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Recent advances have allowed for greater investigation into microbial regulation of

mercury toxicity in the environment. In wetlands in particular, dissolved organic matter

(DOM) may influence methylmercury (MeHg) production both through chemical

interactions and through substrate effects on microbiomes. We conducted microcosm

experiments in two disparate wetland environments (oligotrophic unvegetated and high-C

vegetated sediments) to examine the impacts of plant leachate and inorganic mercury

loadings (20 mg/L HgCl2) on microbiomes and MeHg production in the St. Louis River

Estuary. Our research reveals the greater relative capacity for mercury methylation in

vegetated over unvegetated sediments. Further, our work shows how mercury cycling in

oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis

River Estuary: microcosms receiving leachate produced substantially more MeHg than

unamended microcosms. We also demonstrate (1) changes in microbiome structure

towards Clostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of

complex DOM; all of which coincide with elevated net MeHg production in unvegetated

microcosms receiving leachate. Together, our work shows the influence of wetland

vegetation in controlling MeHg production in the Great Lakes region and provides evidence

that this may be due to both enhanced microbial activity as well as differences in

microbiome composition.
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24 Abstract.

25 Recent advances have allowed for greater investigation into microbial regulation of 

26 mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) 

27 may influence methylmercury (MeHg) production both through chemical interactions and 

28 through substrate effects on microbiomes. We conducted microcosm experiments in two 

29 disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to 

30 examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl2) on 

31 microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the 

32 greater relative capacity for mercury methylation in vegetated over unvegetated sediments. 

33 Further, our work shows how mercury cycling in oligotrophic unvegetated sediments may be 

34 susceptible to DOM inputs in the St. Louis River Estuary: microcosms receiving leachate 

35 produced substantially more MeHg than unamended microcosms. We also demonstrate (1) 

36 changes in microbiome structure towards Clostridia, (2) metagenomic shifts toward 

37 fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net 

38 MeHg production in unvegetated microcosms receiving leachate. Together, our work shows the 

39 influence of wetland vegetation in controlling MeHg production in the Great Lakes region and 

40 provides evidence that this may be due to both enhanced microbial activity as well as differences 

41 in microbiome composition.

42

43 Keywords. St. Louis River Estuary, Clostridia, oligotrophic, fermentation, mercury methylation, 

44 carbon

PeerJ reviewing PDF | (2018:01:23590:0:1:NEW 31 Jan 2018)

Manuscript to be reviewed



45 Introduction.

46 Mercury methylation in anoxic sediments is central to the bioaccumulation of mercury in 

47 plant and animal tissue (Benoit et al. 2003; Morel et al. 1998; Ullrich et al. 2001) and poses a 

48 significant environmental and human health concern in the freshwater wetlands of the Great 

49 Lakes region (Branfireun et al. 1999; Harmon et al. 2005; Jeremiason et al. 2006). Dissolved 

50 organic matter (DOM) has been a focus of geochemical investigations for decades, and both 

51 positive and negative interactions between DOM and mercury methylation – principally, a 

52 microbial transformation (Hsu-Kim et al. 2013) – have been demonstrated under contrasting 

53 environmental conditions (Graham et al. 2013; Hsu-Kim et al. 2013; Ravichandran 2004). 

54 Further, recent discoveries in microbial ecology of mercury methylation have pointed to the role 

55 of microbial community composition in driving mercury cycling.  Yet, linkages among DOM 

56 cycling, sediment microbiomes that directly mediate mercury methylation, and MeHg production 

57 remain poorly described.

58 Dissolved organic matter is comprised of various classes of organic compounds 

59 (primarily organic acids) with a wide range of molecular weights and aromaticities (Lambertsson 

60 & Nilsson 2006; Wetzel 1992). DOM concentrations are elevated in wetlands relative to other 

61 freshwater systems (>10 mg/L), and the humic fraction derived from plant leachate 

62 predominates. With respect to mercury cycling in wetlands, mercury methylation is impacted 

63 both by binding properties of the humic DOM fraction, resulting either in increased dissolution 

64 of inorganic mercury complexes or in physical inhibition of mercury bioavailability (Drexel et al. 

65 2002; Haitzer et al. 2002; Waples et al. 2005), and by the provisioning of organic substrate for 

66 microbial activity (Hsu-Kim et al. 2013; King et al. 2000; Lambertsson & Nilsson 2006). Since 

67 mercury methylation is strongly impacted by DOM, environments such as the St. Louis River 
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68 estuary, which contains areas of both vegetated and unvegetated sediments, may also show 

69 differences in the capacity for MeHg production across vegetation gradients which exhibit 

70 pronounced differences in DOM content. 

71 Beyond the interaction of DOM and mercury and the influence of DOM on microbial 

72 activity, numerous studies have shown that microbiome composition itself is influenced by DOM 

73 quantity and/or quality (Docherty et al. 2006; Forsström et al. 2013; Graham et al. 2016a; 

74 Graham et al. 2017; Pernthaler 2013; Stegen et al. 2016), and such changes in environmental 

75 microbiomes alter biogeochemistry (Graham et al. 2016a; Graham et al. 2017; Graham et al. 

76 2016b). The composition of microbial communities has recently gained increased attention with 

77 regard to mercury cycling due to the discovery of the hgcAB gene cluster, which has allowed 

78 investigations into the microbial ecology of mercury cycling (Boyd et al. 2017; Gilmour et al. 

79 2013; Gionfriddo et al. 2016; Parks et al. 2013; Rani et al. 2015; Rothenberg et al. 2016; 

80 Schwartz et al. 2016). Such work has increased knowledge on the microbiology of mercury 

81 methylation, expanding potential microorganisms mediating methylation beyond sulfate-

82 reducing bacteria (Compeau & Bartha 1985; Hsu-Kim et al. 2013), iron-reducing bacteria (Kerin 

83 et al. 2006) and methanogens (Hamelin et al. 2011). For example, Gilmour et al. (2013) have 

84 identified five clades of putative methylators, including new clades of syntrophic and Clostridial 

85 organisms. 

86 In this study, we examine the influence of DOM from plant leachate on net 

87 methylmercury (MeHg) production in a contaminated freshwater estuary at the base of Lake 

88 Superior. First, we describe net MeHg production in environments associated with ambient 

89 DOM concentration that are high (vegetated sediments) and low (unvegetated sediments), two 

90 contrasting sediment types that are widely found in the environment. We hypothesize that both 
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91 DOM quantity and quality influence mercury methylation through two different pathways, 1) by 

92 regulating microbial activity and 2) by shifting bacterial community composition, and therein the 

93 metabolic diversity of mercury methylators. We test this hypothesis across chemically distinct 

94 sediments associated with unvegetated (oligotrophic, low-C) and vegetated (high-C) 

95 environments. We used a microcosm experiment to monitor changes in sediment microbiomes, 

96 DOM chemical quality, and net MeHg production in response to additions of leachate from 

97 overlying plant material and to high levels of inorganic mercury. DOM quality was characterized 

98 by fluorescence spectroscopy using indices that can be incorporated in site assessment and 

99 monitoring strategies. In total, this work delineates a broad view of how vegetated vs. 

100 unvegetated sediments in the St. Louis River Estuary may have different capacities for the 

101 cycling of mercury. 

102

103 Methods.

104 Field site.

105 The St. Louis River Estuary is home to the largest U.S. port on the Great Lakes and 

106 covers roughly 12,000 acres of wetland habitat directly emptying into Lake Superior. Mining in 

107 the headwaters, industrial discharge in the port, and atmospheric deposition have left a legacy of 

108 mercury contamination in the sediment. We obtained sediment samples from vegetated 

109 (Zizania palustris (wild rice), 46o 40.855’ N, 91o 59.048’W) and unvegetated (46o 41.918’ N, 92o 

110 0.123’ W) patches in Allouez Bay and fresh wild rice plant matter from nearby Pokegama Bay 

111 (46.683448oN, 92.159261oW) to minimize sampling impacts. Both habitats are clay-influenced 

112 embayments that drain an alluvial clay plain created by deposition during the retreat of the last 

113 glaciation approximately 10,000 years BP.
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114

115 Experimental design.

116 A total of 20 anoxic microcosms were constructed in September 2013 to investigate 

117 relationships between DOM cycling, sediment microbiomes, and mercury methylation. Sediment 

118 was obtained in 250-mL amber Nalgene bottles from the top 10 cm of sediment using a block 

119 sampling design described in the Supplemental Material. Leachate was extracted using 1 g dried, 

120 ground plant matter:20 mL of Nanopure water, filtered through Whatman 0.7 μm GFF filters 

121 (Whatman Incorporated, Florham Park, NJ, USA). Microcosms were constructed in 500-mL 

122 airtight glass mason jars and stored at room temperature in the dark in Mylar bags with oxygen-

123 absorbing packets between subsampling. Our experiment was designed to promote microbial 

124 MeHg production by adding an abundance of inorganic mercury and to take reasonable measures 

125 to minimize abiotic photo-methylation and -demethylation (Morel et al. 1998) and sustain a low 

126 redox environment for inhibiting demethylation (Compeau & Bartha 1984). We acknowledge 

127 that we did not eliminate all potential demethylation activity from our microcosms, and we refer 

128 to changes in MeHg as ‘net MeHg production’ to reflect possible demethylation (consistent with 

129 other recent work, Schwartz et al. 2016). All experimental set up and sample processing was 

130 conducted in an anaerobic glovebox containing 85% N2, 5% CO2, and 10% H2 gas mix at the 

131 USGS in Boulder, CO. Jars were degassed in the glovebox for 48 hr prior to experimentation to 

132 remove oxygen.

133 A full-factorial design was employed with two environments (vegetated and unvegetated 

134 sediment) and two treatments (plant leachate and Nanopure water). Sediments were 

135 homogenized via mixing but unsieved to maintain environment characteristics. Large roots (>1 

136 cm) were infrequent and removed to lessen heterogeneity among replicates. Each microcosm 
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137 received 100 g wet sediment, and 250 mL solution consisting either of leachate at 100 mg/L (~5x 

138 natural concentrations to mimic a loading event) and HgCl2 at 20 mg/L (50 μg/g wet sediment) in 

139 Nanopure water (leachate replicates) or solely of HgCl2 at 20 mg/L in nanopure water (no 

140 leachate replicates). The purpose of HgCl2 addition at high concentration was to counteract initial 

141 differences in mercury, minimize HgCl2 inaccessibility due to abiotic organo-metal interactions, 

142 and provide substrate for the duration of the experiment. HgCl2 concentrations were elevated to 

143 extreme levels (1,000x ambient concentration), reflecting a convention in ecological change 

144 literature to stress ecosystems and eliminate substrate limitation with high levels of nutrients to 

145 assist in deciphering mechanistic controls over a process of interest. Although we added more 

146 HgCl2 than is common in mercury-DOM literature, we note that (1) the duration of experiment 

147 was long relative to other studies (28 days vs. <24hr in many studies); (2) DOM concentrations 

148 are high in the St. Louis River Estuary (>20 mg/L in the water column), and (3) added HgCl2 

149 concentrations were of comparable magnitude to some microcosm experiments of similar design 

150 (Harris-Hellal et al. 2009; Ruggiero et al. 2011; Zhou et al. 2012). Though we did not directly 

151 assess microbial activity, we estimate minimal dosage effects as communities without leachate 

152 did not change through time in unvegetated microcosms and only slightly changed through time 

153 in vegetated microcosms (R2 = 0.19, see results and Figure S1). Microcosms were incubated for 

154 28 days, and subsamples of sediment and water were taken every seven days for analysis of 

155 sediment microbiomes and DOM characteristics. 

156

157 Sediment chemistry and mercury methylation.

158 Percent carbon and nitrogen, NO3
-/NO2

-, NH4
+, total particulate organic carbon (TPOC), 

159 total dissolved nitrogen (TDN), and pH were determined on pre-incubation sediments, as 
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160 described in the Supplemental Material. For total- and methylmercury analysis, initial (day 0) 

161 and final (day 28) subsamples were frozen at -70oC, freeze-dried, and sent on dry ice to the 

162 USGS Mercury Lab in Middleton, WI for analysis by aqueous phase ethylation, followed by gas 

163 chromatographic separation with cold vapor atomic fluorescence detection (Method 5A-8), acid 

164 digestion (Method 5A-7), and QA/QC. Mercury analyses were performed on 3 of 5 replicates for 

165 each environment and microcosm type. All other analyses were performed on 5 replicates, 

166 except for no unvegetated microcosms without leachate beyond day 0 (n = 4, one replicate 

167 destroyed during experiment).

168

169 Dissolved organic matter characteristics.

170 Aqueous subsamples from water overlying sediments were collected at 7-day intervals 

171 (days 0, 7, 14, 21, and 28) to determine non-purgeable organic carbon (NPOC) concentration and 

172 specific UV absorbance at 254 nm (SUVA254) as well characteristics of the optically active DOM 

173 pool (mostly associated with humic DOM fraction), as described in the Supplemental Material. 

174 We calculated the fluorescence index (FI) to determine the relative contribution of microbial vs. 

175 terrestrial matter to the DOM pool, the humic index (HIX) to identify large aromatic compounds 

176 consistent with humic material, and the freshness index to determine the availability of labile 

177 carbon (Fellman et al. 2010; Gabor et al. 2014a) using MATLAB software (2013a, The 

178 MathWorks, Natick, MA) according to Gabor et al. (2014b). 

179

180 Microbial DNA extraction, 16S rRNA amplicon, and metagenomic shotgun sequencing.

181 DNA from each sediment subsample was extracted using the MO Bio Power Soil DNA 

182 Extraction kit (MO BIO Laboratories, Carlsbad, CA, USA), as described in Knelman et al. 
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183 (2012). The region encoding the V4 fragment of the 16S rRNA gene was amplified with the 

184 primers 515F/806R, using the PCR protocol described by the Earth Microbiome Project 

185 (Caporaso et al. 2012) (Supplemental Material). The final multiplexed DNA samples were 

186 sequenced at CU-Boulder (BioFrontiers Institute, Boulder, CO) on an Illumina MiSeq with the 

187 MiSeq Reagent Kit v2, 300 cycles (Illumina, Cat. # MS-102-2002) to generate 2 x 150-bp 

188 paired-end reads. Sequences are available at XXXXXX. In addition, 3 unvegetated leachate 

189 replicates at day 0 (before leachate addition) and day 28 were sent to the Joint Genome Institute 

190 (JGI) for shotgun metagenomic sequencing on the Illumina HiSeq platform. Sequences are 

191 available at XXXXX.

192 To examine shifts in bacterial community composition that may relate to mercury 

193 cycling, we located 90 of 142 (65%) microbial strains that have been identified as containing the 

194 hgcAB gene cluster (listed by Oak Ridge National Laboratory (ORNL), 

195 http://www.esd.ornl.gov/programs/rsfa/data/PredictedMethylators/PredictedMethylators_20160420.pdf) with 

196 available complete or partial 16S rRNA gene sequences in the NCBI GenBank database (Benson 

197 et al. 2013). While our database was not exhaustive and sub-OUT level sequence variation (97%) 

198 may impact an organism’s methylation potential, the purpose of this analysis was to identify 

199 possible methylating OTUs of interest, and the represented sequences spanned all clades of 

200 methylators (Figure S2). We created a closed-reference database of these sequences and picked 

201 OTUs against this database in QIIME to discern a reduced set of potential methylating taxa 

202 present in our samples. This highlighted taxa that are known to contain methylating organisms, 

203 and we assessed how such taxa shift in response to DOM addition across the two sediment types 

204 and may correspond with changes in mercury methylation.

205
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206 Sequence analysis.

207 Partial 16S rRNA gene were filtered for sequence length and minimum quality score in 

208 the UPARSE pipeline (Edgar 2013) and OTUs were assigned using QIIME (Caporaso et al. 

209 2010) (Supplemental Material). Metagenomic shotgun sequences were assembled and classified 

210 against the protein families database (Pfam) (Finn 2012), Clusters of Orthologous Groups of 

211 proteins (COG) (Tatusov et al. 2003), and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

212 (Kanehisa & Goto 2000) by JGI via the IMG database pipeline (Markowitz et al. 2012). In 

213 addition, a BLAST database was constructed from all hgcA and hgcB gene sequences available 

214 in GenBank. A BLASTX search was conducted against this database to identify taxonomic 

215 affiliation of methylators in our samples; however, our query resulted in no matches, likely due 

216 to inadequate sequencing depth.

217

218 Statistical analysis.

219 All analyses, unless otherwise noted, were conducted using the R software platform. 

220 Shapiro-Wilk tests were used to verify normality and assess the appropriateness of parametric vs. 

221 non-parametric tests. Multivariate sediment properties (e.g., sediment geochemistry) were 

222 compared across environments at day 0 with Hotelling’s T-square Test and post hoc Student’s t-

223 tests. MeHg production was calculated by subtracting day 0 from day 28 MeHg concentrations; 

224 values below detection limit were assigned the detection limit as a value for a conservative 

225 estimate of change. MeHg production was compared across groups using ANOVA. Changes in 

226 DOM indices (FI, freshness, HIX) through time (days 0, 7, 14, 21, and 28) in each sample group 

227 were assessed with linear and quadratic regressions. DOM samples with SUVA254 >7 were 
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228 removed due to fluorescence interference from inorganic molecules. Comparisons of DOM 

229 indices between data subsets were conducted with ANOVA and post hoc Tukey HSD.

230 Microbial community dissimilarity matrices based on 16S rRNA sequences were 

231 constructed using the weighted UniFrac method (Lozupone et al. 2011) in QIIME. Alpha 

232 diversity for each sample was assessed using the PD whole tree metric in QIIME. Changes in 

233 community structure through time (days 0, 7, 14, 21, 28) were assessed with ANOSIM in 

234 QIIME. Differences in alpha diversity at day 0 were assessed using unpaired one-way Student’s 

235 t-tests. Relative abundances of major clades were assessed between vegetated and unvegetated 

236 environments at day 0 and changes in clades through time (days 0, 7, 14, 21, 28) were assessed 

237 using non-parametric Kruskal-Wallis tests with FDR-correct P values. SIMPER analysis was 

238 conducted using the ‘vegan package’ to identify OTUs associated with community dissimilarity 

239 between days 0 and 28 in microcosms receiving leachate. 

240 To focus our analysis of microbiome composition on taxa that may contain methylating 

241 bacteria, we used one-sided Mann-Whitney U tests to identify clades of organisms on ORNL’s 

242 list of potential methylators that changed through time. We build upon previous work by 

243 Rothenberg et al. (2016), who examined genus-level changes in known methylating clades, and 

244 Rani et al. (2015), who examined only methylating Deltaproteobacteria at the OTU level, by 

245 targeting all microorganisms identified by ORNL at the OTU level. We present results as 

246 changes in percent relative abundance rather than fold-change due to the absence of some 

247 organisms at day 0 (i.e., zero abundance). Microorganisms that exhibited significant changes 

248 were further compared to HIX and net MeHg production to examine potential relationships 

249 among DOM, bacterial taxa, and mercury cycling. For this analysis, we used the Pearson 

250 product-momentum correlation coefficient, grouping leachate and no leachate microcosms 

PeerJ reviewing PDF | (2018:01:23590:0:1:NEW 31 Jan 2018)

Manuscript to be reviewed

Britt's SurfacePro 4
Sticky Note
I do not have the expertise to assess statistical methods.  



251 within each environment in a single analysis to provide replication across a wide range of 

252 variation (analysis conducted on data from day 28, n = 6). 

253 Finally, we explored metagenomic shotgun sequences for information on specific 

254 microbial metabolic pathways that changed through time in our microcosms. We used binomial 

255 tests to detect increases in the frequency of COGs, Pfams, and KEGG pathways at day 28 

256 relative to day 0. Targets more abundant at day 28 (FDR-corrected P < 0.01) were examined for 

257 correlations with HIX and MeHg production with the Pearson product-momentum correlation 

258 coefficient to decipher possible links between microbial metabolism, DOM cycling, and net 

259 MeHg production.

260

261 Results.

262 Ambient geochemistry and microbiology.

263 Physicochemical properties and sediment microbiomes differed between vegetated and 

264 unvegetated environments (Hotelling P = 0.004, Table 1). The unvegetated environment was 

265 extremely oligotrophic, with low concentrations of sediment C and N, and both vegetated and 

266 unvegetated environments appeared to be N-limited (C:N 16.43 and 20.06). In addition, 

267 methylmercury production in sediments without leachate addition was significantly higher in 

268 vegetated sediment than unvegetated sediment, by nearly two orders of magnitude (Figure 1). 

269 Final total Hg concentrations at the end of the microcosm experiment were 79.2 +/- 18.3 

270 (vegetated with leachate), 86.5 +/- 14.5 (vegetated without leachate), 15.0 +/- 5.8 (unvegetated 

271 with leachate), and 18.1 +/-1.3 (unvegetated without leachate) ug per g wet sediment. Microbial 

272 community structure and alpha diversity were significantly different between the two 
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273 environments (ANOSIM, P = 0.001, R= 1.00, t-test, P = 0.01), though major phyla were similar 

274 (Table 1).

275

276 Microbiome response to HgCl2 and leachate addition.

277 Over the course of the incubation, microcosms with vegetated, high-C sediment produced 

278 over ten times more MeHg than unvegetated sediment microcosms, regardless of leachate 

279 amendment (ANOVA P = 0.002, Figure 1). However, leachate did not stimulate MeHg 

280 production in the vegetated environment. Within the oligotrophic, unvegetated environment, 

281 mercury methylation was enhanced by leachate within the oligotrophic unvegetated environment 

282 with roughly two to four times more production in microcosms receiving leachate as compared 

283 to those without leachate. 

284 Community structure changed through time in vegetated and unvegetated environments 

285 with leachate (ANOSIM across days 0, 7, 14, 21, 28, veg.: P = 0.001 R = 0.40, unveg.: P = 

286 0.001 R = 0.43, Figure S2A and B), but not those without leachate (veg.: P = 0.02, R = 0.19, 

287 unveg.: P > 0.05, Figure S2A and B), indicating no substantial effect from high concentrations of 

288 added inorganic mercury on microbiome structure. At day 28, communities in unvegetated 

289 microcosms with leachate were different than those without leachate (ANOSIM, P = 0.01, R = 

290 0.54), while microbiome structure in vegetated sediment microcosms only weakly differed 

291 between leachate and no leachate groups (P = 0.04, R = 0.22). 

292 Changes in community structure in response to leachate was partially generated by shifts 

293 in microbial taxa that are known to contain methylating bacteria.  For example, we observed an 

294 increase in Clostridia in both environments (Kruskal-Wallis, veg.: FDR-corrected P = 0.003, 

295 unveg.: P = 0.018, Figure 2B, Table S3) and a decrease in Deltaproteobacteria in unvegetated 
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296 sediment (Kruskal-Wallis, veg.: FDR-corrected P = 0.36, unveg.: FDR-corrected P = 0.015, 

297 Figure 2A). In particular, Clostridia abundances increased by 3-fold (1.1% to 3.8% of the 

298 microbiome) and 10-fold (1.5% to 10.5% of the microbiome), respectively in vegetated and 

299 unvegetated environments, driven by increases in nearly all families of Clostridia. SIMPER 

300 analysis was confirmative of these changes in the full community -- 22.9% of 175 SIMPER-

301 identified OTUs belonged to Clostridia (increased from avg. 0.78 OTUs/sample to avg. 17.20 

302 OTUs/sample, Table S3) while 8% belonged to Deltaproteobacteria (decreased from avg. 8.5 

303 OTUs/sample to 7.4 OTUs/sample, Table S2).

304 One family of Clostridia known to contain methylating bacteria (Peptococcaceae), 

305 sharply increased with leachate in unvegetated sediment and displayed a similar trend in 

306 vegetated sediment (Mann-Whitney U, veg.: uncorrected P = 0.03, unveg.: uncorrected P = 

307 0.03, Figure 2B, Table S3). These changes were due in part to increases in two closely related 

308 methylating OTUs (Mann-Whitney U, Dehalobacter restrictus strain PER-K23, veg.: 

309 uncorrected P = 0.04, from an average of 0% to 6% of the reduced set of potential methylating 

310 taxa, and Syntrophobotulus glycolicus strain DSM 1351, unveg.: uncorrected P = 0.01, from an 

311 average of 0% to 3% of the reduced set of potential methylating taxa) grouped in a single genus 

312 by our classification system (Dehalobacter_Syntrophobotulus, Figure S2). Vegetated sediments 

313 also experienced a slight increase in [Clostridium] cellobioparum strain DSM 1351 (uncorrected 

314 P = 0.03, from an average of 0% to 1% of the reduced set of potential methylating taxa), while 

315 unvegetated sediments displayed an increase in Geobacter bemidjiensis strain Bem (uncorrected 

316 P = 0.02, from an average of 24% to 42% of the reduced set of potential methylating taxa) and a 

317 decrease in Geobacter sp. M21 (uncorrected P = 0.006, from an average of 15% to 3% of the 

318 reduced set of potential methylating taxa). No other OTUs changes in these microcosms.
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319 Metagenomic shotgun sequences were consistent with microbiome shifts observed in 16S 

320 rRNA genes. We note increases in Clostridia (t-test, FDR-corrected P = 0.006), Peptococcaceae 

321 (t-test, FDR-corrected P = 0.018), Dehalobacter restrictus (t-test, FDR-corrected P = 0.024), and 

322 Syntrophobotulus glycolicus (t-test, FDR-corrected P = 0.042) as well as a possible trend for 

323 decreases in Deltaproteobacteria (t-test, FDR-corrected P = 0.18) in metagenomic data (Figure 

324 3D). We also idenitfied 7,150 KEGG pathways, 84 COGs, and 79 Pfams that were significantly 

325 enriched at day 28 relative to day 0 in unvegetated leachate microcosms (Figure 3A-C). All 

326 classfication systems revealed metabolic shifts towards glycosyltranseferases, among other 

327 pathways involved in DOM oxidation and in iron and nitrate reduction.

328

329 Changes in DOM chemistry.

330 Details of DOM quantity and quality changes are presented in Figures 4 and S3 and 

331 described in greater detail in the Supplemental Material. Regression statistics associated with 

332 Figures 4 and S3 are presented in Table 2. 

333 DOM fluorescence indices displayed notable changes through time. In the vegetated 

334 environment, FI remained stable at a low value in leachate microcosms, indicating plant-derived 

335 DOM, and rose in microcosms without leachate indicating greater relative contribution of 

336 microbial vs. abiotic processing (Figure 4A and B). In contrast, in the vegetated environment, 

337 HIX increased in both leachate and no leachate microcosms indicating processing of more labile 

338 vs. recalcitrant DOM (Figure 4C and D). This increase in HIX corresponded with decrease in 

339 freshness (Figure 4E and F), further supporting our interpretation. In the unvegetated 

340 environment, leachate microcosms (but not microcosms without leachate) increased in FI (Figure 

341 4A and B) denoting an increase in microbially-sourced DOM over time. There was no change in 
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342 HIX (Figure 4C and D) suggesting equal processing of labile vs. recalcitrant DOM. Freshness 

343 varied non-linearly in leachate microcosms but not those without leachate (Figure 4E and F). 

344 Across environment types, HIX was significantly higher in vegetated microcosms 

345 (ANOVA P < 0.0001, Tukey HSD, leachate: P < 0.0001, no leachate: P = 0.004). FI and 

346 freshness were higher in unvegetated leachate microcosms than in vegetated DOM-amended 

347 microcosms (Tukey HSD, FI: P = 0.003, freshness: P = 0.03) but did not differ across 

348 microcosms without leachate (Tukey HSD, FI: P = 0.89, freshness: P = 0.40).

349

350 Correlation of microbiome, DOM characteristics, and MeHg production.

351 Given the apparent shift in community structure towards Clostridia, and 

352 (chemoorganotrophic) Peptococcaceae in particular, we examined correlations of members of 

353 this family listed in the ORNL methylator database with the proportion of complex organic 

354 matter (HIX) and MeHg production within each environment. We focused on HIX because this 

355 index changed consistently and reflected portions of recalcitrant carbon substrate pools utilized 

356 by the organisms we identified. Because we only calculated net MeHg production at the 

357 conclusion of the incubation, we analyzed these correlations at day 28 and grouped leachate and 

358 no-leachate replicates within each environment to provide sufficient variation and sample size (n 

359 = 6). Peptococcaceae with the potential to methylate merucry negatively correlated with HIX 

360 and positively correlated with MeHg production in unvegetated microcosms (Pearson’s r (n = 6), 

361 HIX: r = -0.82, MeHg: r = 0.67).  The same organism were not strongly correlated with HIX (r = 

362 -0.49) or MeHg production (r = -0.04) in vegetated microcosms.

363 Finally, despite low statistical power (n = 3), we observed marginally significant trends 

364 (P < 0.10) between key metabolic pathways and HIX (Table 3). While we note that the sample 
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365 size for this analysis was low, it is remarkable to observe any trends under this limitation and we 

366 provide results as an encouraging avenue for future research.  In particular, COGs classified as: 

367 Glycosyltransferase, Glycosyltransferases involved in cell wall biogenesis, Glycosyltransferases 

368 - probably involved in cell wall biogenesis, and Beta-galactosidase/beta-glucuronidase; and 

369 Pfams classified as: Glycosyl transferase family 2, Radical SAM superfamily, and SusD family 

370 displayed significant correlations with HIX at the P < 0.10 level. Only Pfam PF00593, TonB 

371 dependent receptor, correlated with MeHg production (P < 0.001, r = -1.00, Table 2).

372

373 Discussion.

374 We show the importance of vegetation patterns and DOM availability in mercury cycling 

375 within Lake Superior’s St. Louis River Estuary, an integral environment to human society and 

376 industries of the region. Our work demonstrates not only the far higher levels of mercury cycling 

377 in natural vegetated over unvegetated sediments, but also the susceptibility of oligotrophic, 

378 unvegetated sediments to increases in mercury methylation and changes in microbiomes with the 

379 addition of DOM. We also suggest a possible involvement of metabolisms that ferment 

380 recalcitrant organic matter in mercury methylation, particularly within oligotrophic unvegetated 

381 environments. Our results provide a basis for further investigation into the role of newly 

382 discovered microorganisms in regulating the production of MeHg in the Great Lakes region and 

383 further a body of work aimed at understanding and mitigating human exposure to MeHg. 

384

385 Mercury methylation across environments.

386 Our work indicated a strongly different capacity of vegetated vs. unvegetated wetland 

387 sediments to cycle mercury. Without leachate addition, MeHg production in vegetated sediments 

388 was two orders of magnitude higher than in unvegetated sediments (Figure 1). As such, 
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389 vegetated sediments may be considered potentially important locations for mercury methylation 

390 when mercury is present in the environment. Such a dynamic may be due to either higher overall 

391 activity of microorganisms or the unique microbiomes contained within these sediments. Within 

392 the high-C vegetated environment, leachate did not influence the sediment microbiome or net 

393 MeHg production to the same extent as within the more oligotrophic unvegetated environment 

394 (Figure 1, Figure S1). Given high ratios of C:N, high OC content, and low NO3
- concentrations 

395 in our vegetated sediment (Table 1), N-limitation may have mitigated net MeHg production in 

396 vegetated environments relative to the unvegetated environment (Taylor & Townsend 2010), 

397 which had substantially lower concentrations of all measured C and nutrient concentrations. Both 

398 ambient MeHg levels and net MeHg production were dramatically higher in the vegetated 

399 environment, supporting other findings that plant-microbe interactions facilitate MeHg 

400 production (Gentès et al. 2017; Roy et al. 2009; Windham-Myers et al. 2014; Windham‐Myers 

401 et al. 2009). 

402 By contrast, the unvegetated environment experienced a dramatic increase in MeHg 

403 (Figure 1) in response to leachate that correlated with changes in the sediment microbiome 

404 (Figure 2 and 3, Figure S1). Carbon limitation has been widely demonstrated as a constraint on 

405 microbial activity (Bradley et al. 1992; Brooks et al. 2005; Wett & Rauch 2003); thus, leachate 

406 may bolster MeHg production in C-limited ecosystems via impacts on microbial activity. In our 

407 system, net MeHg production in the unvegetated environment was possibly also constrained by 

408 low in situ rates of microbial activity and by low N concentration, and net MeHg production in 

409 response to leachate stimulus never increased to vegetated levels. Importantly, leachate enhanced 

410 the relative abundance of a specific taxon known to contain methylating organisms (Clostridia), 
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411 raising the possibility that mercury methylation rates may be dually influenced by the sediment 

412 microbiome and by organic matter (Aiken et al. 2011; Hsu-Kim et al. 2013). 

413

414 Microbiome response to leachate addition.

415 Microbiome responses to leachate in both sediment types are consistent with recent work 

416 demonstrating the fermentation of organic material (OM) by Clostridia despite the presence of 

417 OM-oxidizing Deltaproteobacteria (Reimers et al. 2013) and suggest a possible role for 

418 members of Clostridia in MeHg production. Within both environments, leachate altered the 

419 sediment microbiome, driven largely by increases in Clostridia and decreases in 

420 Deltaproteobacteria. Unvegetated microcosms displayed greater changes in these clades, 

421 supporting a greater role for environmental filtering by DOM within oligotrophic environments 

422 (Barberán et al. 2012; Stegen et al. 2012). Clostridia are obligate anaerobes with the ability to 

423 produce labile carbon compounds via fermentation of recalcitrant organic matter (Reimers et al. 

424 2013; Ueno et al. 2016). Recent work has shown organic carbon degradation via Clostridial 

425 fermentation to operate at comparable rates to more energetically favorable carbon processing 

426 pathways (Reimers et al. 2013). Organic acids (e.g., lactate and acetate) produced through these 

427 pathways can also be utilized as a carbon source by sulfate- and iron- reducing 

428 Deltaproteobacteria (Guerrero-Barajas et al. 2011; Reimers et al. 2013; Zhao et al. 2008). Thus, 

429 enhanced DOM breakdown by Clostridia may support other biogeochemical cycles that rely on 

430 organic carbon as an energy source.  

431 In unvegetated sediments, metagenomic analyses indicated an increase in carbon, and 

432 secondarily, iron metabolisms consistent with clades known to methylate mercury, although no 

433 methylating pathways could be identified in this work (Gilmour et al. 2013; Hamelin et al. 2011; 

PeerJ reviewing PDF | (2018:01:23590:0:1:NEW 31 Jan 2018)

Manuscript to be reviewed

Britt's SurfacePro 4
Sticky Note
Isn't it possible that the increased methylation is a result not of Clostridia doing the actual methylation, but rather the syntropy of between Clostridia (producing C source) and SRB and FeRB?  Is that what youa re getting at with the subsequent sentence?

Britt's SurfacePro 4
Sticky Note
Remember, since you did not use a targetted approach in determined presence of hgc, the presence of Clostridia in environments that high high net MeHg does not mean that it methylates.  



434 Kerin et al. 2006; Podar et al. 2015). Carbon metabolisms were the primary KEGG category 

435 increasing in abundance within metagenomes (Figure 3A), and several COG pathways and 

436 Pfams indicated a possible metabolic shift favoring glycosyltransferases that convert starches, 

437 sugars, and nitroaromatics into a wide range of compounds (Bowles et al. 2005; Ramli et al. 

438 2015) (Figure 3B and C). Further, metagenomic increases in Beta-galactosidase/beta-

439 glucoronidase (lactose to galactose/glucose) (Martini et al. 1987), sugar phosphate 

440 isomerase/epimerases (sugar metabolism) (Yeom et al. 2013), and lactoylglutathione lyase 

441 (detoxification for methyglyoxal fermentation byproduct) (Inoue & Kimura 1995) and the SusD 

442 family (glycan binding) (Martens et al. 2009) provide additional evidence for increases in 

443 fermentation processes in response to leachate. Increases in TonB dependent receptors (Moeck & 

444 Coulton 1998), amidohydrolase (Seibert & Raushel 2005), and NRAMP (Cellier et al. 1995) 

445 suggest a secondary importance of iron processing and/or transport of large organic compounds 

446 across cellular membranes. Finally, our results provide a possible genetic mechanism connecting 

447 iron, sulfur, carbon, and mercury cycling, as the radical SAM superfamily, which facilitates 

448 methyl transfers via the use of a [4Fe-S]+ cluster (Booker & Grove 2010), increased in concert 

449 with net MeHg production. In total, the metabolic potential of the sediment microbiome indicates 

450 changes in carbon and iron metabolisms within microcosms experiencing higher net MeHg 

451 production in response to leachate, supporting past work that suggests a linkage between 

452 mercury methylation and these factors (Gilmour et al. 2013; Hamelin et al. 2011; Hsu-Kim et al. 

453 2013; Kerin et al. 2006; Podar et al. 2015). 

454 Lastly, at high taxonomic resolution in both environments, leachate increased the 

455 proportion of bacterial taxa that are known to contain methylating organisms such as 

456 Peptococcaceae within Clostridia, despite drastic differences in sediment chemistry (Figure 2B). 
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457 Specifically, the two OTUs identified by ORNL as organisms with mercury methylation genes 

458 that displayed the greatest change are thought to generate energy via organohalide respiration (D. 

459 restrictus) and fermentative oxidation of organic matter (S. glycolicus, also capable of syntrophy) 

460 (Han et al. 2011; Stackebrandt 2014). The relative abundance of Peptococcaceae was positively 

461 correlated with MeHg production in the unvegetated environment, and other taxa that are known 

462 to contain methylating organisms did not increase in abundance, as would be expected if the 

463 activity of these organisms was enhanced by leachate. 

464 We note that shifts in these taxa contain many OTUs that are not methylating bacteria, 

465 however, we attempt to focus our analysis of changes in microbiome composition to taxa that are 

466 relevant to methylation. Overall this work points to the effects of DOM on microbial community 

467 composition with potential implication for microbiome function that may influence mercury 

468 cycling.  

469

470 Associations between microbiology, DOM processing, and net MeHg production.

471 The processing of proportionally more labile (microbe-preferred) organic matter would 

472 be expected to result in increases in HIX. However, changes in these indices within the 

473 unvegetated environment suggest substantial recalcitrant organic matter degradation vs. the 

474 metabolism of labile substrates (but not the vegetated environment which followed the 

475 expectation of increase HIX). We observed no change in HIX through time in unvegetated 

476 microcosms (both leachate and no leachate). This result is reflective of a DOM pool that has 

477 stable relative proportions of labile and recalcitrant organic material, indicating equal rates of 

478 degradation and/or production of both substrate types (Figure 4C and D). Vegetated microcosms, 

479 in contrast, experienced increases in HIX through time that indicate a loss of labile substrate 
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480 from the fluorescent DOM pool (Figure 4C and D). Further, in leachate unvegetated microcosms, 

481 which experienced pronounced changes in the sediment microbiome and increased MeHg 

482 production, HIX was significantly lower than in all other experimental groups (ANOVA, P < 

483 0.0001, all Tukey HSD P < 0.0001). While most microorganisms preferentially degrade labile C 

484 sources, the degradation of recalcitrant organic matter can contribute substantially to aquatic 

485 carbon cycling (Mcleod et al. 2011). Unvegetated microcosms receiving leachate also exhibited 

486 large increases in microbially-derived DOM (FI) through time, demonstrating a noticeable 

487 contribution of microbial activity to the DOM pool (Figure 4A).

488 The abundance of Peptococcaceae in unvegetated microcosms negatively correlated with 

489 HIX, denoting an apparent association of these members or co-occuring community members 

490 with DOM processing, but the mechanisms behind these shifts remain unclear. Metabolism of 

491 recalcitrant organic matter by fermenting organisms may influence mercury methylation via 

492 direct and indirect mechanisms. Members of Clostridia can generate MeHg themselves, and 

493 Clostridial degradation of recalcitrant organic matter can also produce bioavailable carbon 

494 substrates for sulfate- and iron- reducing organisms that produce MeHg (. 

495 While further work with larger sample size is needed, changes in metagenomes in 

496 responses to leachate denote interesting metabolic pathways that may be involved in recalcitrant 

497 organic matter processing and MeHg production. For example, both COG and Pfam 

498 glycosyltransferases were negatively correlated with HIX, suggesting a role for starch, sugar, and 

499 nitroaromatic fermentation in response to DOM loading. As well, a negative correlation between 

500 HIX, and the radical SAM superfamily provides a possible mechanistic linkage between methyl 

501 transfers and recalcitrant organic matter processing. Conversely, Beta-galactosidase/beta-
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502 glucuronidase, and the SusD family were positively correlated with HIX, indicating a co-

503 association with labile C processing rather than recalcitrant organic matter. 

504

505 Conclusions.

506 Our work shows clearly distinct mercury cycling dynamics between the vegetated and 

507 unvegetated sediments of the St. Louis River Estuary environment. While substantially greater 

508 MeHg production is observed in vegetated sediments, unvegetated sediments stand to respond 

509 more strongly to DOM additions in driving increases in MeHg production. We also describe 

510 changes in DOM pool properties through time using fluorescence indices that can be readily 

511 applied in natural system and may be particularly valuable for monitoring efforts in wetlands of 

512 the Great Lakes Region. Moreover, we also observed evidence for changes in the microbiome of 

513 both high-C and oligotrophic sediment in response to leachate addition. The oligotrophic 

514 environment showed greater responses in the sediment microbiome and in mercury methylation 

515 to the addition of DOM, an important insight given increasing risks of anthropogenic 

516 eutrophication. Microbiome shifts towards fermentation pathways, increases in 

517 chemoorganotrophic Clostridia, degradation of recalcitrant organic matter, and increases in 

518 MeHg within oligotrophic environments emphasizes the need to further study microbial ecology 

519 of mercury methylation. Importantly, our results provide evidence that bacterial abundances that 

520 correspond with increased mercury methylation include taxa that are known to contain 

521 methylating bacteria but are not historically considered in MeHg production. Taken together, our 

522 research provides new insights on how DOM may influence bacterial community structure and 

523 actvity differently in two sediment types, impacting MeHg production in natural settings in the 

524 Great Lakes region.
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765 Figures.

766

767 Figure 1. Boxplots are shown for net MeHg production (calculated as concentration at 28 days 

768 less the initial concentration), with upper and lower hinges representing the values at the 75th and 

769 25th percentiles and whiskers representing 1.5 times value at the 75th and 25th percentiles, 

770 respectively. Leachate increased net MeHg production in unvegetated sediment but did not have 

771 a large impact within vegetated sediments. Regardless of leachate addition, vegetated sediment 

772 experienced an order of magnitude higher rates of net mercury methylation. All samples were 

773 spiked with HgCl2. Mean increase in MeHg production in ng per g dry +/- standard errors are 

774 listed below each box.

775

776 Figure 2. Boxplots are shown for selected changes in taxonomy in response to leachate addition. 

777 All samples were spiked with HgCl2. Upper and lower hinges represent values at the 75th and 

778 25th percentiles and whiskers represent 1.5 times values at the 75th and 25th percentiles, 

779 respectively. Outliers are plotted as points. Shading for each bar denote taxonomy and leachate 

780 vs. no leachate. Significant relationships (P < 0.05) are denoted with an asterisk. (A) The 

781 addition of leachate decreased the proportion of Deltaproteobacteria and increased the 

782 proportion of Clostridia in both vegetated and unvegetated sediment, with greater effects in 

783 unvegetated sediment. (B) Within organisms in the ORNL database of putative mercury 

784 methylators, we observed changes within the family Peptococcaceae (class Clostridia) in 

785 response to leachate addition. Abundance data are present in Table S3.

786

787 Figure 3. Results from analysis of metagenomic shotgun sequences from unvegetated 

788 microcosms are denoted in Figure 3. All samples were spiked with HgCl2. Panels A, B, and C 
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789 show the abundance of the top 15 KEGG, COG, and Pfam targets that increased at day 28 vs. 

790 day 0, respectively. Panel D shows percent change in selected taxonomic groups at day 28 vs. 

791 day 0. Error bars denote standard error.

792

793 Figure 4. DOM fluorescence indices were assessed through time with linear and quadratic 

794 regressions in each environment and microcosm type. All samples were spiked with HgCl2.  

795 Averages for each environment and microcosm type are plotted at days 0, 7, 14, 21, and 28, with 

796 error bars representing the standard error. Plots in the first column are leachate microcosms, 

797 while plots in the second column are no leachate microcosms. Unvegetated microcosms are 

798 depicted as closed circles with dashed lines showing significant regressions; vegetated 

799 microcosms are x’s with solid lines showing significant regressions. (A) and (B) denote FI, (C) 

800 and (D) denote HIX, and (E) and (F) denote freshness.

801

802
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803 Tables.

804

805 Table 1. Mean chemical and biological characteristics of vegetated (n = 5) and unvegetated (n = 

806 5) environments are presented Table 1. All data are derived from sediments. Asterisks represent 

807 significant differences from post hoc t-tests, and standard deviations are presented in 

808 parentheses. Microbial groups are listed are relative abundance (fraction of all OTUs in 

809 community).

810

811 Table 2. Regression statistics (R2 values) from analysis of changes in DOM properties through 

812 time are listed in Table 2. These values are associated with regressions Presented in Figure 4 and 

813 Figure S3. All DOM properties are derived from water overlaying sediments in our incubations. 

814 No leachate microcosms were analyzed from across days 7, 14, 21, and 28; and leachate 

815 microcosms were analyzed across days 0, 7, 14, 21, and 28 (n = 4-5 at each sampling point, no 

816 samples were taken in no leachate microcosms at day zero), with characteristics of the applied 

817 leachate represented at day 0.

818

819 Table 3. The Pearson product-momentum correlation coefficient was used to assess relationships 

820 of selected COG and Pfam targets with HIX and net MeHg production at day 28 (n = 3). 

821 Relationships are presented in Table 3.

822
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Figure 1

Figure 1. Boxplots are shown for net MeHg production (calculated as concentration at 28

days less the initial concentration), with upper and lower hinges representing the values at

the 75th and 25th percentiles and whiskers representing 1.5 times value at the 75th and 25th

percentiles, respectively. Leachate increased net MeHg production in unvegetated sediment

but did not have a large impact within vegetated sediments. Regardless of leachate addition,

vegetated sediment experienced an order of magnitude higher rates of net mercury

methylation. All samples were spiked with HgCl2. Mean increase in MeHg production in ng per

g dry +/- standard errors are listed below each box.
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Figure 2

Figure 2. Boxplots are shown for selected changes in taxonomy in response to leachate

addition. All samples were spiked with HgCl2. Upper and lower hinges represent values at the

75th and 25th percentiles and whiskers represent 1.5 times values at the 75th and 25th

percentiles, respectively. Outliers are plotted as points. Shading for each bar denote

taxonomy and leachate vs. no leachate. Significant relationships (P < 0.05) are denoted with

an asterisk. (A) The addition of leachate decreased the proportion of Deltaproteobacteria and

increased the proportion of Clostridia in both vegetated and unvegetated sediment, with

greater effects in unvegetated sediment. (B) Within organisms in the ORNL database of

putative mercury methylators, we observed changes within the family Peptococcaceae (class

Clostridia) in response to leachate addition. Abundance data are present in Table S3.
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Figure 3

Figure 3. Results from analysis of metagenomic shotgun sequences from unvegetated

microcosms are denoted in Figure 3. All samples were spiked with HgCl2. Panels A, B, and C

show the abundance of the top 15 KEGG, COG, and Pfam targets that increased at day 28 vs.

day 0, respectively. Panel D shows percent change in selected taxonomic groups at day 28

vs. day 0. Error bars denote standard error.
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Figure 4(on next page)

Figure 4

Figure 4. DOM fluorescence indices were assessed through time with linear and quadratic

regressions in each environment and microcosm type. All samples were spiked with HgCl2.

Averages for each environment and microcosm type are plotted at days 0, 7, 14, 21, and 28,

with error bars representing the standard error. Plots in the first column are leachate

microcosms, while plots in the second column are no leachate microcosms. Unvegetated

microcosms are depicted as closed circles with dashed lines showing significant regressions;

vegetated microcosms are x’s with solid lines showing significant regressions. (A) and (B)

denote FI, (C) and (D) denote HIX, and (E) and (F) denote freshness.
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Table 1(on next page)

Table 1

Table 1. Mean chemical and biological characteristics of vegetated (n = 5) and unvegetated

(n = 5) environments are presented Table 1. All data are derived from sediments. Asterisks

represent significant differences from post hoc t-tests, and standard deviations are presented

in parentheses. Microbial groups are listed are relative abundance (fraction of all OTUs in

community).
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Vegetated Environment Unvegetated 

Environment

pH* 5.6 (0.09) 5.8 (0.40)

Water content (g dry/g 

wet)***

0.54 (0.04) 0.85 (0.04)

NH4 (ug/g wet)*** 5.96 (1.28) 1.44 (0.56)

TPOC (ug/g wet)*** 90.4 (4.8) 7.2 (4)

TDN (ug/g wet)** 4.8 (1.6) 3.2 (0.8)

percent C*** 13.16 (2.20) 1.82 (3.39)

percent N*** 0.8 (0.06) 0.1 (0.23)

C:N* 16.43 (1.59) 20.06 (5.36)

MeHg (ng/g)** 2.67 (2.18) 0.24 (0.12)

THg (ng/g) 306.56 (551.07) 3.16 (3.99)

MeHg:THg 0.02 (0.009) 0.32 (0.45)

Proteobacteria*** 0.3 (0.04) 0.43 (0.02)

Chloroflexi*** 0.17 (0.01) 0.06 (0.009)

Bacteroidetes 0.11 (0.02) 0.13 (0.03)

Acidobacteria* 0.07 (0.009) 0.08 (0.02)

Nitrospirae*** 0.05 (0.009) 0.02 (0.009)

Actinobacteria*** 0.03 (0.007) 0.07 (0.01)

Alpha Diversity (PD Whole 

Tree)**

183.8 (6.64) 193.7 (11.33)

*P < 0.10 **P < 0.05 ***P < 0.01

1

2
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Table 2(on next page)

Table 2

Table 2. Regression statistics (R2 values) from analysis of changes in DOM properties

through time are listed in Table 2. These values are associated with regressions Presented in

Figure 4 and Figure S3. All DOM properties are derived from water overlaying sediments in

our incubations. No leachate microcosms were analyzed from across days 7, 14, 21, and 28;

and leachate microcosms were analyzed across days 0, 7, 14, 21, and 28 (n = 4-5 at each

sampling point, no samples were taken in no leachate microcosms at day zero), with

characteristics of the applied leachate represented at day 0.
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1

NPOC (mg/L) Total Fluoresence Fluor:NPOC FI HIX Freshness

Vegetated, No leachate

(across days 7, 14, 21, 28) 0.39** 0.21* n.s. 0.22** 0.51*** 0.52***

Vegetated, Leachate (across

days 0, 7, 14, 21, 28) 0.32*** n.s. n.s. n.s. 0.68**** 0.57***

Unvegetated, No leachate

across days 7, 14, 21, 28) 0.64**** n.s. 0.29** n.s. n.s. n.s.

Unvegetated, Leachate

(across days 0, 7, 14, 21, 28) n.s. n.s. n.s. 0.41*** n.s. 0.39***

*P < 0.10 **P < 0.05 ***P < 0.01 ****P < 0.001
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Table 3(on next page)

Table 3

Table 3. The Pearson product-momentum correlation coefficient was used to assess

relationships of selected COG and Pfam targets with HIX and net MeHg production at day 28

(n = 3). Relationships are presented in Table 3.
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1

HIX MeHg

COG

Glycosyltransferase -0.98* 0.79

Glycosyltransferases involved in cell wall biogenesis -0.96* 0.76

ABC-type nitrate/sulfonate/bicarbonate transport systems. periplasmic components -0.85 0.55

FOG: PAS/PAC domain -0.88 0.60

Predicted metal-dependent hydrolase of the TIM-barrel fold 0.88 0.60

Transcriptional regulator -0.999** 0.88

Outer membrane receptor proteins. mostly Fe transport -0.79 0.45

HD-GYP domain -0.99** 0.84

Glycosyltransferases. probably involved in cell wall biogenesis -0.96* 0.74

Beta-galactosidase/beta-glucuronidase 0.98* -0.80

Sugar phosphate isomerases/epimerases -0.73 0.36

Lactoylglutathione lyase and related lyases -0.93 0.67

Nitroreductase -0.996** 0.86

Thiamine biosynthesis enzyme ThiH and related uncharacterized enzymes 0.98* 0.80

ABC-type phosphate transport system. periplasmic component -0.66 0.27

Pfam

WD40-like Beta Propeller Repeat -0.99** 0.85

Glycosyl transferase family 2 -0.97* 0.76

TonB dependent receptor 0.90 -0.9999***

Radical SAM superfamily -0.95* 0.75

TonB-dependent Receptor Plug Domain 0.51 -0.83

Amidohydrolase -0.87 0.57

NMT1/THI5 like -0.87 0.58

HD domain -0.9997** 0.91

DNA gyrase C-terminal domain. beta-propeller -0.94 0.70

Protein of unknown function (DUF1501) -0.46 0.04

RHS Repeat -0.80 0.46

Doubled CXXCH motif (Paired_CXXCH_1) -0.97* 0.78

Helix-turn-helix -0.90 0.63

Natural resistance-associated macrophage protein -0.83 0.51

SusD family 0.99* -0.82

*P < 0.10 **P < 0.05

2
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