore,

we found monophyletic lineages for 52 analyzed species. Our data revealed interspecific

K2P distances with below 2.2% for 18 species. Intraspecific distances above 2.2% were

shown for 11 species. We found evidence for hybridization between various corixid species

(Sigara, Callicorixa), but our molecular data also revealed exceptionally high intraspecific

distances as a consequence of distinct mitochondrial lineages for Cymatia coleoptrata and

for the pygmy backswimmer Plea minutissima. Our study clearly demonstrates the
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usefulness of DNA barcodes for the identification of the aquatic Heteroptera of Germany

and adjacent regions. In this context, our data set represents an essential baseline for a

reference library for bioassessment studies of freshwater habitats using modern high-

throughput technologies in the near future. The existing data also opens new questions

regarding the causes of observed low inter- and high intraspecific genetic variation and

furthermore highlight the necessity of taxonomic revisions for various taxa, combining

both molecular and morphological data.
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Abstract

With about 5,000 species worldwide, the Heteroptera or true bugs are the most diverse 

taxon among the hemimetabolous insects in aquatic and semi-aquatic ecosystems. Species may 

be found in almost every freshwater environment and have very specific habitat requirements, 

making them excellent bioindicator organisms for water quality. However, a correct 

determination by morphology is challenging in many species groups due to high morphological 

variability and polymorphisms within, but low variability between species. Furthermore, it is very

difficult or even impossible to identify the immature life stages or females of some species, e.g. 

of the corixid genus Sigara. In this study we tested the effectiveness of a DNA barcode library to 

discriminate species of the Gerromorpha and Nepomorpha of Germany. We analyzed about 700 

specimens of 67 species, with 63 species sampled in Germany, covering more than 90% of all 

recorded species. Our library included various morphological similar taxa, e.g. species within the 

genera Sigara and Notonecta as well as water striders of the genus Gerris. Fifty-five species 

(82%) were unambiguously assigned to a single Barcode Index Number (BIN) by their barcode 

sequences, whereas BIN sharing was observed for n0 species. Furthermore, we found 

monophyletic lineages for 52 analyzed species. Our data revealed interspecific K2P distances 

with below 2.2% for n8 species. Intraspecific distances above 2.2% were shown for nn species. 

We found evidence for hybridization between various corixid species (Sigara, Callicorixa), but 

our molecular data also revealed exceptionally high intraspecific distances as a consequence of 

distinct mitochondrial lineages for Cymatia coleoptrata and for the pygmy backswimmer Plea 

minutissima. Our study clearly demonstrates the usefulness of DNA barcodes for the 

identification of the aquatic Heteroptera of Germany and adjacent regions. In this context, our 

data set represents an essential baseline for a reference library for bioassessment studies of 

freshwater habitats using modern high-throughput technologies in the near future. The existing 
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data also opens new questions regarding the causes of observed low inter- and high intraspecific 

genetic variation and furthermore highlight the necessity of taxonomic revisions for various taxa, 

combining both molecular and morphological data.

Introduction

Aquatic insects are the dominant invertebrate fauna element in most freshwater 

ecosystems and are enormously variable in morphology, development, physiology, and ecology 

(Lancaster & Downes, 20n3; Dijkstra, Monaghan & Pauls, 20n4). Among the hemimetabolous 

insects, the Heteroptera or true bugs comprise a significant and diverse component of the world's 

aquatic insect biota (Polhemus & Polhemus, 2007). They are unique as a group because they 

comprise both aquatic and terrestrial species, whereas other taxa comprise only species that are 

aquatic during some life stage (e.g. mayflies, stoneflies, or dragonflies), (Wesenberg-Lund, n943; 

Lancaster & Downes, 20n3; Gullan & Cranston, 20n4). Two infraorders, the Gerromorpha and 

Nepomorpha, are considered as primarily aquatic (Polhemus & Polhemus, 2007; Lancaster & 

Downes, 20n3; Gullan & Cranston, 20n4; Henry, 20n7). With more than 4,400 described species 

worldwide (Henry, 20n7), aquatic Heteroptera are well-known for utilizing an exceptionally 

broad range of habitats, from the marine and intertidal to the arctic and high alpine (Polhemus & 

Polhemus, 2007). They may be found in almost every freshwater biotope. Approximately n20 

species of the Gerromorpha and 230 species of the Nepomorpha are known from the Palearctic 

region (Polhemus & Polhemus, 2007). For Germany, 47 species of the Nepomorpha and 22 

species belonging to the Gerromorpha have been recorded so far (Wachmann, Melber & Deckert, 

2006; Strauss & Niedringhaus, 20n4).

Species of the Nepo- and Gerromorpha exhibit numerous morphological and ecological

adaptations  to  their  aquatic  environment.  For  instance,  nepomorphan  true  bugs  have  a

streamlined body, natatorial  legs and short antennas, whereas gerromorphan species are well-
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known for their long slender legs which operate as motive (middle leg) and rudder (hind legs),

allowing them to operate on the water surface (e.g.  Wesenberg-Lund,  n943; Andersen,  n982;

Lancaster & Downes, 20n3; Gullan & Cranston, 20n4) (Fig. n).  Furthermore,  a reduction, loss,

and/or  polymorphism  of  wings  can  be  observed  in  many  taxa,  which  is  controlled  by

environmental conditions and genetic factors (e.g. Zera, Innes & Saks, n983; Muraji, Miura &

Nakasuji, n989; Spence & Andersen, n994). With the exception of the omnivorous Corixidae, all

aquatic true bugs are predators, feeding on any organism that can be subdued by injection of a

venom cocktail consisting of various toxins and proteolytic enzymes (Polhemus & Polhemus,

2007). On the other hand they serve as important prey for fish and other organisms at higher

trophic levels (e.g. McCafferty, n98n; Zimmermann & Spence, n989; Hutchinson, n993; Klecka

20n4; Boda et al., 20n5). 

Due to their general high abundance in many freshwater systems, their great value as 

bioindicators of water quality and their unique morphological and ecological specializations for 

exploiting specialized microhabitats, these groups has been in the focus of entomological and 

ecological research for a long time (e.g. Hufnagel, Bakonyi & Vásárhelyi, n999; Polhemus & 

Polhemus, 2007; Whiteman & Sites, 2008; Skern, Zweimüller & Schiemer, 20n0).) However, as 

a result of their highly similar morphology, the determination of various species is quite difficult 

and requires the help of experienced taxonomists. Furthermore, it is very difficult or even 

impossible to identify nymphal stages or females of some species, e.g. some species of the genus 

Sigara Fabricius, n775. In term of males of the Corixidae, typical diagnostic traits include the 

shape and size of the tarsus of the first leg (pala), the arrangement of pala pegs, and the 

morphology of the genitalia (e.g. Jansson, n986; Savage n989).

Because aquatic Heteroptera are of high importance for ecological and conservational 

studies, however, the correct species identification is essential (e.g. Hufnagel, Bakonyi & 

Vásárhelyi, n999; Whiteman & Sites, 2008; Skern, Zweimüller & Schiemer, 20n0). This is 
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especially true for juveniles and females which can, depending on the life history of a species, 

dominate within a population over a given period of a year (e.g. Barahona, Millan & Velasco, 

2005; Pfenning & Poethke, 2006; Wachmann, Melber & Deckert, 2006). 

Since a few years, new molecular and genomic approaches become more and more 

popular to overcome possible drawbacks of this traditional way of assessment. Given the recent 

technological advancement of DNA-based methods, in particular in the field of modern high-

throughput technologies (e.g. Heather & Chain, 20n6), it is expected that such techniques will 

gradually replace traditional field and lab procedures in bioassessment studies over the coming 

ten to fifteen years (Leese et al., 20n6). For example, the EU COST Action CAn52n9 on 

“Developing new genetic tools for bioassessment of aquatic ecosystems in Europe” – or 

DNAqua-Net (http://dnaqua.net/) – aims to accelerate the use of DNA-based approaches for the 

monitoring and assessment of aquatic habitats (Leese et al., 20n6). Following these 

considerations, the analysis of single specimens, bulk samples or environmental DNA will be 

performed routinely as part of modern species diversity assessment studies (e.g. Yu et al. 20n2, 

Scheffers et al. 20n2, Cristescu 20n4, Kress et al. 20n5, Creer et al. 20n6). However, the 

effectiveness of all these approaches highly relies on comprehensive sequence libraries that act as

valid references (e.g. Brandon-Mong et al. 20n5, Creer et al. 20n6). In this context, DNA 

barcoding represents undoubtedly the most prominent and popular approach using sequence data 

for valid species identification (e.g. Hajibabaei et al., 2007; Miller et al., 20n6). The concept of 

DNA barcoding relies on the postulate that the interspecific genetic variation between species is 

higher than the intraspecific variation (Hebert, Ratnasingham & deWaard, 2003; Hebert et al., 

2003). As a consequence, every species is characterized by unique DNA barcode cluster. For 

animals, an approximately 650 base-pair fragment of the mitochondrial cytochrome c oxidase 

subunit I (COI) gene was proposed as global standard for the identification of unknown 

specimens in terms of a given classification (sensu Hebert, Ratnasingham & deWaard, 2003; 
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Hebert et al. 2003). However, it should be noted that various problems may affect the use of 

mitochondrial DNA, e.g., recent speciation events (e.g. Balvín et al. 20n2, Raupach et al., 20n4), 

heteroplasmy (e.g. Boyce, Zwick & Aquadro, n989; Kavar et al., 2006; Kmiec, Woloszynska & 

Janska, 2006), incomplete lineage sorting (e.g. Petit & Excoffier, 2009), (introgressive) 

hybridization (e.g. Jansson, n979a; n979b; Calabrese, n982; Spence & Wilcox, n986; Wilcox & 

Spence, n986; Savage & Parkin, n998; Raupach et al., 20n4), the presence of alpha-

proteobacteria as Wolbachia within terrestrial arthropods (Werren, Zhang & Guo, n995; Xiao et 

al., 20nn; Werren, Baldo & Clark, 2008), and the existence of mitochondrial pseudogenes (e.g. 

Leite 20n2; Song, Moulton & Whiting, 20n4). Nevertheless, a vast number of studies across a 

broad range of different animals demonstrate the efficiency of DNA barcoding (e.g. Spelda et al., 

20nn; Hausmann et al., 20n3; Hendrich et al., 20n5; Lin, Stur & Ekrem 20n5; Raupach et al., 

20n5; Barco et al., 20n6; Coddington et al., 20n6; Morinière et al., 20n7). 

Despite the fact that more than 45,000 species of true bugs have been described 

worldwide until now (Henry, 20n7), the number of studies analyzing the usefulness of DNA 

barcodes to discriminate species of this highly diverse insect taxon is still low. Some studies 

focus on selected species (Rebijith et al., 20n2; Zhou et al., 20n2; Lis, Lis & Ziaja, 20n3), other 

on specific families (Grebennikov & Heiss, 20n4; Kaur & Sharma, 20n7), whereas four 

publications provide a greater representation of various families (Park et al., 20nn; Jung, Duwal 

& Lee, 20nn; Raupach et al., 20n4; Tembe, Shouche & Ghate, 20n4). However, all these studies 

focused primarily on terrestrial species, analyzing just small number of species belonging to the 

Gerromorpha and/or Nepomorpha (Park et al., 20nn; Jung, Duwal & Lee, 20nn; Raupach et al., 

20n4). To our knowledge, only two publications analyzed aquatic true bugs specifically until 

now: Castanhole et al. (20n3) investigated the variability of n7 barcode sequences of a few 

species from Brazil, whereas Ebong et al. (20n6) successfully tested the usefulness of DNA 

barcodes to discriminate various species from Cameroon. 
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The aim of this study was to build-up a baseline for a comprehensive library of DNA 

barcodes for aquatic Heteroptera (Gerromorpha, Nepomorpha) of Central Europe with a focus on 

the German fauna and to test the efficiency of DNA barcodes to discriminate the analyzed 

species. Moreover, our study provides the first thorough molecular study of the aquatic 

Heteroptera of Germany. In doing so, we analyzed more than 700 DNA barcodes representing 

more than 60 species. Our library included various morphological similar taxa, e.g. species of the 

genera Sigara Fabricius, n775 and Notonecta Linnaeus, n758 as well as water striders of the 

genus Gerris Fabricius, n794 from different localities in Germany. In addition to this we added 

various specimens from other European countries for comparison, e.g. specimens of the 

expansive small-bodied backswimmer Anisops sardeus Herrich-Schaeffer, n849 (Berchi, 20nn; 

Klementová & Svitok, 20n4).

Material & Methods

Species collection and identification

All analyzed Gerromorpha and Nepomorpha were collected between the years 2003 and 

20n7. Most specimens were adults (n = 584; 96.8%). Specimens were stored in ethanol (96%) 

immediately after collection and identified by some of the authors (NH, MMG, MJR, PS, RN) 

using various keys (Nieser n982; Jansson, n986; Savage, n989; Stoffelen et al., 20n3; Strauss & 

Niedringhaus, 20n4) based on the most recent taxonomic classification (Aukema & Rieger, 

n995). All specimens were carefully checked multiple times by some of the authors in order to 

prevent a misidentification. For our analysis we also included n09 DNA barcodes of aquatic bugs 

that were part of a previous barcoding study of true bugs of Central Europe and in which species 

identification was verified by the authors for comparison (Raupach et al., 20n4). Most of the 

analyzed bug specimens were collected in Germany (n = 6n6: 86.5%), but various studied 

individuals were sampled in Austria (37; 5.2%), Greece (20; 2.8%), Spain (n6; 2.3%), 
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Switzerland (8; n.n%), Italy (7; n.0%), Poland (6; 0.8%), and Portugal (2; 0.3%) for comparison 

(Fig. 2). In this context we also included specimens from four species that are not recorded for 

Germany: I. Anisops sardeus Herrich-Schaeffer, n849, (n = 5) from Greece, II. Mesovelia 

vittigera Horváth, n895 (n = 4) from Greece, III. Sigara dorsalis (Leach, n8n7) (n = n) from 

Switzerland, and IV.Velia currens (Fabricius, n794) (n = 3) from Switzerland. The total data set 

consisted of 7n2 DNA barcodes with 63 species that are documented for Germany. The number 

of analyzed specimens per species ranged from one (8 species) to a maximum of 4n for 

Notonecta glauca Linnaeus, n758.

DNA barcode amplification, sequencing and data depository

The DNA barcode amplification was either performed at the German Centre of 

Biodiversity Research (Senckenberg am Meer) in Wilhelmshaven, the Carl von Ossietzky 

University of Oldenburg, or the Bavarian State Collection of Zoology in Munich (SNSB-ZSM). 

Following the guidelines of DNA barcoding studies (Ratnasingham & Hebert, 2007), all species 

were documented by photographs before molecular work started. In the majority of the studied 

animals, all legs of one side of the body were dissected and used for DNA extraction. In case of 

larger specimens of the genera Notonecta Linneaus, n758, Ilyocoris Stål, n86n, Ranatra 

Fabricius, n790, Nepa Linnaeus, n758, and Aphelocheirus Westwood, n833, however, only one 

leg was used. For some very small specimens with a body length <3 mm, e.g. species of the 

genus Microvelia Westwood, n834, complete specimens were used for DNA extraction. All 

voucher specimens as well as DNA extracts are stored in a local collection at the Carl von 

Ossietzky University of Oldenburg.

The DNA extraction was performed using the NucleoSpin Tissue Kit by Macherey and 

Nagel (Düren, Germany), following the extraction protocol. Polymerase chain reaction (PCR) has

been used for amplifying the COI barcode fragment by using the established primer pairs 
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LCOn480/HCO2n98 (Folmer et al., n994), LCOn480/NANCY (Simon et al., n994), 

jgLCOn490/jgHCO2n98 (Geller et al., 20n3), or LepFn/LepRn (Hebert et al., 2004) for most 

specimens. For various specimens of the Gerromorpha, however, a new specific forward primer 

HETFn (5´-ATG AAT TAT TCG AAT TGA AAT AGG-3´) was designed and used in combination

with HCO2n98 for amplification, resulting in a somewhat smaller fragment with a length of 579 

base pairs (bp) of the barcode region. All primers were modified with Mn3 forward and reverse 

tails to provide defined base sequences for sequencing (see Ivanova et al., 2007; Khalaji-

Pirbalouty & Raupach, 20n4).

Barcode amplicons were amplified using illustraTM puReTaq Ready-To-Go PCR Beads 

(GE Healthcare, Buckinghamshire, UK) in a total volume of 20 μl, containing n7.5 μl sterile 

molecular grade H2O, 2 μl DNA template with an DNA amount between 2 to n50 ng/μl and 0.25 

μl of each primer (20 pmol/μl). The PCR thermal conditions included an initial denaturation at 94

°C (5 min), followed by 38 cycles at 94 °C (denaturation, 45 s), 48 °C (annealing, 45 s), 72 °C 

(extension, 80 s), and a final extension step at 72 °C (7 min). All PCR amplification reactions 

were conducted using an Eppendorf Mastercycler Pro system (Eppendorf, Hamburg, Germany). 

Negative and positive controls were included with each round of reactions. Two μl of the 

amplified products were verified for size conformity by electrophoresis in a n% agarose gel with 

GelRed or SYBR Green using commercial DNA size standards, whereas the remaining PCR 

product was purified with the NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel, Düren, 

Germany). Purified PCR products were cycle-sequenced and sequenced in both directions at a 

contract sequencing facility (GATC, Konstanz, Germany) using the given Mn3 tail sequences. 

Double stranded sequences became assembled and checked for mitochondrial pseudogenes 

(numts) analyzing the presence of stop codons, frameshifts as well as double peaks in 

chromatograms with the Geneious program package version 7.0.4 (Biomatters, Auckland, New 

Zealand) (Kearse et al., 20n2). Ambiguous parts at the 5´-end or 3´-end of the sequences were 
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removed. For verification, BLAST (nBLAST, search set: others, program selection: megablast) 

and/or BOLD (identification engine; species level barcode records) searches were performed to 

confirm the identity of all new sequences as bug sequences based on already published 

sequences.

Detailed voucher information, taxonomic classifications, photos, DNA barcode sequences,

used primer pairs and trace files (including their quality) are publicly accessible through the 

public data set “DS-BAHCE Barcoding Aquatic Heteroptera of Central Europe” (Dataset ID: 

dx.doi.org/n0.5883/DS-BAHCE) on the Barcode of Life Data Systems workbench (BOLD; 

www.boldsystems.org) (Ratnasingham & Hebert, 2007). All new barcode data were also 

deposited in GenBank (MG665389-MG665993).

DNA barcode analysis

We analyzed intra- and interspecific distances of the studied aquatic Heteroptera using the

provided analytical tools of the BOLD workbench (align sequences: BOLD aligner; ambiguous 

base/gap handling: pairwise deletion) based on the Kimura 2-parameter model of sequence 

evolution (K2P; Kimura, n980). Furthermore, all analyzed COI sequences became subject to the 

Barcode Index Number (BIN) system implemented in BOLD which clusters DNA barcodes in 

order to generate operational taxonomic units that closely correspond to species (Ratnasingham 

& Hebert, 20n3). We used a recommended threshold of 2.2% for a rough differentiation of 

intraspecific as well as interspecific K2P distances (Ratnasingham & Hebert, 20n3). 

A Neighbor Joining cluster analysis (NJ; Saitou & Nei, n987) was performed for all 

studied species for a graphical representation of the genetic differences between sequences and 

clusters of sequences using MEGA v7.0.n8 (Kumar, Stecher & Tamura, 20n6). The K2P model 

was chosen as the model for sequence evolution for comparison purposes. For validation, non-

parametric bootstrap support values were obtained by resampling and analyzing n,000 replicates 
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(Felsenstein, n985). All analysis were based on an alignment that was generated using MUSCLE 

(Edgar, 2004) implemented in MEGA v7.0.n8 for all studied barcode sequences. Additionally, 

statistical maximum parsimony networks were constructed exemplarily for species with 

interspecific distances ranging from zero to n% (see Table n) by using TCS networks (Clement, 

Posada & Crandall, 2002) as part of the software package of PopArt v.n.7 (Leigh & Bryant, 

20n5). Such networks allow the identification of haplotype sharing between species as a 

consequence of recent speciation or on-going hybridization processes (e.g. Raupach et al., 20n0; 

Raupach et al., 20n4).

Results

Our analyzed DNA barcode library comprised 63 species that are documented for 

Germany, representing 9n% of the known aquatic bug species diversity of this country 

(Nepomorpha: n = 43 (92%); Gerromorpha: n = 20 (9n%)), and additional four species that were 

collected in other countries and not recorded for Germany. In total, we generated 603 new 

barcodes of 64 species. The complete alignment of all analyzed sequences (n = 7n2) had a length 

of 658 bp, with fragments lengths ranging from a minimum of 366 bp to the full barcode 

fragment size of 658 bp. For some studied specimens of Cymatia coleoptrata (Fabricius, n777) 

(n = 22), our analysis revealed two characteristic deletions of 39 (alignment position: nn0 – n48) 

and nine nucleotides (629 – 637) for all studied specimens (Fig. Sn). Average base frequencies 

were A = 32%, C = n7%, G = n6%, and T = 35%. Intraspecific distances ranged from zero to 

maximum values of 8.3% (Plea minutissima Leach, n8n7) and 9.44% (Cymatia coleoptrata) 

(Table n). Maximum intraspecific pairwise distances with values >2.2% were found for nn 

species (Table n). In terms of interspecific divergence, values ranged from zero to n8.58%, with 

n8 species pairs having values <2.2% (Table n). We found interspecific distances below n% for 9 

species. For eight of these species, only one barcode sequence was generated (Table n). Unique 
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BINs were recorded for 55 species, whereas two BINs were identified for n0 species (Table n). 

For two species that were represented only by one specimen, namely Arctocorisa germari 

(Fieber, n848) and Corixa dentipes Thompson, n869, our sequences did not have the required 

fragment length of at least 400 bp to fulfill the criteria for BIN assignment. As consequence, no 

BINs were available for these two species. 

Our NJ analysis based on K2P distances revealed two large and distinct clusters, 

separating all analyzed Gerromorpha and all Nepomorpha specimens from each other (Fig. S2). 

For a better presentation, the topology has been split on this basis and shown in two figures 

(Gerromorpha: Fig. 3, Nepomorpha: Fig. 4). We found non-overlapping clusters with bootstrap 

values >90% for 57 species (85%) (Fig. 3; 4). Of the analyzed 59 species with more than one 

specimen, 52 (88%) were monophyletic, 3 (5%) paraphyletic, and 4 (7%) polyphyletic (Table n, 

Fig S2).

The statistical maximum parsimony network analysis of species with interspecific 

distances below n% revealed a close relationship between Gerris asper (Fieber, n860) (n = n) and

Gerris lateralis Schummel, n832 (n = 2) (Fig. 5). We found three haplotypes with a frequency of 

n (singletons) that were separated by only one or two mutational steps, with haplotype hn (Gerris

asper) connected with h2 (Gerris lateralis), which was in turn connected with haplotype h3 

(Gerris lateralis). A similar situation was observed for Sigara limitata (Fieber, n848) (n = 2) and 

Sigara semistriata (Fieber, n848) (n = 5) (Fig. 5). Three different haplotypes were identified, with

hn representing all studied specimens of Sigara semistriata. Both unique haplotypes of Sigara 

limitata (h2, h3) were directly connected to this haplotype by two or three mutational steps. In the

case of Callicorixa praeusta (Fieber, n848) (n = 23) and Callicorixa producta (Reuter, n880) (n =

n) we found five different haplotypes (Fig. 5), with hn representing the dominant haplotype 

which includes n9 specimens of Callicorixa praeusta and the only specimen of Callicorixa 

producta. All other four haplotypes (h2-h5) were only scored in one specimen and connected 
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with hn by one or two mutational steps. A much more complex network was revealed for Sigara 

distincta (Fieber, n848) (n = 7), Sigara falleni (Fieber, n848) (n = n2), and Sigara iactans 

Jansson, n983 (n = n2) (Fig. 6). We identified n6 different haplotypes in total, with six haplotypes

(hn-h6) shared by more than one specimen. Three of these haplotypes (h2, h3, h5) were shared by

specimens of Sigara falleni and Sigara iactans. Furthermore, haplotypes of both previously 

mentioned species were randomly distributed within the network. In many cases, haplotypes of 

Sigara falleni were separated merely by two mutational steps from haplotypes of Sigara iactans 

(e.g. h6 and hn3) and vice versa. We found four singletons for Sigara falleni and five for Sigara 

iactans. In contrast to these two species, we identified only two haplotypes (hn, h8) for the seven 

analyzed specimens of Sigara distincta. Moreover, most specimens (n = 6) were identical (hn) 

and located at the periphery of the network. The other haplotype (h8), a singleton collected 

among others at Apen (Lower Saxony), was separated by more than 25 mutational steps from the 

network and represents the most isolated haplotype in this network by far. Therefore, Sigara 

distincta shared no haplotypes with other species.

Discussion

Our comprehensive DNA barcode library represents an important step for the molecular 

characterization of the freshwater fauna in Central Europe and adjacent regions. As COI 

sequences are used routinely in phylogeographic, phylogenetic and evolutionary studies as well, 

our data can be also implemented in projects analyzing the genetic variation of species in relation

to historical, geographical and ecological factors (Galactos, Cognato & Sperling, 2002; 

Damgaard, 2005; Damgaard, 2008b; Gagnon & Turgeon 20n0; Ye et al., 20n6). Unique BINs 

were found for 55 species, allowing a valid identification of 82% of the analyzed 67 species. 

Distinct and monophyletic lineages, however, were revealed for 52 species (78%). Our study also

indicates the need of further detailed taxonomic revisions, using state-of-the-art methods for a 

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

PeerJ reviewing PDF | (2017:12:22312:1:0:NEW 8 Feb 2018)

Manuscript to be reviewed



fine-scaled characterization (Raupach et al. 20n6). This is especially true for the species-rich 

family Corixidae. In the following we will discuss noticeable species with high intraspecific 

and/or low interspecific distances more in detail.

Interspecific K2P distances with values below 2.2%

The efficiency of DNA barcoding highly depends on distinct mitochondrial lineages, 

ideally coupled with moderate to high genetic interspecific distances. If sister species, however, 

have low interspecific distances and haplotype sharing as a result of a recent ancestry and/or 

ongoing gene flow, DNA barcoding will fail (e.g. Tautz et al., 2003; Frezal & Leblois, 2008; 

Raupach & Radulovici, 20n5). For the analyzed species of the Gerromorpha and Nepomorpha, 

minimum interspecific K2P distances with values below 2.2% were found for n8 species (Table 

n). Distance values ranged from 0% (four species: Callicorixa praeusta (Fieber, n848), 

Callicorixa producta (Reuter, n880), Sigara falleni (Fieber, n848), Sigara iactans Jansson, n983) 

to 2.nn% (Sigara venusta (Douglas & Scott, n869)). Distinct monophyletic clusters were revealed

for Notonecta obliqua Thunberg, n787 and Notonecta glauca Linnaeus, n758 (n.08%), Notonecta

lutea Müller, n776 and Notonecta reuteri Hungerford, n928 (n.24%), Sigara dorsalis (Leach, 

n8n7) and Sigara striata (Linnaeus, n758) (n.7n%) (but see Savage and Parkin, n998), and 

Sigara venusta (Douglas & Scott, n869) and Sigara limitata (Fieber, n848)/Sigara semistriata 

(Fieber, n848) (2.nn%), indicating a close relationship of these species pairs with distinct lineages

(Table n). Furthermore, the analyzed specimen of Arctocorisa germari (Fieber, n848) was nested 

in the paraphyletic cluster of Arctocorisa carinata (C. R. Sahlberg, n8n9) (n.03%) (Fig. Sn). In 

this context it should be noted that experimental crosses gave viable hybrids between both 

Arctocorisa species with intermediate characters (Jansson, n979). These examples show that 

recent speciation events as well as hybridization may represent important processes in these 

groups. Future studies including more specimens and other genetic markers should be conducted 
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to resolve the eco-evolutionary events leading to the low interspecific variation. Species pairs 

with interspecific K2P distances <n% will be discussed more in detail below.

Species pairs with interspecific distances below 1%

I. Gerris asper (Fieber, 1860) and Gerris lateralis Schummel, 1832

From a morphological perspective, both species are very similar (e.g. Wagner & 

Zimmermann, n955; Wachmann, Melber & Deckert, 2006). Not surprisingly, Gerris asper is 

suggested as a south-eastern vicariant of its boreo-montane sister species Gerris lateralis 

(Jeziorski et al., 20n2). Whereas Gerris lateralis has a distribution ranging from Europe to the 

Far East of Russia, Gerris asper is found in Southern and Central Europe, extending to 

Afghanistan (Jeziorski et al., 20n2). In spite of the fact that our sample sizes were very small 

(Gerris asper: n = n, Gerris lateralis: n = 2), our molecular data set clearly support the proposed 

close relationship of both water striders species (Fig. 5, Table n). Future studies including more 

specimens covering a larger geographic range are needed to test whether both taxa represent 

distinct lineages or hybridization still takes place as it is known from other species of this genus 

(e.g. Calabrese, n982).

II. Sigara limitata (Fieber, 1848) and Sigara semistriata (Fieber, 1848)

Both species belong to the subgenus Retrocorixa Walton, n940 and have a similar 

distribution, ranging from Europe eastwards to Siberia (Jansson, n986; Wachmann, Melber & 

Deckert, 2006; Coulianos, Økland & Økland, 2008). A close relationship as it has been indicated 

by our data has not been proposed yet. In contrast to our results, morphological characters 

suggest Sigara venusta (Douglas & Scott, n869) as sister species of Sigara semistriata (see 

Jansson, n986). As part of our study, Sigara venusta represents the sister species of Sigara 

limitata and Sigara semistriata with a distance of 2.nn% (Fig. 5, Table n). Due to the fact that 
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neither Sigara limitata nor Sigara semistriata were monophyletic and the observed interspecific 

distances were very low (0.n5%) (Table n), we suggest a recent ancestry of both species. Hybrids 

are currently not known. Future studies are needed to verify this hypothesis.

III. Callicoripa praeusta (Fieber, 1848) and Callicoripa producta (Reuter, 1880)

The genus Callicorixa White, n873 includes five medium sized species (6 – 8 mm) that 

are recorded for Europe, with two species documented in Central Europe. Specimens of 

Callicorixa praeusta can be found throughout most Europe expect the Mediterranean region 

reaching to the Far East of Russia, whereas the distribution of Callicorixa producta ranges from 

the Northern parts of Central Europe to Fennoscandia, Northern Russia, Kazakhstan, Mongolia, 

and Siberia (Jansson, n986; Wachmann, Melber & Deckert, 2006; Coulianos, Økland & Økland, 

2008). Most identification keys for this genus rely largely on the shape and intensity of dark areas

of the hind tarsus n (Jansson, n986; Savage n989; Strauss & Niedringhaus, 20n4). While this 

morphological trait is fairly good for the determination of most typical specimens, existing 

variation is rather wide, making it unreliable in many cases (Jansson, n986). Similar to other 

species, our DNA barcode data give evidence for a recent ancestry or ongoing gene flow between

Callicorixa praeusta and Callicorixa producta (Fig. 5). However, only one (female) specimen of 

Callicorixa producta was available, demonstrating the need for more detailed studies to clarify 

the underlying processes.

IV. Sigara distincta (Fieber, 1848), Sigara falleni (Fieber, 1848), and Sigara iactans Jansson, 

1983

Some decades ago, a comprehensive revision revealed that the well-known species Sigara

falleni of the subgenus Subsigara Stichel, n935 was actually a mixture of four closely related and 

highly similar species, including Sigara iactans (see Jansson, n983). Whereas the identification 
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of females is not always reliable, males of both species can be recognized by the shape of their 

pala: specimens of Sigara falleni are characterized by triangular pala, whereas trapezoidal pala 

are found for Sigara iactans (Jansson, n983; n986). Intermediate specimens, however, have been 

also documented and indicate on-going hybridization between both species (Jansson, n983; 

n986). Water bugs of Sigara distincta are found from the British Isles through North and Central 

Europe to Asia as far as East Siberia and Mongolia (Jansson, n986; Savage, n989; Coulianos, 

Økland & Økland, 2008). A similar distribution is known for Sigara falleni, ranging throughout 

most of Europe eastwards to Siberia and China (Jansson, n986; Savage, n989; Coulianos, Økland 

& Økland, 2008). In contrast to both previous species, Sigara iactans is found in two disjunct 

areas, one in North and Central Europe, and the other in Southeastern Europe (Jansson, n986¸ 

Wachmann, Melber & Deckert, 2006). Our DNA barcode data revealed multiple haplotype 

sharing between Sigara falleni and Sigara iactans, supporting the close relationship and on-going

hybridization between both species (Fig. 6). Beside this, our results revealed a close relationship 

of Sigara (Subsigara) distincta with Sigara falleni and Sigara iactans, as it has been discussed in 

the past also (Jansson, n986). However, we found no shared haplotypes yet. Additional studies 

involving more specimens of a larger geographic region are needed to validate the species status 

within this subgenus.

Intraspecific K2P distances with values >2.2%

Various phenomena can generate distinct lineages within DNA barcode data, e.g. 

phylogeographic processes (e.g. Andersen et al., 2000; Damgaard 2005; 2008b; Ye et al., 20n6), 

the presence of maternally inherited endosymbionts as Wolbachia (e.g. Lis, Maryańska-

Nadachowska & Kajtoch, 20n5), or the existence of cryptic species (e.g. Paterson et al., 20n6; Jiu

et al., 20n7). In this context, we found nn species with intraspecific K2P distances >2.2%, ranging

from 2.32% (Mesovelia vittigera Horváth, n895) to a maximum of 9.44 (Cymatia coleoptrata 
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(Fabricius, n777)). For most species, excluding Sigara iactans (2.67%), Sigara falleni (3.37%), 

and Sigara distincta (5.77%) (see discussion above), we are currently unable to clarify the 

background of the observed high nucleotide distances and distinct lineages based on the given 

data set. However, exceptionally high intraspecific distances with values >8% were found within 

the pygmy backswimmer Plea minutissima Leach, n8n7 (8.3%) and Cymatia coleoptrata 

(Fabricius, n777) (9.44%) (Table n). Both will be discussed more in detail.

Small and cryptic: two highly distinct DNA barcode clusters within Plea minutissima Leach,

1817

Pygmy backswimmers are small bugs, usually less than 3.5 mm in length and confine 

themselves to the vegetation in which they hide and where they prey on mosquito larvae and 

other small arthropods (Schuh & Slater, n995). For Europe, only one species of the Pleidae is 

recorded, namely Plea minutissima. As part of our study we found two distinct lineages within 

the sixteen analyzed specimens with high distances ranging from 8.n to 8.3%. Both lineages were

supported by high bootstrap values (99%) (Fig. 7). Most specimens of lineage A (n = 8) were 

found in Brandenburg and Bavaria, but also two specimens were collected in Lower Saxony 

(Jaderberg). In contrast to this, all specimens of lineage B (n = 8) were collected in Lower 

Saxony (Jaderberg, Lingen, Norderney). Whether this surprisingly high molecular diversity is a 

result of effects as incomplete lineage sorting (e.g. Damgaard, 2008) or whether we found 

evidence for the existence of two sibling species (e.g. Damgaard, 2005), is not within the scope 

of this study but clearly needs further investigation.

A currently unknown species of the genus Cymatia Flor, 1860?

For the genus Cymatia, three European species are documented so far: Cymatia 

coleoptrata (Fabricius, n777), Cymatia bonsdorffii (C. R. Sahlberg, n8n9), and Cymatia 
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rogenhoferi (Fieber, n864). In terms of a morphological identification, all species can be 

identified according to their size and hemelytral patterns without doubt (Janssen n986, Stoffelen 

et al., 20n3). Our study revealed two distinct lineages within the analyzed specimens of Cymatia 

coleoptrata (lineage A and B), with a K2P distances ranging from 9.n3 – 9.42% and bootstrap 

support values of 99% (Fig. 8). Whereas lineage A includes 22 specimens from Lower Saxony (n 

= 2n, Lingen) and Baden-Württemberg (n = n, Wolperstwende), lineage B contains two 

specimens that were collected in Brandenburg (Voßberg). Both specimens of lineage B were 

small adult males, with a body size between 4.3 and 4.5 mm, and were identified using 

morphological traits as Cymatia coleoptrata at first sight. Interestingly, their barcode sequences 

did not have the characteristic nucleotide deletions of this species (Fig. Sn). Furthermore, we 

found no other similar sequences using the BOLD identification engine (Best ID: Cymatia 

coleoptrata) (date of request: 20n7-nn-20). Unfortunately, both Cymatia vouchers got lost, 

preventing a closer reanalysis of the specimens. Nevertheless, our results should motivate 

heteropterologists to study more specimens of this genus, in particular from the Eastern parts of 

Germany, in order to verify the presence of this putative new species.

Conclusion

In this study we lay the foundations for a comprehensive DNA barcode data set for the 

aquatic Heteroptera in Central Europe and adjacent regions, which will act as useful reference 

library for freshwater bioassessment studies using modern high-throughput sequencing 

technologies. Unique BINs were revealed for 55 species determined species, representing of 82%

of the analyzed 67 species. Furthermore, monophyletic lineages were found for 52 species (78%).

Nevertheless, our molecular data highlights discordance between the generally accepted but 

exclusively morphologically-based taxonomy and observed molecular diversity within some 

species of the Gerromorpha and Nepomorpha. The analysis of additional specimens from other 
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localities and of other molecular markers, for example microsatellites or SNPs, will give us more 

insights into the taxonomic status of these species as well as in the eco-evolutionary processes 

underlying the observed genetic patterns. However, it should be kept in mind that the traditional 

aims of taxonomy are unchanged and include various aspects, e.g. detailed high-quality 

descriptions and delimitation of species, a classification that reflects evolution, a dynamic 

nomenclature, and fast and reliable identification tools. Therefore, our DNA barcode library may 

be considered as a promoter for such studies. 
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Figure 1(on next page)

Representative images of analyzed aquatic bug species.

A: Nepa cinerea Linnaeus, 1758 (Nepidae), B: Corixa affinis Leach, 1817 (Corixidae), C:

Sigara (Subsigara) scotti (Douglas & Scott, 1868) (Corixidae), D: Ilyocoris cimicoides

(Linnaeus, 1758) (Naucoridae), E: Aphelocheirus aestivalis (Fabricius, 1794)

(Aphelocheiridae), F: Notonecta viridis Delcourt, 1909 (Notonectidae), G: Plea minutissima

Leach, 1817 (Pleidae), H: Mesovelia furcata Mulsant & Rey, 1852 (Mesovelidae), I:

Hydrometra gracilenta Horváth, 1899 (Hydrometridae), J: Hebrus ruficeps Thompson, 1871

(Hebridae), K: Velia caprai Tamanini, 1947 (Velidae), L: Gerris costae (Herrich-Schaeffer,

1850) (Gerridae). Scale bars = 1 mm. All images were obtained from www.corisa.de

PeerJ reviewing PDF | (2017:12:22312:1:0:NEW 8 Feb 2018)

Manuscript to be reviewed



A                         B                           C                          D 

E                          F                          G                          H

I                           J                           K                          L
PeerJ reviewing PDF | (2017:12:22312:1:0:NEW 8 Feb 2018)

Manuscript to be reviewed



Figure 2

Sampling sites of the studied aquatic true bugs (Gerromorpha, Nepomorpha) across

Europe.
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Figure 3(on next page)

Neighbor Joining (NJ) topology of the analyzed species of the Gerromorpha based on

Kimura 2-parameter distance.

Triangles indicate the relative number of individual’s sampled (height) and sequence

divergence (width). Blue triangles indicate species with intraspecific maximum pairwise

distances >2.2%, red triangles species pairs with interspecific distances <2.2%. Numbers

next to nodes represent non-parametric bootstrap values >80% (1,000 replicates). Asterisks

indicate species not recorded in Germany. All images were obtained from www.corisa.de
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Figure 4(on next page)

Neighbor Joining (NJ) topology of the analyzed species of the Nepomorpha based on

Kimura 2-parameter distance.

Triangles indicate the relative number of individual’s sampled (height) and sequence

divergence (width). Blue triangles indicate species with intraspecific maximum pairwise

distances >2.2%, red triangles species with interspecific distances <2.2%. Numbers next to

nodes represent non-parametric bootstrap values >=80% (1,000 replicates). Asterisks

indicate species not recorded in Germany. All images were obtained from www.corisa.de
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Figure 5(on next page)

Maximum statistical parsimony network of various species of the Gerromorpha and

Nepomorpha with interspecific K2P-based distances of COI sequences <1%

A Gerris asper (Fieber, 1860) (n = 1) and Gerris lateralis Schummel, 1832 (n = 2); B Sigara

limitata (Fieber, 1848) (n = 2) and Sigara semistriata (Fieber, 1848) (n = 5); C Callicorixa

praeusta (Fieber, 1848) (n = 23) and Callicorixa producta (Reuter, 1880) (n = 1). Used

settings included default settings for connection steps whereas gaps were treated as fifth

state. Each line represents a single mutational change whereas small black dots and small

black lines indicate missing haplotypes. The diameter of the circles is proportional to the

number of haplotypes sampled (see open half circles with numbers). Color codes were given

for each species. Scale bars = 1 mm. Aquatic bug images were obtained from www.corisa.de
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Figure 6(on next page)

Maximum statistical parsimony network of three Sigara species with interspecific K2P-

based distances of COI sequences <1%

Used settings included default settings for connection steps whereas gaps were treated as

fifth state. Each line represents a single mutational change whereas small black dots and

small black lines indicate missing haplotypes. The diameter of the circles is proportional to

the number of haplotypes sampled (see open half circles with numbers). Color codes were

given for each species. Scale bars = 1 mm. Aquatic bug images were obtained from

www.corisa.de
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Figure 7(on next page)

Subtree of the Neighbour Joining topology of the analyzed specimens of Plea

minutissima Leach, 1817

Branches with specimen ID-Number from BOLD and species names. Numbers next to internal

branches are non-parametric bootstrap values (in %). Scale bar = 1 mm. Image obtained

from www.corisa.de
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Figure 8(on next page)

Subtree of the Neighbour Joining topology of the analyzed species of the genus Cymatia

Flor, 1860.

Numbers next to internal branches are non-parametric bootstrap values (in %). Images

obtained from www.corisa.de
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Table 1(on next page)

BOLD distance analysis of the studied Gerromorpha and Nepomorph.

With the number of analyzed specimens (n), phylogenetic categories, barcode index number

(BIN), maximum intraspecific pairwise K2P distances (MID), minimum interspecific pairwise

K2P distances to the nearest neighbor species (DNN), and the nearest neighbor species

(NNS). Maximum intraspecific distances >2.2% and minimum interspecific distances <2.2%

are marked in bold. At least one specimen of the compared species showed a distance value

above or below this threshold in terms of a pairwise comparison. Asterisks (*) indicate

species not recorded for Germany
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Family Species n Phylogenetic 
categories

BIN MID DNN NNS

Aphelocheiridae Aphelocheirus aestivalis 2 monophyletic ABX0398 0 11.86 Notonecta maculata

Corixidae Arctocorisa carinata 5 paraphyletic
AAJ7903, 

ACY1261
2.36 1.03 Arctocorisa germari

Arctocorisa germari 1 n. a. - 0 1.03 Arctocorisa carinata

Callicorixa praeusta 23 paraphyletic AAK1938 0.31 0 Callicorixa producta

Callicorixa producta 1 n. a. AAK1938 0 0 Callicorixa praeusta

Corixa affinis 13 monophyletic ACY0615 1.92 5.92 Corixa panzeri

Corixa dentipes 1 n. a. - 0 6.08 Corixa punctata

Corixa panzeri 2 monophyletic ACX9506 0 5.92 Corixa affinis

Corixa punctata 21 monophyletic ACB1799 0.77 6.08 Corixa dentipes

Cymatia bonsdorffii 4 monophyletic ABX0396 0.62 12.34 Cymatia coleoptrata

Cymatia coleoptrata 24 monophyletic
ACB1796, 

ADD1561
9.44 12.4 Cymatia bonsdorffii

Cymatia rogenhoferi 1 n. a. ACB2132 0 12.7 Cymatia coleoptrata

Glaenocorisa propinqua 8 monophyletic ABX4248 1.55 9.96 Sigara semistriata

Hesperocorixa castanea 14 monophyletic ABX0447 0.32 13.22 Paracorixa concinna

Hesperocorixa linnaei 8 monophyletic ABX0448 0 11.89 Sigara venusta

Hesperocorixa sahlbergi 39 monophyletic AAN0795 1.7 11.34 Corixa panzeri

Micronecta griseola 2 monophyletic AAK6480 0 10.63 Micronecta poNeri

Micronecta poNeri 2 monophyletic ACB1970 2.39 10.63 Micronecta griseola

Micronecta scholtzi 6 monophyletic AAK6479 0.16 18.58 Sigara semistriata

Paracorixa concinna 11 monophyletic
ABV3365, 

ADG5371
1.71 7.03 Sigara semistriata

Sigara distincta 7 polyphyletic
ABY7152, 

ABV4484
5.77 0.37 Sigara falleni

Sigara dorsalis* 1 n. a. AAJ6688 0 1.71 Sigara striata

Sigara falleni 12 polyphyletic
AAH9524, 

ABY7152
3.37 0 Sigara iactans

Sigara fossarum 3 monophyletic
AAJ6707, 

ADD1512
2.82 2.72 Sigara scotti

Sigara hellensii 2 monophyletic
ADH9592, 

ACT7694
4.41 9.09 Sigara distincta

Sigara iactans 12 polyphyletic
ABY7152, 

AAH9524
2.67 0 Sigara falleni

Sigara lateralis 14 monophyletic AAJ6697 0.81 9.84 Sigara striata

Sigara limitata 2 paraphyletic ACM1221 0.48 0.15 Sigara semistriata

Sigara nigrolineata 16 monophyletic ACB1978 0.46 10.12 Sigara semistriata

Sigara scotti 12 monophyletic ACY0807 1.08 2.72 Sigara fossarum

Sigara semistriata 5 polyphyletic ACM1221 0 0.15 Sigara limitata

Sigara stagnalis 6 monophyletic ACY0713 0.55 11.45 Paracorixa concinna

Sigara striata 10 monophyletic AAJ6688 0.93 1.71 Sigara dorsalis

Sigara venusta 2 monophyletic ABA5309 0 2.11 Sigara semistriata

Naucoridae Ilyocoris cimicoides 17 monophyletic AAF2590 1.03 15.06 Hesperocorixa sahlbergi

Nepidae Nepa cinerea 10 monophyletic AAK8359 0.34 17.06 Notonecta maculata

Ranatra linearis 16 monophyletic AAL1328 0.84 15.03 Notonecta lutea

Notonectidae Anisops sardeus* 5 monophyletic ABV0079 1.24 12.84 Notonecta maculata

Notonecta glauca 41 monophyletic AAK4442 1.71 1.08 Notonecta obliqua

Notonecta lutea 19 monophyletic AAN1701 0.68 1.24 Notonecta reuteri

Notonecta maculata 10 monophyletic AAN1703 2.43 6.56 Notonecta glauca

Notonecta obliqua 9 monophyletic AAK4442 0.64 1.08 Notonecta glauca

Notonecta reuteri 5 monophyletic ACE8526 0.46 1.24 Notonecta lutea

Notonecta viridis 10 monophyletic ABV0133 1.18 5.03 Notonecta glauca

Pleidae Plea minutissima 17 monophyletic
ACY0868, 

AAF3832
8.3 10.92 Notonecta lutea

Gerridae Aquarius najas 7 monophyletic AAN1521 2.14 11.75 Gerris thoracicus

Aquarius paludum 19 monophyletic AAI7450 1.24 12.61 Gerris argentatus

Gerris argentatus 32 monophyletic ADD1846 0.72 6.55 Gerris odontogaster

Gerris asper 1 n. a. ABA3327 0 0.34 Gerris lateralis

Gerris costae 11 monophyletic ACI6181 0 7.48 Gerris thoracicus

Gerris gibbifer 11 monophyletic ACB1756 0.88 8.91 Gerris lacustris

Gerris lacustris 38 monophyletic ACT3584 1.05 8.91 Gerris gibbifer

Gerris lateralis 2 monophyletic ABA3327 0.17 0.34 Gerris asper

Gerris odontogaster 19 monophyletic
ABU6679, 

ADD1838
1.59 6.55 Gerris argentatus

Gerris thoracicus 6 monophyletic ACB1745 0.35 7.48 Gerris costae

Limnoporus 

rufoscutellatus
3 monophyletic AAV0261 0.88 11.86 Gerris asper

Hebridae Hebrus pusillus 2 monophyletic AAN0981 0.15 14.32 Hebrus ruficeps

Hebrus ruficeps 7 monophyletic AAI6967 0.15 14.32 Hebrus pusillus

Hydrometridae Hydrometra gracilenta 9 monophyletic AAN0857 0.46 13.06 Hydrometra stagnorum

Hydrometra stagnorum 21 monophyletic AAK5632 0.62 13.06 Hydrometra gracilenta

Mesoveliidae Mesovelia furcata 17 monophyletic AAN2451 1.39 16.24 Mesovelia vittigera

Mesovelia vittigera* 4 monophyletic ACD4048 2.32 16.24 Mesovelia furcata

Veliidae Microvelia buenoi 1 n. a. ACY1789 0 15.06 Gerris costae

Microvelia reticulata 27 monophyletic AAG4341 0.77 15.04 Gerris asper

Velia caprai 20 monophyletic AAN0455 1.1 4.94 Velia saulii

Velia currens* 3 monophyletic ADI1962 0 2.82 Velia saulii

Velia saulii 1 n. a. ABX0836 0 2.82 Velia currensPeerJ reviewing PDF | (2017:12:22312:1:0:NEW 8 Feb 2018)
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