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The exaptation of limbs for foraging is documented in both marine and terrestrial

tetrapods. These behaviors are particularly unexpected in marine tetrapods due to the

physical constraints of body plans adapted to locomotion in a fluid environment. Despite

these obstacles, ten distinct types of limb-use while foraging have been previously

reported in nine marine tetrapod families. Here, we add marine turtles to the diversity of

marine tetrapods known to use limbs for foraging, and extend the evolutionary timeline of

this behavior back 70 million years. Through direct observation and crowd-sourcing, we

document a range of behaviors across habitats in three marine turtle species, suggesting

its widespread occurrence. We argue the presence of these behaviors among marine

tetrapods may be limited by limb mobility and evolutionary history, rather than foraging

ecology or social learning. These behaviors may be remnant of ancestral forelimb use that

have been maintained due to a semi-aquatic life history.
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14 Abstract. 

15 The exaptation of limbs for foraging is documented in both marine and terrestrial tetrapods. These 

16 behaviors are particularly unexpected in marine tetrapods due to the physical constraints of body plans 

17 adapted to locomotion in a fluid environment. Despite these obstacles, ten distinct types of limb-use while 

18 foraging have been previously reported in nine marine tetrapod families. Here, we add marine turtles to 

19 the diversity of marine tetrapods known to use limbs for foraging, and extend the evolutionary timeline of 

20 this behavior back 70 million years. Through direct observation and crowd-sourcing, we document a 

21 range of behaviors across habitats in three marine turtle species, suggesting its widespread occurrence. 

22 We argue the presence of these behaviors among marine tetrapods may be limited by limb mobility and 

23 evolutionary history, rather than foraging ecology or social learning. These behaviors may be remnant of 

24 ancestral forelimb use that have been maintained due to a semi-aquatic life history.

25

26 Introduction.

27 Marine turtles, and most other marine tetrapods, have evolved body forms that are best suited to move, 

28 orient, and minimize drag in a fluid environment rather than using their articulating limbs to directly aid 

29 in prey capture or processing (Fish 2016). Due to the limitation of these evolved body plans and the 

30 constraints of the aquatic environment, Taylor (1987) predicted mouth-based filter, suction, or ram 

31 foraging to be the primary foraging mechanisms for all marine tetrapods. Although the evolution of 

32 foraging mechanisms generally coincides with associated morphological traits, such as filter feeding and 

33 baleen in Mysticete whales (Deméré et al. 2008), many species have been observed using innovative 

34 strategies counter to what their evolved body plans would predict. Following Gould & Vrba (1982) and 

35 Lloyd & Gould (2017), these traits would be considered exaptations; “traits that were adapted for one 

36 evolutionary function, but were later co-opted (but not selected) to serve a different role”. Such 

37 exaptations can provide insight into an organism’s current ecological dynamics (Gould & Vrba 1982) as 

38 well as the evolutionary conditions influencing these novel behaviors.

39 Given the predictions of Taylor (1987), a surprising number of marine tetrapods have been 

40 documented to use their limbs to directly aid in prey capture, manipulation, and processing (Iwaniuk & 

41 Whishaw 2000). Rudimentary limb-use for foraging is observed in a range of terrestrial and aquatic taxa. 

42 It likely evolved in ancestral tetrapods and was subsequently developed, maintained, or lost in different 

43 lineages over time (Iwaniuk & Whishaw 2000). For those lineages that lost the ability, the use of limbs to 

44 aid in foraging is often an exaptation – wherein limbs evolved for locomotion have been co-opted to be 

45 used in food handling (Gould & Vrba 1982). Such exaptations (hereafter limb exaptations) may improve 
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46 foraging efficiency, expand ecological niches, and perhaps confer greater resiliency in dynamic or altered 

47 environments. Why these limb exaptations develop in some species, but not others, is not well 

48 understood. Hocking et al. (2017b) suggested less-specialized, semi-aquatic marine mammals 

49 (Mustelidae, Odobenidae, Otariidae, Phocidae) might retain the use of forelimbs to manipulate prey, but 

50 older and taxa more specialized for the aquatic environment like cetaceans would rely solely on suction, 

51 filter, or ram foraging. 

52  Marine turtles (Cheloniidae) are the oldest extant line of marine tetrapods but some still maintain 

53 a semi-aquatic lifestyle for thermoregulation and breeding (Kelley & Pyenson 2015). Like many other 

54 marine tetrapods, marine turtles generally use suction or bite-and-tear foraging strategies to capture and 

55 process food (Moreno et al. 2016). To date, however, marine turtle foraging mechanisms have received 

56 little attention. While our knowledge of marine turtle diet has drastically improved over recent years with 

57 innovative technology (Arthur et al. 2007; Patel et al. 2016; Van Houtan et al. 2016) there are still many 

58 aspects of feeding behavior that are missed without direct observation. Here, we describe three marine 

59 turtle species – green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and loggerhead (Caretta 

60 caretta) – using limb exaptations in the wild, which have not been previously assessed. We set these 

61 observations in context with other marine tetrapods known to use their flippers, forelimbs, or tails as 

62 direct aids in obtaining or processing food and discuss the role of behavioral, morphological and 

63 ecological factors that may limit or promote this behavior.

64 Materials & Methods.

65 While viewing a fixed-station underwater video from a coral reef in Moorea, French Polynesia we 

66 opportunistically observed a hawksbill sea turtle use its limbs while foraging, prompting a broader survey 

67 for the occurrence and context of this behavior. We documented marine turtle foraging behavior from 

68 underwater surveys, web image and video searches (e.g., Google, YouTube, Vimeo, Flickr, Shutterstock), 

69 and the published literature. We aimed to document the presence of this behavior across marine turtle 

70 species, demographics, habitat, and prey types and to place it in the evolutionary context of other marine 

71 tetrapods. 

72 For this study, limb-use for feeding was defined as the intentional use of flippers, paws, tails, or 

73 feet to directly aid in the capture, processing, or transport of the animal’s food while in the marine 

74 environment. We conducted web searches for video and images using the animal’s common name or 

75 common group (for example, “green turtle” or “sea turtle”) as well as feeding terms (e.g. “feeding”, 

76 “foraging”, “eating”). Once an initial record was found, we conducted more in-depth searches for that 

77 species or group to determine the ecological context of the behaviors. Feeding strategies were grouped 
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78 into broad behavioral categories and feeding stages based previous study definitions (Hocking et al. 

79 2017b), Table 1)

80 We defined marine tetrapods similar to previous studies (Kelley & Motani 2015; Kelley & 

81 Pyenson 2015). We excluded the polar bear (Ursus maritimus) as there is significant genetic admixture 

82 with a fully terrestrial species (Miller et al. 2012), and marine snakes as they lack external limbs. We 

83 initially included sea birds, yet limited observations to feeding occurring entirely in the marine 

84 environment. Foot-paddling, for example, is observed in a number of Laridae gulls, yet it occurs in 

85 terrestrial or mudflat habitats (Tinbergen 1962) and so was not included.

86 Due the difficulty of observing wild foraging behaviors for many marine tetrapods, the absence of 

87 limb-use while feeding documentation in this study does not indicate the behavior does not or cannot 

88 occur. In light of this, our intent was to be descriptive, not exhaustive, in comparing the occurrence of 

89 these behaviors. Due to the relative rarity of this behavior, we grouped marine tetrapods into families for 

90 comparisons. We broadly compared evolutionary, morphological, ecological, and behavioral factors to 

91 qualitatively determine if the presence of limb exaptations followed patterns across marine tetrapod 

92 families. Evolutionary relationships and divergence times are from Timetree.org (Hedges et al. 2006). 

93 Results & Discussion.

94 Carr (1967) described hatch-year green turtles using the sharp claw on their foreflippers to swipe and tear 

95 food in captivity. Davenport & Clough (1985) similarly observed these behaviors in captive juvenile 

96 loggerhead turtles. However, both studies suggested these behaviors would be limited to juveniles due to 

97 undeveloped, weak jaws. Since these initial observations, there have been no additional study in wild 

98 juvenile or mature marine turtles. We documented limb exaptations in three species of marine turtle, and 

99 put these behaviors in a larger ecological and evolutionary context, with the knowledge that many more 

100 marine tetrapods may utilize similar strategies that have not yet been observed or documented. The 

101 diversity of limb exaptations observed and the conditions that appear to favor them suggests that using 

102 limbs to aid in feeding may be a more widespread strategy than previously believed. 

103 In addition to the previously described digging observed in green turtles (Christianen et al. 2014), 

104 we found four types of limb exaptations by hawksbill, loggerhead, and green turtles. Hawksbill and green 

105 turtles were observed using corralling, leveraging, holding, and swiping to capture, process, or transport a 

106 variety of sponges, cnidarians, and macroalgae (figure 1a-d, f). We documented loggerhead sea turtles 

107 swiping to process benthic mollusks (figure 1e). Although these feeding strategies are not required to 

108 consume any of these prey items, they likely help improve feeding efficiency and niche breadth. 
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109 Limb-use while feeding has been previously reported in eight families of marine tetrapods 

110 including Balaenopteridae, Delphinidae, Trichechidae, Dugongidae, Mustelidae, Odobenidae, Otariidae, 

111 and Phocidae (figure 2). Within these families, ten types of limb-use for foraging has been observed: 

112 digging, striking, tossing, kerplunking, leveraging, swiping, holding, pounding, lobtailling, and corralling 

113 (Table 1). Holding and digging were the most common behaviors seen across families (Bowen et al. 

114 2002; Hocking et al. 2017a; Kastelein & Mosterd 1989; Marshall et al. 2003; van Neer et al. 2015). 

115 Stunning prey included directly striking or tossing as well as indirect kerplunking and was seen only in 

116 Delphinids (Domenici et al. 2000; Gonzalez & Lopez 2000). Lobtail feeding is currently exclusive to 

117 humpback whales (Weinrich et al. 1992).

118 Some forms of limb use, while still noteworthy, would not be considered exaptations. Sea otters 

119 (Enhydra lutris) demonstrated the most diverse and complex forms of limb-use for foraging, including 

120 pounding prey against tools (Fujii et al. 2014). However, unlike other marine tetrapods, the use of 

121 forelimbs by sea otters is likely a true adaptation (Fabre et al. 2015). To our knowledge, limb exaptations 

122 have not been documented in any other marine tetrapods, but future studies may reveal currently 

123 undescribed behaviors. 

124 Although flipper morphology and foraging ecologies likely evolved via convergent evolution 

125 across marine tetrapods (Kelley & Motani 2015; Kelley & Pyenson 2015) it is noteworthy that this 

126 exaptation has potentially developed repeatedly in marine tetrapods. Iwaniuk & Whishaw (2000) showed 

127 that rudimentary limb use likely first evolved in ancestral tetrapods but was subsequently maintained, 

128 developed, or lost in various lineages over time. It is, therefore, possible that the predisposition for this 

129 ancestral behavior was maintained as tetrapods returned to the marine environment and manifests under 

130 appropriate modern conditions.

131 Unlike other foraging strategies, that can be analyzed via skull structure in extinct and extant 

132 species (Motani et al. 2015), it is currently unknown if there are any detectible physical predictors of 

133 limb-use that could be used for studying the origin of this behavior. As marine turtles do not have 

134 opportunities for social learning, these behaviors either develop via independent trial and error, or are 

135 maintained as an innate behavior (Lutz et al. 2002). Several species of terrestrial or semi-aquatic turtles 

136 have also been documented using their forelimbs to assist in processing food (Davenport et al. 1984; Lutz 

137 et al. 2002), but the limbs of these species are not as specialized as marine turtle foreflippers. This does, 

138 however, support the suggestion that this behavior was present in an ancestral turtle. If this behavior was 

139 present when marine turtles evolved, approximately 120 million years ago, then these limb exaptations 

140 have been present in the marine environment almost 70 million years before all other extant marine 

141 tetrapods (Bowen et al. 1993; Kelley & Pyenson 2015). 
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142 We compared the prey type, relative prey size, and habitat across the marine tetrapods listed 

143 above to determine if distinct ecological factors promoted the development of limb exaptations (electronic 

144 supplemental material table S1). Surprisingly, limb exaptations were observed in a wide variety of 

145 conditions. Benthic feeders consumed bivalves, grasses, macroalgae, sponges, anemones, and hard corals. 

146 Pelagic feeders consumed fish, jellyfish, and small marine mammals. Prey size often exceeded gape size 

147 (precluding whole consumption) but relatively smaller prey were also consumed, and included both 

148 mobile and sessile species. These factors may still be important factors at the species level, but did not 

149 remain constant across marine tetrapod families. 

150 Unlike prey and habitat type, limb mobility may play a larger role in the development of limb 

151 exaptations. Foreflipper mobility varies across marine tetrapods due to trade-offs for maneuverability, 

152 stability, or propulsion (Fish 2004). Taylor (1987) suggested that the constant need of foreflippers for 

153 locomotion and stability in the marine environment would limit their availability for other uses, including 

154 foraging. Although foreflippers used in propulsion have greater mobility compared to the foreflippers of 

155 taxa that use hindlimbs as the primary source of propulsion (Fish 2004; Kelley & Pyenson 2015), we 

156 found limb exaptations by species that used both forms of propulsion (electronic supplemental material, 

157 table S1). The limited mobility of foreflippers may prompt the use of tails for limb exaptations in 

158 Delphinidae and Balaenopteridae cases. The limited mobility of forelimbs may also explain the lack of 

159 limb exaptations by penguins and other cetacean families. Of the marine turtle foraging observations we 

160 report, all save one (figure 1b) involved foreflipper pronation movements. Figure 1b instead shows 

161 foreflipper supination while holding prey. Foreflipper pronations are the dominant mechanism marine 

162 turtles employ for swimming, crawling on land, excavating body pits for nesting, and aiding 

163 thermoregulation while basking (Van Houtan et al. 2015). 

164 The regular use of limbs for tasks beyond swimming may also promote the development of limb 

165 exaptations. As noted in Hocking et al. (2017b), limb use was more common in semi-aquatic mammals 

166 who may also use forelimbs for locomotion on land. In marine turtles, although predominately aquatic, 

167 females must return to land for nesting. Additionally, terrestrial basking by marine turtles is considered a 

168 female-biased behavior (Van Houtan et al. 2015). The wider range of flipper-use by female marine turtles 

169 may also result in a female sex-bias in limb exaptations. From our observations, we identified all 

170 hawksbills to be females, but were unable to determine the sex of the other turtles due to visibility in 

171 photos or video.  

172 Conclusions.

173 The use of limbs to directly aid in foraging a priori is an unexpected strategy used by a variety of 

174 marine tetrapods. Despite being the oldest extant line of marine tetrapods, this is the first time such a wide 
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175 range of limb use has been described in marine turtles. We argue that these limb exaptations across 

176 marine tetrapods are limited by limb mobility and that the frequent use of forelimbs for other behaviors 

177 may promote the development of these feeding strategies. These observations provide additional insight 

178 into the diversity and possible evolution of this exaptated behavior.
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Table 1(on next page)

Functional definitions of observed types of limb use by feeding marine tetrapods.

ŦFeeding behaviors fell in one of three categories of feeding stages: capture, processing, and

transport based on Hocking et al. (2017b).
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1

BEHAVIOR FEEDING 

STAGEŦ
DEFINITION

Digging Capture Using one or both flippers or paws to remove benthic sediment in order to 

access benthic food.

Striking Capture Using one or both flippers, or tail, to forcibly hit prey, usually to stun.

Tossing Capture Using flipper or tail to project prey into the air, usually used to stun prey.

Kerplunking Capture Slapping water surface with tail to cause a startle response in prey to aid in 

capture.

Leveraging Processing Placing one or both flippers against benthic substrate to create tension while 

pulling food from substrate with mouth.

Swiping Processing Moving one flipper against food to create tension while tearing food into 

smaller pieces with mouth.

Holding Processing Using both flippers to keep food in place, either by squeezing flippers or 

gripping with claws while pulling food apart with mouth.

Pounding Processing Using both flippers or paws to hold food while rapidly hitting against another 

object.

Corralling Transport Using one or both flippers to guide loose food in a directed manner toward 

mouth.

Lobtailing Transport Slapping water surface with tail during bubble-net feeding to corral prey 

together.

2
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Figure 1

Limb use in marine turtle foraging

(A) A hawksbill sea turtle holding a lobe coral (Porites lobata) to eat the black-brown protein

sponge (Chondrosia chucalla) clinging to its surface in Kahekili, Maui USA, taken March 2010.

(B) A green turtle holding a mosaic jellyfish (Thysanostoma thysanura) in the water column

near the ocean surface in the Similan Islands, Thailand, taken June 2017 (©Rich

Carey/Shutterstock.com). (C) A hawksbill sea turtle leveraging against the reef substrate to

pry away a magnificent sea anemone (Heteractis magnifica). This was a frame grab from a

video in Cook’s Bay, Moorea, French Polynesia from June 2013. (D) A green turtle leveraging

against the reef substrate to pry away bites of red macroalgae (Amansia glomerata) in

Kahekili, Maui, taken October 2016. (E) A loggerhead sea turtle swiping the shell of an

Atlantic deep-sea scallop (Placopecten magellanicus) while it consumes the edible tissue.

This is a frame grab from a video in the mid-Atlantic Bight USA taken on July 2009 and

available courtesy of the Coonamessett Farm Foundation (Patel et al. 2016). (F) A green

turtle swiping the stinging jellyfish (Cyanea barkeri) in the water column at Hook Island,

Queensland, Australia, taken June 2017. Image credits by the authors, save (B) ©Rich

Carey/Shutterstock.com and (E) Coonamessett Farm Foundation.
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Figure 2(on next page)

Evolutionary links between marine tetrapods known to use limbs while feeding and the

diversity of body plans and types of limb use

Silhouettes show a representative body plan for each family. Specific feeding behaviors are

listed for each family.
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