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ABSTRACT
Complex diseases such as cancer are usually the result of a combination of environ-
mental factors and one or several biological pathways consisting of sets of genes. Each
biological pathway exerts its function by delivering signaling through the gene network.
Theoretically, a pathway is supposed to have a robust topological structure under
normal physiological conditions. However, the pathway’s topological structure could
be altered under some pathological condition. It is well known that a normal biological
network includes a small number of well-connected hub nodes and a large number of
nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a
common topological trait of cancer networks, which is an assumption of our method.
Hence, from normal to cancer, the process of the network losing connectivity might be
the process of disrupting the structure of the network, namely, the number of hub genes
might be altered in cancer compared to that in normal or the distribution of topological
ranks of genes might be altered. Based on this, we propose a new PageRank-based
method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways
involved in cancer. We use PageRank to measure the relative topological ranks of
genes in each biological pathway, then select hub genes for each pathway, and use
Fisher’s exact test to test if the number of hub genes in each pathway is altered from
normal to cancer. Alternatively, if the distribution of topological ranks of gene in a
pathway is altered between normal and cancer, this pathway might also be involved in
cancer. Hence, we use the Kolmogorov–Smirnov test to detect pathways that have an
altered distribution of topological ranks of genes between two phenotypes. We apply
PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very
interestingly, we discover that all significant pathways in HCC are cancer-associated
generally, while several significant pathways in subtypes of HCC are HCC subtype-
associated specifically. In conclusion, PoTRA is a new approach to explore and discover
pathways involved in cancer. PoTRA can be used as a complement to other existing
methods to broaden our understanding of the biological mechanisms behind cancer at
the system-level.
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INTRODUCTION
High throughput technologies, such as genomic sequencing and microarrays, allow the
genome-wide analysis of molecular factors associated with disease. While the technologies
have advanced and have been refined to generate an increasing amount of high quality data,
challenges remain in understanding the biological processes involved in disease etiology,
particularly for complex disorders.

As we know, individual genomic alterations may result in diseases. For example,
Hemophilia A is an X-linked recessive bleeding disorder caused by a deficiency in the
activity of coagulation factor VIII (Franchini & Mannucci, 2012). Huntington’s disease
(HD) is an autosomal dominant progressive neurodegenerative disorder with a distinct
phenotype characterized by chorea, dystonia, incoordination, cognitive decline, and
behavioral difficulties, which is caused by a heterozygous expanded trinucleotide repeat
(CAG)n, encoding glutamine, in the gene encoding huntingtin (HTT) on chromosome
4p16 (Walker, 2007; Dayalu & Albin, 2015).

In addition to monogenic diseases, many diseases are complex, such as diabetes,
schizophrenia, or cancer, and are believed to be caused by a combination of genomic
alterations, epigenetic, environmental and lifestyle factors (Schork, 1997; Hindorff,
Gillanders & Manolio, 2011). Genomic disease association analysis suggests that complex
diseases are not caused by individual genomic alterations. First, the complex disease
phenotype is associated with many genes. Second, it may be associated with interactions
among many genes. Therefore, more and more literature has been focusing on analyzing
sets of genes associated with some phenotype. Gene expression profiles have been used
to assess the activity of biological networks. Several approaches have been developed to
identify active subnetworks across different phenotypes from changes in gene expression.
One of the first such studies is a general approach to searching for ‘‘active sub-networks’’
associated with high levels of differential expression (Ideker et al., 2002). This approach
identifies a set of genes that form a subnetwork whose expression is altered across two
different phenotypes. Another very well-known method, Gene Set Enrichment Analysis
(GSEA) (Subramanian et al., 2005), is a computational method that determines whether a
pre-defined set of genes shows statistically significant, concordant differences between two
phenotypes, which is also based on differential expression of a set of genes between two
phenotypes. These approaches, while powerful and popular, are limited by the fact that they
ignore the topology of the gene networks and sets that they investigate. Indeed, differential
gene expression level in biological network might influence phenotypes. However, only
investigating the differential expression levels of gene may be not sufficient since the
topology of biological pathway is also an important characteristic of biological pathways
and the role they play in both normal and pathological processes, as described below.

It is well known that the topological structure is very important for biological networks
and it determines how genes interact with each other, governing how specific genes and
biological pathways operate in the promotion or inhibition of human diseases (Tavazoie et
al., 1999; Goeman & Bühlmann, 2007; Tarca et al., 2009; Taylor et al., 2009; Khatri, Sirota
& Butte, 2012; Rhinn et al., 2013; Mitrea et al., 2013). Related to this, a hub gene within a
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biological network is an important gene which acts to influence the activity of a number
of genes (Flintoft, 2004), even influence the activity and function of the entire biological
network. Hence, there has been an increased interest to analyze the co-regulation and co-
expression of genes in the biological network, andmany approaches have been developed to
identify differential co-regulation and co-expression of genes in the subnetwork (Kostka &
Spang, 2004; Lai et al., 2004; Reverter et al., 2006; Watson, 2006; Choi & Kendziorski, 2009;
Leonardson et al., 2010; Langfelder et al., 2011;Odibat & Reddy, 2012). It has been a trend to
extend differential expression analysis to differential network analysis (De la Fuente, 2010).

Most of the approaches for topology-based network and pathway analysis are based
on different correlation-based metrics to identify differential networks between two
different phenotypes. Generally, there are three main ways to compare networks for
differential network analysis. The first approach handles weighted networks and uses some
functions of the edge-specific weight differences as edge weights to construct differential
networks (Hudson, Reverter & Dalrymple, 2009; Tesson, Breitling & Jansen, 2010; Liu et al.,
2010; Rhinn et al., 2013). The second approach tries to find co-expressed gene sets and
identify which correlation patterns are different between sets across conditions (Watson,
2006; Rahmatallah, Emmert-Streib & Glazko, 2014). This approach formulates summary
measures that represent co-expression in a biological network and compares the metric
between sets. The third approach compares the topology of biological networks across
different phenotypes by using measures such as degree of nodes or modularity (Reverter et
al., 2006; Zhang et al., 2009). However, the PoTRA method uses a topology-based metric
to identify differential networks between two phenotypes. In addition to using different
metrics, some of the other tools are based on correlation pattern of genes and identify groups
of genes whose correlation patterns behave differentially across different datasets (Watson,
2006;Hudson, Reverter & Dalrymple, 2009; Tesson, Breitling & Jansen, 2010; Liu et al., 2010;
Rhinn et al., 2013). Compared to these tools, PoTRA is directly based on topological ranks
of genes and aims to identify pathways where the topological ranks of genes are different
across datasets, which is more biologically intuitive. In this method, not only do we use
correlation networks but we also use combined networks by taking intersected networks of
correlation networks and KEGG curated pathways. Hence, when KEGG curated pathway
information is employed, the topological rank-based PoTRA method can apply to the
combined networks, while the previous correlation-based methods cannot, which is a
limitation of the previously discussed correlation-only based methods. Regarding the
previous tools based on topology (Reverter et al., 2006; Zhang et al., 2009), Zhang et al.
focuses on identifying genes involved in topological changes, while PoTRA focuses on
identifying pathways involved in topological changes. Also, Reverter et al. focuses on
identifying genes with differential connectivity between two phenotypes, which is also
different from PoTRA’s application scenario.

Although the above methods for differential network analysis can deal with some
important biological questions, they are still limited. In general, they are based on a basic
hypothesis that some connections between genes across the groups could be thought of
as ‘‘passenger’’ events and other connections are unique to either one of groups and thus
could be ‘‘driver’’ events that contribute to disease progression and development. Hence,
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they focus on the contribution of individual differential connections to disease. This results
in several limitations. First, each differential connection is regarded by these methods
to have an equal contribution to disease. However, it is well understood that loss of a
connection between two hub genes from normal to disease is more deleterious than loss of
a connection between two non-hub genes. Second, how differential connections (‘‘driver’’
connections mentioned above) between pairs of genes are associated with diseases is still
not very biologically intuitive, because how the dependency between genes contributes to
diseases is usually little understood.

To address these problems, we propose a new PageRank-based method called Pathways
of Topological RankAnalysis (PoTRA) to detect pathways associatedwith cancer. PageRank
is an algorithm initially used by Google Search to rank websites in their search engine results
(Page et al., 1999). It is a way of measuring the importance of nodes in a network. More
generally, PageRank has been applied to other networks, e.g., social networks (Pedroche et
al., 2013; Wang et al., 2013). To date, there have been several studies using PageRank for
gene expression and network analysis (Morrison et al., 2005; Winter et al., 2012; Kimmel
& Visweswaran, 2013; Hou & Ma, 2014; Bourdakou, Athanasiadis & Spyrou, 2016; Zeng et
al., 2016; Ramsahai et al., 2017; Morshed Osmani & Rahman, 2007). These studies focus
on ranking genes and discovering key driver genes in disease, and do not try to detect
dysregulated pathways involved in disease. Other studies (Winter et al., 2012; Zeng et al.,
2016) use PageRank to select topological important genes and simply see which pathways
that these topological important genes are involved in. These PageRank-related approaches
are very different from our approach.

Our approach embodied by PoTRA is motivated by the observation that the loss of
connectivity is a common topological trait of cancer networks (Anglani et al., 2014), as
well as the prior knowledge that a normal biological network includes a small number of
well-connected hub nodes and a large number of nodes that are non-hubs (Albert, 2005;
Khanin & Wit, 2006; Zhu, Gerstein & Snyder, 2007). However, from normal to cancer, the
process of the network losing connectivity might be the process of disrupting the structure
of the network, namely, the number of hub genes might be altered in cancer compared to
that in normal or the distribution of topological ranks of genes might be altered. Thus, we
hypothesize that if the number of hub genes is different in a pathway between normal and
cancer, this pathway might be involved in cancer. Based on this hypothesis, we propose to
detect pathways involved in cancer by testing if the number of hub genes for each pathway
is different between normal and cancer samples.

Our approach embodied by PoTRA is also motivated by that the topological ranks of
genes within biological pathways might be altered in cancer. Based on this, we propose
to detect pathways involved in cancer by testing if the distribution of PageRank scores of
genes for each pathway is altered between normal and cancer samples.

Therefore, the PoTRA approach computes topological ranks of genes in each pathway,
and then detects pathways with significantly altered number of hub genes between normal
and cancer, and, alternatively, detect pathways with significantly altered distributions of
topological ranks of genes in corresponding pathways between two phenotypes. Namely,
we first use the Google search PageRank algorithm tomeasure the relative topological ranks
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Figure 1 Overview of the PoTRAmethod.
Full-size DOI: 10.7717/peerj.4571/fig-1

of genes in a biological pathway across different conditions. Then, we use Fisher’s exact test
to estimate if the number of hub genes in each pathway is significantly different between
normal and cancer, and, alternatively, use the Kolmogorov–Smirnov test to estimate if the
distribution of PageRank scores of genes in each pathway is significantly different between
normal and cancer. As an illustration, we apply PoTRA to study hepatocellular carcinoma
(HCC) and its subtypes and identify disease-relevant pathways. In conclusion, PoTRA is
a new approach to explore and discover cancer-associated pathways. PoTRA can be used
as a complement to other existing methods to enrich our understanding of the biological
mechanisms behind cancer at the systems-level.

MATERIALS AND METHODS
Overview of the PoTRA method
Below we detail the steps of the PoTRA method, as illustrated in Fig. 1.

1. Data
To illustrate the PoTRA method, we use publicly available gene expression datasets

from The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/) hepatocellular
carcinoma (HCC) study. We analyze and contrast 50 HCC samples and 50 tumor-adjacent
normal samples (‘‘normal samples’’ in future sections). In addition, the datasets also
include gene expression profiles for several HCC subtypes. We further analyze and contrast
22 hepatitis B-induced HCC samples and 22 tumor-adjacent normal samples, 34 hepatitis
C-induced HCC samples and 34 tumor-adjacent normal samples, and 50 alcohol-induced
HCC samples and 50 tumor-adjacent normal samples. There are 20,531 gene expression
values for each sample. Pathway information from the Kyoto Encyclopedia of Genes and

Li et al. (2018), PeerJ, DOI 10.7717/peerj.4571 5/29

https://peerj.com
https://doi.org/10.7717/peerj.4571/fig-1
https://cancergenome.nih.gov/
http://dx.doi.org/10.7717/peerj.4571


Genomes (KEGG) database (Kanehisa & Goto, 2000) is used. To date, there is much known
about etiology of HCC (Beasley, 1988; Sanyal, Yoon & Lencioni, 2010; Wang et al., 2012;
Goossens & Hoshida, 2015) and knowledge of pathways involved in HCC (Villanueva et al.,
2008; Zhou et al., 2010;Wang et al., 2017), which makes it easier to illustrate and assess the
PoTRA method.

2. Construction of gene co-expression network for a pathway
We apply the PoTRA method to gene expression profiles for several phenotypes,

such as normal and cancer and cancer subtypes. First, we select genes for each pathway,
using pathway information from KEGG. For each pathway, we determine the gene-gene
interactions by using the Pearson’s correlation to test each co-expressed gene pair. The
test calculates a P-value for the association between each pair of genes. A significance
threshold of 0.05 is used. When the P-value of a pair of genes is below 0.05, we establish
an edge between the corresponding two genes; otherwise, there is no edge between them.
We implement it through a built-in function called ‘‘cor.test()’’ in the statistical software
package R (R Core Team, 2013). In this way, we can construct gene co-expression networks
(i.e., pathways) for normal and cancer, separately. Of note, all the gene co-expression
networks (i.e., pathways) used by PoTRA are undirected graphs, because co-expression
networks only focus on gene pairs with a similar expression pattern across samples, in
other words, the transcript levels of two co-expressed genes rise and fall together across
samples.

In addition to construction of gene networks based on correlation alone,we, alternatively,
also construct gene networks by combining the correlation with the pre-defined interaction
from pathway databases.

3. PageRank analysis for genes within a pathway for normal and cancer
Based on the above constructed interactions within a pathway, we can observe that some

genes are hub genes whereas others are non-hub genes. We apply the PageRank algorithm
(Page et al., 1999) to obtain the corresponding topological importance for each gene within
the pathway for normal and cancer, separately, see Fig. 2.

We implement it by using the page.rank() function from the igraph (Csárdi & Nepusz,
2006) R package. As mentioned in Step 2, all the networks that we construct are undirected
graphs. Thus, the PageRank algorithm used in our approach is based on undirected graphs.

The PageRank algorithm
The PageRank algorithm is used by the Google search engine to rank the importance

of web pages, which is based on the assumption that the importance of a web page is
high in a network if this web page has connections with other nodes of high importance.
This idea is naturally applied to analyzing biological networks, where the importance of a
gene is high if this gene is connected to other genes of high importance. In our study, the
gene-gene network is an undirected graph where a node represents a gene and the edges
can be defined by prior knowledge (e.g., KEGG database).
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Figure 2 The topological rank analysis for each gene within a pathway. For genes within a specified
pathway, according to Step 2, we construct a corresponding gene co-expression network for normal and
cancer, separately. Then we apply the PageRank method to obtain the topological importance of each gene
for normal and cancer, separately. PR(gene i)normal represents the PageRank score of the gene i for normal
samples, while PR(gene i)cancer represents the PageRank score of the gene i for cancer samples.

Full-size DOI: 10.7717/peerj.4571/fig-2

The output from the PageRank algorithm is a probability distribution representing the
likelihood that a person randomly clicking on links will arrive at any particular web page. A
probability is a numeric value between 0 and 1. The sum of probabilities for all web pages
is equal to 1. The probability of a web page is proportional with the time spent at the web
page when a person surfs the web. This idea can also be intuitively extended to ranking
genes in gene networks where the probability of a gene is proportional with the time a
research scientist spends looking and returning at the same gene when analyzing research
results. For additional details of PageRank, please refer to Page et al. (1999).

4. Detect pathways with significant changes between normal and cancer scores

4. 1 Detect pathways with significantly altered number of hub genes between normal and
cancer using Fisher’s exact test

Asmentioned above, PoTRA is motivated by the observation that the loss of connectivity
is a common topological trait of cancer networks (Anglani et al., 2014) and the prior
knowledge that a normal biological network includes a small number of well-connected
hub nodes and a large number of nodes that are non-hubs (Albert, 2005; Khanin & Wit,
2006; Zhu, Gerstein & Snyder, 2007). From normal to cancer, the process of the network
losing connectivity might be the process of disrupting the structure of the network, which
can result in an altered number of hub genes between normal and cancer. Hence, a statistics
that we compare between two phenotypes is the number of hub genes. The PageRank
scores of all genes of a pathway form a distribution, and we use the 95th percentile of the
distribution (one-tail) in normal samples as cutoff value for hub genes for both normal
and cancer samples. The genes in this pathway with PageRank scores that are above the
cutoff value are identified as hub genes for this pathway. Then we count the number of
hub genes for normal and cancer, separately. Next, we use Fisher’s exact test to assess if the
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Table 1 Contingency table for Fisher’s exact test.We use the 95th percentile of the distribution (one-
tail) in normal samples as cutoff value for hub genes for both normal and cancer samples. The value ‘‘a’’
represents the number of genes whose PageRank scores are below the cutoff value for normal samples. The
value ‘‘b’’ represents the number of genes whose PageRank scores are above the cutoff value for normal
samples. The values ‘‘c’’ and ‘‘d’’ are the corresponding values for cancer. We use Fisher’s exact test to as-
sess if the number of hub genes is significantly different between normal and cancer.

Number of non-hub genes Number of hub genes Total

Normal a b a+b
Cancer c d c+d
Total a+c b+d a+b+c+d

number of hub genes is significantly different between normal and cancer. For details, see
Table 1.

Fisher’s exact test estimates the probability of obtaining any such set of values, given by
the hypergeometric distribution:

P =

(a+b
a

)(c+d
c

)( n
a+c

) =
(a+b)!(c+d)!(a+ c)!(b+d)!

a!b!c !n!
(1)

where n= a+b+c+d , and
(i
j

)
is the binomial coefficient and the symbol ‘‘!’’ indicates the

factorial operator.
Formula 1 gives the exact hypergeometric probability of observing this particular

arrangement of the data, assuming the given marginal totals, on the null hypothesis that
the number of hub genes is the same for a specified pathway between normal and cancer.
If this test statistic is significant, it indicates that there is a significantly different number
of hub genes between normal and cancer, thereby this pathway might be involved in
cancer. By studying many pathways from the KEGG database we generate a multiple
hypothesis testing problem. We address this issue by correcting the P-values calculated for
each pathway using the False Discovery Rate (FDR) approach, using the Benjamini and
Hochberg procedure (Benjamini & Hochberg, 1995).

4.2. Detect pathways with significantly altered distributions of PageRank scores for genes
between normal and cancer using Kolmogorov–Smirnov test

Alternatively, PoTRA is implemented by testing if the distribution of PageRank scores of
genes is altered between normal and cancer, using the two-sample Kolmogorov–Smirnov
test. The two-sample Kolmogorov–Smirnov test is a nonparametric test of equality of
continuous, one-dimensional probability distributions that can be used to compare two
samples. The Kolmogorov–Smirnov statistic quantifies a distance between the empirical
distribution functions of two samples. The null distribution of this statistic is calculated
under the null hypothesis that the samples are drawn from the same distribution.

The empirical distribution function Fn for n i.i.d. observation Xi is defined as:

Fn(x)=
1
n

n∑
i=1

I|−∞,x|(Xi) (2)
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where I |−∞,x|(X i) is the indicator function, equal to 1 if X i≤ x and equal to 0 otherwise.
The two-sample Kolmogorov–Smirnov test may be used to test if two underlying

one-dimensional probability distributions differ. In this case, the Kolmogorov–Smirnov
statistic is:

Dn,m=
Sup
x |F1,n(x)−F2,m(x)| (3)

where F1,n and F2,m are the empirical distribution functions of the first and the second
sample respectively, and sup is the supremum function.

If the test statistic for a specific pathway is significant, it indicates that the two underlying
distributions differ between normal and cancer, thereby this pathway is involved in
cancer. By studying many pathways from the KEGG database we generate a multiple
hypothesis testing problem. We address this issue by correcting the P-values calculated for
each pathway using the False Discovery Rate (FDR) approach, using the Benjamini and
Hochberg procedure (Benjamini & Hochberg, 1995).

Software tools
All the analysis is conducted using the R statistical programming language (R Core

Team, 2013), using the following R Bioconductor packages: graphite for pathway databases
(Sales, Calura & Romualdi, 2017), igraph for PageRank function (Csárdi & Nepusz, 2006)
and graph for visualization (Gentleman et al., 2017).

RESULTS
We apply PoTRA to analyze and contrast 50 HCC samples and 50 tumor-adjacent normal
samples. All data come from The Cancer Genome Atlas (TCGA) hepatocellular carcinoma
(HCC) study.

PoTRA for HCC vs. normal samples using correlation-based networks
To illustrate the PoTRAmethod, we use a cancer-associated pathway, the ‘‘MAPK signaling
pathway’’, as an example in the following section.

Construction of a gene co-expression network for a pathway
As suggested before, the ‘‘MAPK signaling pathway’’ might be comprised of different
interactions between genes under different conditions, such as normal versus cancer
conditions. First, we need to find the genes that this pathway consists of by using the KEGG
database. In practice, we implement it by using an R package called graphite. Second, for
the genes of this pathway, we identify the interactions between genes for normal and cancer
samples, separately. There are 14,005 edges for normal and 5,170 edges for cancer. For the
information of the ‘‘MAPK signaling pathway’’ in normal and cancer samples, see Table S1.

PageRank analysis for genes within a pathway for normal and cancer
Based on the interactions identified in the previous section, we can obtain a PageRank
score for each gene in the ‘‘MAPK signaling pathway’’ for normal and cancer, separately,
which quantifies the influence of a gene on the activity of other genes in this pathway. For
the results for this step, two vectors with 250 PageRank values, one for normal and one
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Figure 3 The kernel density distribution of PageRank scores of genes in ‘‘MAPK signaling pathway’’.
The red line shows the kernel density distribution of PageRank scores for cancer and the black one is for
normal samples. Note that the mean for the two distributions is the same, i.e., mean= 1/N= 0.004, where
N = 250 is the number of genes in the ‘‘MAPK signaling pathway’’ pathway. We use the 95th-percentile
cutoff (=0.006035) of the kernel distribution in normal samples as cutoff for hub genes for both normal
and cancer samples.

Full-size DOI: 10.7717/peerj.4571/fig-3

for cancer, separately, see Table S1. As previously mentioned, the PageRank values in each
vector add up to 1.

Figure 3 illustrates the distributions of PageRank scores for genes in ‘‘MAPK signaling
pathway’’ for normal and cancer, separately.

The number of hub genes changes. While there are only 13, strongly-connected (with
more edges, an average of 121 edges) hub genes in the normal samples, there are 40 hub
genes in the cancer samples, more loosely-connected (with fewer edges, an average of 75
edges).

Asmentioned before, the process of the network losing connectivity might be the process
of disrupting the structure of the network which includes a small number of hub nodes
and a large number of non-hub nodes, namely, the number of hub genes might be altered
in cancer compared to that in normal. The altered number of hub genes might be a trait of
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Table 2 The ‘‘MAPK signaling pathway’’ pathway identified by PoTRA for HCC using Fisher’s exact test. The P value is adjusted by False Dis-
covery Rate (FDR).

Gene
Count(L)

# of
edges_normal

# of
edges_cancer

# of hub
genes_normal

# of hub
genes_cancer

Adjusted
P-value

MAPK signaling pathway 250 14,005 5,170 13 40 0.0158

Table 3 The significant KEGG pathways identified by PoTRA for HCC using Fisher’s exact test. FDR adjusted P-values are below 0.05.

Gene
Count(L)

# of
edges_normal

# of
edges_cancer

# of hub
genes_normal

# of hub
genes_cancer

Adjusted
P-value

1 Pathways in cancer 310 24,924 9,136 16 48 0.0081
2 MAPK signaling pathway 252 14,005 5,170 13 40 0.0158
3 Breast cancer 143 3,589 1,175 8 29 0.0278

a pathway in cancer, which suggests the pathway is involved in cancer if the change in hub
gene number is statistically significant.

Importantly, we find increased variance (median change 5.2 -fold for theMAPKpathway,
or 6.1 fold change for all genes) of gene expression in cancer samples compared to normal
samples, which is included in Table S1. The increased variance in cancer samples results in
lower Pearson correlations between genes in cancer, which leads to lower correlations and
loss of connectivity in cancer. This loss of connectivity can lead to the disruption of the
structure of the biological networks. To quantify these changes in the network topology
between normal and disease, we use Fisher’s exact test to identify changes in the number
of network hub genes, and the Kolmogorov Smirnov test to test if the distributions of
PageRank scores are significantly different between normal and cancer. These tests are
described below.

Fisher’s exact test for comparing the number of hub genes in the pathway. We next use
Fisher’s exact test to test if the number of hub genes for the ‘‘MAPK signaling pathway’’
is significantly different between normal and cancer. The result for the ‘‘MAPK signaling
pathway’’ pathway is included in Table 2.

The low P-value in Table 2 indicates that the number of hub genes in cancer samples is
significantly different from that in normal samples, suggesting that the ‘‘MAPK signaling
pathway’’ pathway is involved in HCC. This example suggests that a normal biological
network includes a small number of hub nodes and a large number of non-hub nodes.
Moreover, the loss of connectivity from normal to cancer might lead to disrupting the
structure of the network in cancer, thereby resulting in the fact that the number of hub
genes is altered in cancer compared to that in normal.

Then we apply the same approach to other pathways from KEGG to compare HCC vs.
normal samples. The significant pathways are shown in Table 3.

We find three significant pathways with altered number of hub genes between normal
and cancer. It is well known that these three pathways are strongly associated with cancer
in general. The MAPK signaling pathway plays a role in the regulation of gene expression,
cellular growth, and survival (Knight & Irving, 2014). Abnormal MAPK signaling might
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Table 4 The ‘‘MAPK signaling pathway’’ pathway identified by PoTRA for HCC using the
Kolmogorov–Smirnov test. The P value is adjusted by False Discovery Rate (FDR).

Gene
Count(L)

# of
edges_normal

# of
edges_cancer

Adjusted
P-value

MAPK signaling pathway 250 14,005 5,170 0.0278423

Table 5 The significant KEGG pathways identified by PoTRA for HCC using the Kolmogorov–
Smirnov test. FDR adjusted P-values are below 0.05.

Gene
Count(L)

# of
edges_normal

# of
edges_cancer

Adjusted
P-value

1 RNA transport 133 7,168 5,343 6.72E−08
2 mRNA surveillance pathway 70 1,867 1,252 0.023328272
3 MAPK signaling pathway 250 14,005 5,170 0.027842298

lead to uncontrolled or increased cell proliferation and resistance to apoptosis (Santarpia,
Lippman & El-Naggar, 2012; Burotto et al., 2014). Interestingly, we also find that loss of
connectivity and the larger number of hub genes for cancer are characteristics of the other
two pathways as well.

The levels for parameter thresholds can be varied. Hence, we also have tried different
threshold levels for hub genes in Fisher’s exact test: 0.9, 0.85, 0.8, 0.75 and 0.7. For these
threshold levels, the p-values are larger than that when the threshold is 0.95, and we do not
find any significant pathways using Fisher’s exact test. This suggests that, for this test, using
a limited number of genes of higher ‘‘hubness’’ (higher PageRank values) is important
when comparing normal and cancer.

The Kolmogorov–Smirnov test for comparing distributions of PageRank scores of genes for
pathways. We next use the Kolmogorov–Smirnov test to test if the two distributions of
PageRank scores of genes for the ‘‘MAPK signaling pathway’’ are significantly different
between normal and cancer. The result for the ‘‘MAPK signaling pathway’’ pathway is
included in Table 4.

The low P-value in Table 4 indicates that the distribution of PageRank scores of genes
in cancer samples is significantly different from that in normal samples, suggesting that the
‘‘MAPK signaling pathway’’ pathway is involved in HCC. The MAPK signaling pathway
plays a role in the regulation of gene expression, cellular growth, and survival (Knight
& Irving, 2014). Abnormal MAPK signaling might lead to uncontrolled or increased cell
proliferation and resistance to apoptosis (Santarpia, Lippman & El-Naggar, 2012; Burotto
et al., 2014).

Then we apply the same approach to other pathways from KEGG to compare HCC with
normal samples. The significant pathways are shown in Table 5.

We find three significant pathways with altered distribution of PageRank scores of genes
between normal and cancer. In addition to the ‘‘MAPK signaling pathway’’, we find two
other pathways: ‘‘RNA transport’’ and the ‘‘mRNA surveillance pathway’’. For the ‘‘RNA
transport’’ pathway, it is well known that the nuclear export of mRNA is intrinsically
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Table 6 The significant KEGG pathways identified by PoTRA for hepatitis B-induced HCC using Fisher’s exact test. FDR adjusted P-values are
below 0.05.

Gene
Count(L)

# of
edges_normal

# of
edges_cancer

# of hub
genes_normal

# of hub
genes_cancer

Adjusted
P-value

1 Insulin signaling pathway 139 2,692 958 7 34 0.0007
2 Pathways in cancer 310 11,194 3,792 16 52 0.0007
3 Hippo signaling pathway 151 2,836 970 8 31 0.0072
4 HTLV-I infection 194 5,518 2,080 10 35 0.0072
5 Neurotrophin signaling pathway 117 2,441 895 6 25 0.0195
6 mTOR signaling pathway 144 34,10 832 8 28 0.0240
7 Epstein-Barr virus infection 85 1,524 435 5 21 0.0353
8 Hepatitis B 134 2,708 828 7 25 0.0353

linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA
polymerase II. This functional coupling is very important for the survival of cells allowing
for nuclear export of fully processed transcripts, which could lead to genome instability
and to various forms of cancer (Siddiqui & Borden, 2012; Hautbergue, 2017). The ‘‘mRNA
surveillance pathway’’ is a quality control mechanism that detects and degrades abnormal
mRNAs, which includes nonsense-mediated mRNA decay (NMD), nonstop mRNA decay
(NSD), and no-go decay (NGD). NMD can degrade PTC (Premature termination codons)-
containing transcripts which cause a large proportion of human cancers (Lindeboom,
Supek & Lehner, 2016). Nonstop decay is the mechanism of identifying and disposing
aberrant transcripts that lack in-frame stop codons. These transcripts are identified during
translation when the ribosome arrives at the 3′ end of the mRNA and stalls at the end of
the poly(A) tail. This surveillance mechanism protects the cells from potentially harmful
truncated proteins, but it may also be involved in mediating critical cellular functions of
transcripts that are prone to stop codon read-through, which have implications in human
cancers (Klauer & Van Hoof, 2012). No-go decay (NGD) is a eukaryotic quality control
mechanism that evolved to cope with translational arrests (Simms, Yan & Zaher, 2017).
These above processes are strongly related to cancer.

PoTRA for cancer subtype analysis
Fisher’s exact test for cancer subtype analysis. Many complex diseases have subtypes and/or
can be classified into different categories based on diagnosis, pathology, phenotype
characteristics, etc. To further assess the PoTRA method, we apply it to several subtypes of
the HCC TCGA data. There are several risk factors associated with HCC, such as hepatitis
B, hepatitis C and alcohol (Beasley, 1988; Sanyal, Yoon & Lencioni, 2010; Hoshida et al.,
2014; Goossens & Hoshida, 2015). Here, we apply PoTRA to compare these three subtypes
of HCC samples with normal samples.

Table 6 illustrates the Fisher’s exact test results for comparing normal with hepatitis
B-induced HCC samples.

There is one common pathway, Pathways in cancer, between Tables 6 and 3. There are
seven other new pathways, which are very interesting and associated with the hepatitis
B-induced HCC. First, the ‘‘Hepatitis B’’ pathway is detected by our method. Hepatitis
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Table 7 The significant KEGG pathways identified by PoTRA for hepatitis C-induced HCC using Fisher’s exact test. FDR adjusted P-values are
below 0.05.

Gene
Count(L)

# of
edges_normal

# of
edges_cancer

# of hub
genes_normal

# of hub
genes_cancer

Adjusted
P-value

1 Pathways in cancer 310 22,253 7,791 16 62 2.89E−06
2 PI3K-Akt signaling pathway 340 19,901 6,594 17 65 2.89E−06
3 MAPK signaling pathway 252 11,986 4,168 13 47 0.0003
4 Proteoglycans in cancer 204 9,815 3,642 11 38 0.0033
5 Rap1 signaling pathway 208 8,294 3,587 11 34 0.0215
6 Adrenergic signaling in cardiomyocytes 149 3,594 1,355 8 27 0.0372
7 cAMP signaling pathway 196 5,106 2,493 10 30 0.0372
8 Focal adhesion 203 10,225 4,656 11 32 0.0372
9 HTLV-I infection 194 9,843 4,030 10 30 0.0372
10 Ras signaling pathway 226 10,098 3,931 12 33 0.0376
11 FoxO signaling pathway 126 3,391 1,222 7 24 0.0380
12 Osteoclast differentiation 123 4,418 1,452 7 24 0.0380
13 ErbB signaling pathway 88 2,128 814 5 20 0.0400
14 Axon guidance 167 6,203 2,705 9 27 0.0433

B is the most important and direct factor causing hepatitis B-induced HCC. In addition,
we find two other pathways, HTLV-I (Human T-cell leukemia virus type I) infection
and Epstein-Barr virus infection, which are strongly associated with virus infection and
cancer. This is consistent with the viral pathology of hepatitis B-induced HCC. Besides,
some studies show that hepatitis B virus infection can contribute to the impairment of
insulin signaling, which is another pathway identified by PoTRA (Kim, Kim & Cheong,
2010; Barthel et al., 2016). Finally, the other three pathways, Hippo signaling pathway,
Neurotrophin signaling pathway and mTOR signaling pathway are associated with cancer
in general. Hippo signaling pathway is reported to be able to control organ size through
regulating cell proliferation and apoptosis (Saucedo & Edgar, 2007;Pan, 2010). It is reported
that neurotrophins can regulate cancer stem cells (Chopin et al., 2016), and neurotrophins
contribute to pro-survival signaling in many different types of cancer (Molloy, Read &
Gorman, 2011). The mTOR signaling pathway is a well-known cancer-associated pathway.
Alterations of mTOR signaling pathway have significant effects on cancer progression.
The major components of mTOR signaling pathway are critical effectors in cell signaling
pathways commonly deregulated in cancers (Guertin & Sabatini, 2007; Villanueva et al.,
2008; Pópulo, Lopes & Soares, 2012).

These results suggest that PoTRA can be used to identify not only the pathways associated
with cancer in general, but also those pathways associated with cancer subtypes, such as
hepatitis B-induced HCC specifically.

Results of the PoTRA analysis from two other HCC subtypes, hepatitis C-induced HCC
and alcohol-induced HCC, are included in Tables 7 and 8, respectively.

In Table 5, we find two common pathways, Pathways in cancer and the MAPK signaling
pathway, between Tables 5 and 3. Among the other pathways, we find several pathways
related to cancer generally and hepatitis C-induced HCC specifically. First, HTLV-I
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Table 8 The significant KEGG pathways identified by PoTRA for alcohol-induced HCC using Fisher’s exact test. FDR adjusted P-values are be-
low 0.05.

Gene
Count(L)

# of
edges_normal

# of
edges_cancer

# of hub
genes_normal

# of hub
genes_cancer

Adjusted
P-value

1 PI3K-Akt signaling pathway 340 23,928 8,733 17 55 0.0006
2 MAPK signaling pathway 252 14,005 5,767 13 46 0.0007
3 Pathways in cancer 310 24,924 10,191 16 47 0.0043

infection is also listed in this table, and, as mentioned above, is associated with virus
infection and cancer. Almost all other pathways are associated with cancer in general.
PI3K-Akt signaling pathway is a key regulator of normal cellular processes involved in
cell growth, proliferation, motility, survival, and apoptosis (Porta, Paglino & Mosca, 2014).
The Proteoglycans in cancer pathway is involved in regulation of proteoglycans, heavily
glycosylated proteins present especially in connective tissue in cancer. The Rap1 signaling
pathway is reported to be involved in cancer cell migration, invasion andmetastasis (Bailey,
2009; Zhang et al., 2017). The cAMP signaling pathway regulates a number of biological
processes, such as cell growth and adhesion, neuronal signaling, energy homeostasis and
muscle relaxation (Fajardo, Piazza & Tinsley, 2014). The key component of Focal adhesion
pathway, focal adhesion kinase (FAK), is reported to enable activation by growth factor
receptors or integrins in different types of cancers. FAK is an important mediator of cell
proliferation, cell migration, cell growth (Golubovskaya, Kweh & Cance, 2009; Tai, Chen &
Shen, 2015). A large volume of literature shows that the Ras signaling pathway is involved
in several aspects of normal cell growth and malignant transformation, and plays an
important role in cancer development and progression (Vojtek & Der, 1998; Downward,
2003; Santarpia, Lippman & El-Naggar, 2012; Knight & Irving, 2014). The FoxO signaling
pathway is involved in the regulation of the cell cycle, apoptosis andmetabolism (Schmidt et
al., 2002; Fu & Tindall, 2008;Gross, Van den Heuvel & Birnbaum, 2008). Besides, activity of
the FoxO signaling pathway also affects stem cell maintenance and lifespan (Eijkelenboom &
Burgering, 2013). ErbB signaling pathway plays roles in cancer development and progression
(Hynes & Lane, 2005; Seshacharyulu et al., 2012), as well as in cancer cell migration and
invasion (Appert-Collin et al., 2015). The ErbB signaling pathway is associated with the
development of a wide variety of types of solid tumor if ErbB signaling is excessive (Cho &
Leahy, 2002). The Axon guidance pathway is also reported to regulate cell migration and
apoptosis, and be associated with tumorigenesis (Chédotal, Kerjan & Moreau-Fauvarque,
2005).

We find two common pathways between Tables 8 and 3, MAPK signaling pathway
and Pathways in cancer. As mentioned above, PI3K-Akt signaling pathway also plays an
important role in cancer (Porta, Paglino & Mosca, 2014).

Kolmogorov–Smirnov test for cancer subtype analysis. Table 9 illustrates the Kolmogorov–
Smirnov test results for comparing normal with hepatitis C-induced HCC samples.

In Table 9, we find two common pathways, the RNA transport and the MAPK signaling
pathway, between Tables 9 and 5. Among the other pathways, we find pathways related
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Table 9 The significant KEGG pathways identified by PoTRA for hepatitis C-induced HCC using the Kolmogorov–Smirnov test. FDR adjusted
P-values are below 0.05.

Gene Count(L) # of edges_normal # of edges_cancer Adjusted P-value

1 RNA transport 133 6,877 4,001 3.33E−06
2 Pathways in cancer 310 22,253 7,791 0.0055638
3 Proteoglycans in cancer 204 9,815 3,642 0.0055638
4 MAPK signaling pathway 250 11,986 4,168 0.01535456
5 PI3K-Akt signaling pathway 340 19,901 6,594 0.01975723
6 HTLV-I infection 194 9,843 4,030 0.01975723

Table 10 The significant KEGG pathways identified by PoTRA for alcohol-induced HCC using the Kolmogorov–Smirnov test. FDR adjusted P-
values are below 0.05.

Gene Count(L) # of edges_normal # of edges_cancer Adjusted P-value

1 RNA transport 133 7,168 4,816 2.94E−08
2 Pathways in cancer 310 24,924 10,191 0.0062832
3 PI3K-Akt signaling pathway 340 23,928 8,733 0.0062832
4 MAPK signaling pathway 250 14,005 5,767 0.01050039
5 mRNA surveillance pathway 70 1,867 1,096 0.01166414

Table 11 The significant KEGG pathways identified by PoTRA for hepatitis B-induced HCC using the Kolmogorov–Smirnov test. FDR adjusted
P-values are below 0.05.

Gene Count(L) # of edges_normal # of edges_cancer Adjusted P-value

1 Arginine and proline metabolism 50 163 26 0.005412
2 Glyoxylate and dicarboxylate metabolism 26 216 19 0.02765948
3 Primary bile acid biosynthesis 17 62 6 0.02765948
4 Insulin signaling pathway 139 2,692 958 0.04057992
5 Vasopressin-regulated water reabsorption 22 58 8 0.04057992

to cancer generally and hepatitis C-induced HCC specifically. First, HTLV-I infection is
also listed in this table, and, as mentioned above, is associated with virus infection and
cancer. PI3K-Akt signaling pathway is a key regulator of normal cellular processes involved
in cell growth, proliferation, motility, survival, and apoptosis (Porta, Paglino & Mosca,
2014). Importantly, hepatitis C virus activates PI3K-Akt signaling to enhance entry and
replication, and meanwhile PI3K-Akt signaling pathway also can increase HCV translation
(Liu et al., 2012; Shi, Hoffman & Liu, 2016), which suggest that PI3K-Akt signaling pathway
is associated with hepatitis C virus infection specifically. The ‘‘Pathways in cancer’’ pathway
is associated with cancer in general. The ‘‘Proteoglycans in cancer’’ pathway is involved in
regulation of proteoglycans, heavily glycosylated proteins present especially in connective
tissue in cancer (Iozzo & Sanderson, 2011; Baghy et al., 2016).

Results of the PoTRA analysis from two other HCC subtypes, alcohol-induced HCC
and hepatitis B-induced HCC, are included in Tables 10 and 11, respectively.

We find three common pathways between Tables 10 and 5: RNA transport, the MAPK
signaling pathway and themRNA surveillance pathway. Asmentioned above, the ‘‘Pathways
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Table 12 The significant KEGG pathways identified by PoTRA for hepatitis C-induced HCC using the Fisher’s exact test based on combined
networks. FDR adjusted P-values are below 0.05. E.comb.normal represents the number of edges in the combined network for normal samples,
while E.comb.case is for cancer samples, respectively.

Gene Counts E.comb.normal E.comb.case Adjusted P value

1 Epstein-Barr virus infection 85 131 43 0.0103488
2 p53 signaling pathway 68 57 20 0.0103488

in cancer’’ pathway is strongly associated with cancer in general and the PI3K-Akt signaling
pathway also plays an important role in cancer (Porta, Paglino & Mosca, 2014).

There is no common pathway between Tables 11 and 5. Very interestingly, for the
association between hepatitis B-induced HCC and the ‘‘Primary bile acid biosynthesis’’
pathway, some studies demonstrate that hepatitis B virus infection can alter bile acid
metabolism as a consequence of impaired bile acid uptake (Oehler et al., 2014; Geier, 2014).
Also, some studies show that hepatitis B virus infection can contribute to the impairment
of insulin signaling (Kim, Kim & Cheong, 2010; Barthel et al., 2016). These two pathways
mentioned are specifically related to hepatitis B virus infection. Arginine and proline
metabolism is one of the central pathways for the biosynthesis of the amino acids arginine
and proline from glutamate. Some studies have suggested that altered arginine and proline
metabolism is linked to metastasis formation in cancer (Elia et al., 2017). Arginine serves
as an intermediate in the urea cycle and as a precursor for protein, polyamine, creatine
and nitric oxide (NO) biosynthesis. NO may influence tumor initiation, promotion, and
progression, tumor-cell adhesion, apoptosis angiogenesis, differentiation, chemosensitivity,
radiosensitivity, and tumor-induced immunosuppression (Lind, 2004).

PoTRA for HCC vs. normal samples using networks that combine
correlation-based networks with curated interaction networks
The above results show that the Fisher’s exact test and the Kolmogorov–Smirnov test can
identify cancer-related pathways based on correlation networks. In addition to correlation
networks, in this section we apply PoTRA to gene networks constructed by intersecting
correlation networks with pre-defined networks from the KEGG database. As performed
in the previous section we investigate if Fisher’s exact test and Kolmogorov–Smirnov test
are still able to robustly discover cancer-associated pathways and differential pathways
between HCC and subtypes of HCC based on the combined networks.

Fisher’s exact test for HCC and subtypes of HCC
For HCC, we use Fisher’s exact test and identify no significant pathway with altered number
of hub genes between normal and HCC.

For hepatitis C-induced HCC, we identify two significant pathways, listed in Table 12.
As mentioned above, the Epstein-Barr virus infection is a pathway associated with virus

infection, which is specifically related to hepatitis C induced HCC. P53 signaling pathway is
a classical oncogenic pathway, and it can regulate the cell cycle, apoptosis and help prevent
cancer. The major component of p53 signaling pathway, p53 protein, is most frequently
altered in human cancer (May & May, 1999; Sherr & McCormick, 2002; Sui et al., 2011;
Stegh, 2012).
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Table 13 The significant KEGG pathways identified by PoTRA for hepatitis B-induced HCC using the Fisher’s exact test based on combined
networks. FDR adjusted P-values are below 0.05. E.comb.normal represents the number of edges in the combined network for normal samples,
while E.comb.case is for cancer samples, respectively.

Gene Counts E.comb.normal E.comb.case Adjusted P value

1 Epstein-Barr virus infection 85 84 22 0.0103488

For hepatitis B-induced HCC, we identify one significant pathway, listed in Table 13.
As such, we identify the same significant pathway ‘‘Epstein-Barr virus infection’’, which

is also specific for hepatitis C-induced HCC, discussed above.
For alcohol-induced HCC, we identify no significant pathways.
First, we can observe a large loss of connectivity for combined networks vs. correlation

networks in normal and in cancer. For example, Table 13 lists only 84 edges in normal and
22 edges in cancer samples for the Epstein-Barr virus infection pathway using combined
correlation and curated interactions. This is in contrast to 1,524 edges in normal and 435
edges in cancer shown in Table 6 for the same pathway, when using all the correlation-based
edges. We can observe that the proportion of edges in normal to cancer for the correlation
network and the combined network are approximately the same (about 4:1). On average,
we observe a reduction by, a factor of 23.18 in the number of edges between correlation and
combined networks. However, the PoTRA-Fisher’s exact test still can identify pathways
specifically involved in subtypes of HCC.

Furthermore, because combined networks have a large loss of connectivity from
correlation networks to combined networks, the PageRank scores of genes are more evenly
distributed in combined networks than in correlation networks. Hence, fewer significant
pathways with altered number of hub genes between normal and cancer are identified
for combined networks than that for correlation networks. Although Fisher’s exact test
identifies fewer significant pathways, this test can still discover differential pathways specific
for subtypes of HCC between normal and cancer, suggesting that the Fisher’s exact test is
able to robustly discover pathways involved in cancer and subtypes of cancer.

Kolmogorov–Smirnov test for HCC and subtypes of HCC
All significant pathways for HCC and each subtype of HCC (hepatitis C-induced HCC,
hepatitis B-induced HCC and alcohol-induced HCC) using the Kolmogorov–Smirnov test
on combined networks are included in Tables S2–S5, respectively. Here, we review the top
10 significant pathways from HCC and each subtype of HCC.

Among the results of the PoTRA analysis for HCC in Table S2, we can find many
pathways involved in HCC in the top 10 significant pathways, such as Cytokine-cytokine
receptor interaction, cAMP signaling pathway, p53 signaling pathway, etc. Cytokine-
cytokine receptor interaction exerts a vast array of immunoregulatory actions critical
to cancers (Schreiber & Walter, 2010; Spangler et al., 2015). The cAMP signaling pathway
regulates a number of biological processes, such as cell growth and adhesion, neuronal
signaling, energy homeostasis and muscle relaxation (Fajardo, Piazza & Tinsley, 2014). The
P53 signaling pathway is a classical oncogenic pathway as mentioned above.
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Among the results for hepatitis C-induced HCC (Table S3), we find seven non-common
pathways for this subtype of HCC in the top 10 pathways, such as the MAPK signaling
pathway, the Calcium signaling pathway, the cGMP-PKG signaling pathway, the Adrenergic
signaling in cardiomyocytes, the HIF-1 signaling pathway, the Toll-like receptor signaling
pathway and the Insulin resistance. Among them, some of them are strongly related to
immune system and inflammation, such as the cGMP-PKG signaling pathway, the HIF-1
signaling pathway, the Toll-like receptor signaling pathway and the Insulin resistance.
These immune- and inflammation-related pathways are also specific for hepatitis C (virus
infection)-induced HCC.

Among the results for hepatitis B-induced HCC (Table S4), we also find seven non-
common pathways between this subtype of HCC and HCC in the top 10 pathways, such
as Adrenergic signaling in cardiomyocytes, Breast cancer, Calcium signaling pathway,
cGMP-PKG signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway
and Tuberculosis. Among them, there are some pathways related to immune system and
inflammation, such as the cGMP-PKG signaling pathway and the PI3K-Akt signaling
pathway, which are specific for hepatitis B (virus infection)-induced HCC.

Among the results for alcohol-induced HCC (Table S5), we also find four non-common
pathways between this subtype of HCC and HCC in the top 10 pathways, such as the
MAPK signaling pathway, the Pathways in cancer, the Calcium signaling pathway and
the Progesterone-mediated oocyte maturation. Among these four pathways, the Calcium
signaling pathway is shown to be specifically associated with alcohol in some studies (Gruol
& Parsons, 1996; Li, Li & Guo, 2014; Bartlett et al., 2017).

As mentioned above, the combined networks, which intersect correlation networks with
curated database networks, have a large loss of gene-gene interactions when compared to
correlation networks. Hence, the distribution of PageRank scores of genesmight be changed
more from normal to cancer than that in correlation networks. Hence, more significant
pathways with altered distribution of PageRank scores of genes are identified for combined
networks than that for correlation networks. Although the Kolmogorov–Smirnov test
identifies a large amount of significant pathways, we can use this test for combined
networks to rank the pathways associated with cancer.

DISCUSSION
We propose a PageRank-based method, Pathway of Topological Rank Analysis (PoTRA),
for identifying pathways involved in cancer. PoTRA is motivated by the observation that
the loss of connectivity is a common topological trait of cancer networks (Anglani et al.,
2014) and the prior knowledge that a normal biological network includes a small number
of hub nodes and a large number of non-hub nodes (Albert, 2005; Khanin & Wit, 2006;
Zhu, Gerstein & Snyder, 2007). From normal to cancer, the process of the network losing
connectivity might be the process of disrupting the structure of the network, which can
result in an altered number of hub genes between normal and cancer. The PoTRA analysis
is based on topological ranks of genes in biological pathways, and PoTRA detects pathways
involved in cancer by testing if the number of hub genes in pathways is altered between
normal and cancer.
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To illustrate the method, PoTRA is applied to several TCGA hepatocellular carcinoma
datasets. The results in our study are in agreement with prior knowledge of HCC from
literature.We find that a high proportion of statistically significant pathways play important
roles in cancer, indicating that the altered number of hub genes for these pathways might
indeed be a reflection of the underlying biological causes that lead to cancer. Moreover,
in the comparison between normal and each subtype of HCC, most importantly, the
‘‘Hepatitis B’’ pathway and several pathways associated with virus infection dramatically
become significant pathways in hepatitis B-induced HCC, suggesting that PoTRA is
capable of detecting pathways associated with disease subtypes. We also find several
pathways associated with HCC generally and subtype specifically in hepatitis C-induced
HCC and in alcohol-induced HCC.

In our approach, the correlation method is used to construct gene co-expression
networks for normal and cancer, respectively. A gene co-expression network is an
undirected graph, where each node represents a gene, and each edge is established if
there is a significant co-expression relationship between two genes (Stuart et al., 2003).
Stuart et al. (2003) found 22,163 co-expression relationships, each of which has been
conserved across evolution, suggesting that the co-expressions between genes confers
a selective advantage and thus these genes are functionally related. Gene co-expression
networks are biologically interesting since co-expressed genes might be controlled by
members of the same pathway, or the same transcriptional regulatory program or protein
complex (Weirauch, 2011), and could be functionally related, suggesting that co-expression
is common in the human genome. A gene co-expression network can be constructed by
looking for pairs of genes with a similar expression pattern across samples, i.e., the transcript
levels of two co-expressed genes rise and fall together across samples. As the method of
network construction, we use Pearson’s correlation in consideration of saving computing
time, because the other methods are relatively computationally intensive. In addition,
we also use combined networks by taking the intersection of KEGG curated networks
and correlation networks, which increases the reliability of network construction. This
approach also shows that the results using correlation networks and the results using
combined networks are consistent.

Here, we construct gene networks using two ways. One approach is based on correlation
networks, while the other approach is to combine (intersect) the correlation networks
with pre-defined networks from pathway databases. Because the combined networks lose
a large amount of gene-gene interactions from the correlation networks, the power is
reduced and the PageRank scores of genes tend to more evenly distributed in combined
networks than that in correlation networks. Hence, fewer significant pathways with altered
number of hub genes between two phenotypes are identified for combined networks
than that for correlation networks. Moreover, the distribution of topological ranks of
genes might be changed more from normal to cancer than that in correlation networks.
Thus, more significant pathways with altered distribution of PageRank scores of genes
are identified for combined networks than that for correlation networks. Although the
Kolmogorov–Smirnov test identifies a number of significant pathways for combined
networks, we can use the Kolmogorov–Smirnov test to rank those pathways.
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We apply the Fisher’s exact test and the Kolmogorov–Smirnov test to analyze the
PageRank scores for the two types of gene networks asmentioned above. The corresponding
results suggest that the Fisher’s exact test and the Kolmogorov–Smirnov test can identify
and rank cancer-associated pathways. This suggests that the PoTRA method is robust to
choice of network building approach and to statistical analysis method for identification
of cancer-related pathways.

FUTURE DIRECTIONS
The hypothesis of our study is based on the fact that the loss of connectivity is a common
topological trait of cancer networks (Anglani et al., 2014). It is not yet well understood if
this trait is a characteristic of other complex diseases. Thus, we need to be cautious about
the applicability of this method to other diseases. However, this trait could be applicable to
other complex diseases. Thus, although PoTRA is motivated by work on cancer, it could
apply to other complex diseases as well. This area needs to be further investigated.

In this study, we apply PoTRA to pre-defined biological pathways, from the well-curated
KEGG pathway database. However, the PoTRA method can also be applied to any set of
genes of interest, such as functional gene subnetworks. This could be an interesting area to
further explore.

In this article, we focus on the details of the PoTRAmethodology. For different pathway
databases, such as Reactome, Biocarta, etc., the method would apply in a similar manner,
while the final resultsmight vary slightly, depending on the data being used. This direction—
changes in analysis results based on different pathway databases—would be an interesting
area to investigate in the future.

CONCLUSION
In summary, PoTRA provides a new method for detecting cancer-associated pathways.
PoTRA may be used to augment existing methods and provide a richer, more systematic
understanding of cancer mechanisms.
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