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ABSTRACT
Science communication is seen as critical for the disciplines of ecology and conservation,
where research products are often used to shape policy and decision making. Scientists
are increasing their online media communication, via social media and news. Such
media engagement has been thought to influence or predict traditional metrics of
scholarship, such as citation rates. Here, we measure the association between citation
rates and the Altmetric Attention Score—an indicator of the amount and reach of the
attention an article has received—along with other forms of bibliometric performance
(year published, journal impact factor, and article type).We found that Attention Score
was positively correlated with citation rates. However, in recent years, we detected
increasing media exposure did not relate to the equivalent citations as in earlier years;
signalling a diminishing return on investment. Citations correlated with journal impact
factors up to ∼13, but then plateaued, demonstrating that maximizing citations does
not require publishing in the highest-impact journals. We conclude that ecology
and conservation researchers can increase exposure of their research through social
media engagement and, simultaneously, enhance their performance under traditional
measures of scholarly activity.

Subjects Conservation Biology, Ecology, Science Policy, Population Biology
Keywords Altmetric, Science communication, Twitter, Social media, Enter a keyword

INTRODUCTION
Communicating science to policymakers, other scientists, and the public is an increasingly
important task in an era of ‘‘alternative facts’’ (Galetti & Costa-Pereira, 2017). Scientists
are finding new means to communicate science using a wide array of online media
(e.g., Twitter, Facebook, blogs; Piwowar, 2013; Bornmann, 2014; Donner, 2017). The
shifting nature of modern science communication is particularly relevant to the fields
of ecology and conservation (E&C), where science is often used to identify and mitigate
pressing environmental problems (Hoffmann et al., 2010), and to inform the public about
such issues. However, an outstanding question from the efforts to diversify the channels of
science communication is the extent to which bibliometrics and social media exposure are
linked: how can scientists most effectively invest in social media to promote their research?
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Publications that receive more attention on social (eg. Twitter, Facebook and blogs) and
traditional (eg. news and radio) media reach a more diverse, non-scientist group than a
publicationwith a lowermedia profile. For example, on Twitter—a platform scientists often
use to discuss science amongst one another—up to 40% of followers from E&C scientists
may be non-scientists, media, and environmental groups (Darling et al., 2013). Recent work
by King, Schneer & White (2017) demonstrated policy decisions could be shaped through
policy-based media, which in turn increased public discussion of policy by ∼62.7% on
social media, compared to baseline levels. For example, the recent ban on grizzly bear (Ursus
arctos) hunting in British Columbia, Canada (http://bit.ly/2GCrk1W) highlights a change
in policy due to social momentum (Artelle et al., 2014; Darimont, 2017) generated largely
on social-media platforms. Given the importance of social media in communication, there
has been a proliferation of research on the value of various alternative metrics of science
communication (hereafter ‘‘altmetrics’’) for measuring broader impacts and predicting
important bibliometrics such as citation count (e.g., Thelwall et al., 2013; Bornmann, 2014;
Haustein, 2016; Finch, O’Hanlon & Dudley, 2017).

A key feature of altmetrics is that they accumulate rapidly after article publication and
often have effectively stopped accumulating, or accumulate very little, before the paper’s
first citation (Eysenbach, 2011). This sequence occurs because the content of publications
becomes public knowledge at or right after the publication date (especially for journals
with a media embargo policy, like Science and Nature), whereas publications citing this
work may not be available for years after the original work was published. As such, media
exposure—including social media—may either influence or forecast the citation rates of a
paper. For example, Eysenbach (2011) showed that tweets can predict highly cited articles
within three days of publication, and Finch, O’Hanlon & Dudley (2017) showed that tweets
about ornithology papers predict citation rates in a subset of avian-ecology journals.
Consequently, altmetrics present a convenient way to rapidly quantify communication of
E&C research and may allow for identification of high-impact papers considerably faster
than traditional citation rates, which are slow to accumulate.

While there are many types of new media covered under the umbrella of ‘‘altmetrics’’,
it is currently unknown which altmetric types best reflect effective scientific outreach to
both the public and scientists, which may vary by discipline (Haustein, 2016). Citation
count and other related bibliometrics determine professional success at many institutions
(Wade, 1975), but the correlation between altmetrics and bibliometrics varies by altmetric
type (Thelwall et al., 2013; De Winter, 2014; Haustein, 2016; Peoples et al., 2016), making
it difficult for institutions and researchers to prioritize altmetrics generally and for
E&C researchers specifically. Further, some altmetrics are vulnerable to manipulation
and commercialization, raising concerns regarding their use for evaluation of research
impact (Bornmann, 2014; Haustein, 2016). Determining a single best altmetric predictor of
bibliometric performance will likely remain elusive as the online media landscape evolves
and new altmetric types emerge. One potential solution to these related problems is to use
a broad suite of altmetrics to calculate a combined Altmetric Attention Score (hereafter
Attention Score, http://www.altmetric.com; one of most popular ‘altmetrics’, and on which
we focus here). However, the effectiveness of the Attention Score for predicting research
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impact has not been evaluated across E&C, or over time (but see Finch, O’Hanlon & Dudley
(2017) for a focused look at ornithology), leaving a knowledge gap with implications for
the evaluation and dissemination of research.

Researchers are under increasing pressure to publish papers that not only have a high level
of impact within the scientific community, but also have broader impacts across the public
and policy-making spheres (Donner, 2017). This is certainly true in the fields of ecology and
conservation biology, in part because of the intensifying biodiversity crisis (Johnson et al.,
2017). As a result, researchers must make difficult decisions regarding allocation of their
time and effort in terms of which journals to target and what outreach efforts to undertake.
These decisions not only impact the individual researchers’ careers, but also society at
large if their research succeeds or fails in reaching intended audiences or changing policy
and management of natural resources. Here, we examine correlations between traditional
bibliometrics (citation rate, journal impact factor), time since publication, and altmetric
exposure. We focus on E&C publications, where we anticipate that the growing interest by
E&C researchers in social media may be changing the relationship between citation rates
and altmetrics.

MATERIALS & METHODS
Data
We gathered citation, Attention Score, and other descriptive data (year published, journal
impact factor, and article type) on ecology and conservation (E&C) articles published
between 2005–2015. This period reflects an era of sufficient social media engagement
by researchers to investigate the relationship between Attention Score and citation rates,
while allowing sufficient time for more recent articles to acquire citations. Attention Score
data was obtained from Altmetric (https://www.altmetric.com/) under a free academic
license. Altmetric makes its’ data available to academics upon request, but the database
is not publicly accessible on their website. The Altmetric data consists of the Attention
Score for each paper as well as the counts of individual media sources that comprise
the score. Attention Scores are a composite, weighted index of many media sources
(https://help.altmetric.com/support/solutions/articles/6000060969-how-is-the-altmetric-
score-calculated-). We focused on the most popular and top-weighted media sources:
news, blogs, Facebook, Twitter, and Wikipedia.

Citation data were obtained from Scopus (https://www.scopus.com/) using the search
terms ‘‘Ecolog*’’ AND ‘‘Conservat*’’ between 2005–2015. Our focus was on research
addressing the conservation of nature and ecosystems. To disambiguate this research from
work in physics, art, and other fields using the term ‘‘conservation’’, we used the Boolean
operator AND ‘‘ecolog*’’. We recognize that this approach excludes some studies relevant
to the conservation of nature and ecosystems , but feel that at n= 39,442 papers, our search
effectively samples the literature of our focal subject. We obtained journal impact factors
using Reuter’s 2014 impact factor ratings. We merged Scopus and Altmetric data using
a unique identifier of the first 30 character of the article and journal titles and the year.
Finally, to ensure our citation metrics were comparable between articles, we removed any
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methods-based articles, which are often cited more highly than other articles, and were not
the focus of our investigation. We removed these articles using the keywords ‘‘method*’’
or ‘‘technique*’’ to cull articles with these words in their article title or journal title. To
control for other factors influencing citation rates of articles, we included in all models the
number of years since publication, journal impact factor, and article type (review, research
article, or letter).

Modeling approach
We used boosted regression trees (Elith, Leathwick & Hastie, 2008) to investigate the
relationship between Attention Score and citation rates. Boosted regression trees (BRT) are
an advanced form of a generalised linear model (GLM; Elith, Leathwick & Hastie, 2008).
BRTs were well suited to our application because they can handle the complex, non-linear
relationships we expected to find with these data, provide greater predictive performance
and are less plagued by multi-collinearity than GLM’s (Elith, Leathwick & Hastie, 2008).
Unlike GLM’s, BRTs do not test null hypotheses but instead effectively quantify and
illustrate complex, non-linear relationships, such as those expected here. We fit BRTs using
the ‘gbm’ package (Ridgeway, 2015) in R (R Core Team, 2017). We analyzed the correlation
between Attention Score and citation rates in three periods: (1) an early time period of
social media uptake (2005–2009); (2) latter period of social media uptake (2010–2015),
and (3) and the combined period of our dataset (2005–2015).

A BRT is fitted to data using three main parameters: (1) learning rate: the contribution
of each tree to the model. Smaller learning rates result in relatively more trees required
to fit the model, with each tree contributing a relatively small amount to the predictions
providing a better fit of the model to the data. In general, a lower learning rate is preferred,
such that at least 1,000 trees are generated (Elith, Leathwick & Hastie, 2008); (2) tree
complexity: the number of nodes or splits allowed in each tree. Trees with more nodes are
more complex; (3) bag fraction, which is the percentage of data used to train (those data
used to build the model) and test (data used to test predictions that were not involved in
model creation) the model for each iteration (new tree).

We tested two commonly used learning rates (4 and 8) and tree complexities (0.001,0.01)
and selected as our top model the model that minimized predictive deviance (Elith,
Leathwick & Hastie, 2008). We calculated the relative influence of each predictor on
resulting citation rates and produced response curves. Relative influence is measured
by relative number of times variables included in trees weighted by the square root of
improvement to the model, averaged over all trees and the influence of each variable scaled
so the sum adds to 100 (Elith, Leathwick & Hastie, 2008).

Model validation
We partitioned our data into training (bag fraction = 70%, those data used to build the
model) and testing data (30%, data used to test predictions that were not involved in model
creation) for each iteration (new tree). We used the testing data and model predictions to
calculate predictive accuracy using the coefficient of determination (R2), which we used to
assess the generality of the model to predict responses from data not used to generate the
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model. Overfitting is reduced in the BRT by optimizing the learning rate and number of
trees as described above, but also by using randomness in partitioning of data. The degree
of overfitting can be assessed using the model predictive capacity on testing data. BRTs are
generally robust to overfitting (Elith, Leathwick & Hastie, 2008).

RESULTS
We gathered—for the 2005–2015 period—39,442 records resulting from the Ecolog* AND
Conservation* search from Scopus, and 5,249,064 Altmetric records across all disciplines.
The Reuter’s 2014 impact factor ratings consisted of 11,718 journal ratings. Merging the
Scopus, Altmetric, and impact factor datasets, we produced a final dataset consisting of
8,322 EC articles in 687 different journals, each of which met the search criteria, had an
Attention Score available, and was in a journal with an impact factor available. Most articles
published during this time received relatively low Attention Scores (<100, Fig. 1), but a
few scores exceeded 900. Attention Scores per article have been increasing over the last
10 years and the composition of media sources making up the Attention Score has been
shifting (Fig. 1), primarily towards increased Twitter activity.

Not surprisingly, time alone (years since published) increased citation rates, and
letters/notes received fewer citations than traditional articles whereas review papers received
more citations than both other article types. Models for both time periods produced good
predictive accuracy (R2

= 0.66 for 2005–2009 and R2
= 0.56 for 2010–2015). BRT models

for both the early (2005–2009)and late periods (2010–2015) reached minimum deviance at
8 trees and a learning rate of 0.01 and 0.001, respectively. The third BRTmodel assessed the
contribution of individual media sources (Facebook, Twitter, news, blogs and Wikipedia)
to resulting citation rates. Model predictive accuracy was high (R2

= 0.59). Minimum
deviance was reached at 4 trees and a learning rate of 0.001.

Within E&C, we found discipline-specific differences in research impact. Articles
with ‘‘conservat*’’ in the article or journal title received slightly larger Attention Scores
(9.4±0.7x̄± SEM]). compared to ‘‘ecology*’’ in the article or journal title (7.6±0.4).
However, articles with ‘‘conservat*’’ in the article or journal title received fewer citations
(31.4±1.3) than those with ‘‘ecology*’’ in the article or journal title (36.0±1.5).

Citation rates were positively correlated with Attention Scores during the 2005–2009
period, and to a lesser extent during the 2010–2015 period. Journal impact factor and time
since published were more important during the later period (Fig. 2). Higher Attention
Scores generally correlated with increased citations, but an asymptote was present in
both time periods (Fig. 3). The association between Attention Scores and citation rates has
attenuated over time (Fig. 3), andmaximal gains in citation rates were attained at Attention
Scores of 68 during the early period, and 530 in the late period, after which the relationship
plateaued in both time periods. In both periods citation rates were maximized in journals
having impact factors between 11–14. Finally, across the entire 2005–2015 time period,
Attention Scores derived from coverage on Blogs, Wikipedia and Tweets had the largest
influence on citation rates, while Facebook posts and news articles had the least influence
(Fig. 2).
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Figure 1 Summary stats. (A) Histogram of Attention Scores for 8,322 ecology and conservation arti-
cles published between 2005–2010. Attention Scores were truncated at 300, however, the maximum score
for this period was 1,219. 28 articles had Attention Scores exceeding 300. (B) Average Attention Score for
ecology and conservation articles between 2005–2015. 95% confidence interval shown in grey. (C) Com-
position of media sources in Attention Scores between 2005–2015. Starting in 2010, Attention Scores were
increasingly composed of tweets from Twitter. By 2015, 70% of the total Attention Score was composed of
Tweets.

Full-size DOI: 10.7717/peerj.4564/fig-1

DISCUSSION
The fields of ecology and conservation (E&C) have traditionally been linked to applied
research, policy, and public engagement (Lubchenco, 1998). As such, E&C researchers
increasingly rely on social media platforms to promote science to their peers, decision
makers, and to the public (Bickford et al., 2012; Darling et al., 2013; Priem, 2013; Parsons
et al., 2014). Our analyses show that: (1) most published E&C research garners very little
attention on social media (e.g., over 80% of articles tracked by Altmertics were tweeted <5
times); (2) social media exposure is positively correlated with citation rates for E&C papers;
(3) both journal impact factor and social media exposure on citation show diminishing
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Figure 2 Relative influence. (A) Relative influence of predictive variables, shown for articles published
from 2005–2009, and between 2010–2015. Relative influence is measured by relative # of times variables
included in trees weighted by the square root of improvement to the model, averaged over all trees (Elith,
Leathwick & Hastie, 2008). (B) Relative influence of individual media sources on citation rates for the en-
tire period of interest (2005–2015). Policy documents omitted.

Full-size DOI: 10.7717/peerj.4564/fig-2
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Figure 3 Response plots. Response plots showing direction, shape, and magnitude of effects on citation
rates. (A) 2005–2009, (B) 2010–2015. We varied each variable from max to min, while fixing the remain-
ing variables at their mean (Attention Score= 10.8, Journal Impact Factor= 4.4, Years Since Published=
5, and Document Type= Article). We quantified the estimated gain in citations per unit increase in At-
tention Scores during the 2010–2015 period. Assuming 5 years since publication, we estimate the effect
of increasing Attention Score on citation rates for three ranges of Attention Scores: low (0–50); moder-
ate (50–540); high (540+). For low Attention Score ranges, every per-unit increase in Attention produces
0.47 citations, requiring about 21 Attention points for each 10-unit increase in citations. For moderate At-
tention Score ranges, every per-unit increase in Attention Score produces 0.07 citations, such that it takes
about 143 Attention points for each 10-unit increase in citations. For high Attention Score ranges, there
was no change in citation rates with increasing Attention Score. Attention Scores during the 2005–2009
period were associated with up to four times more citations than the same Score during the more recent
2010–2015 period.

Full-size DOI: 10.7717/peerj.4564/fig-3

returns in recent years. Below, we discuss the implications of these findings and highlight
how E&C researchers can use social media to measure research impact.

The distribution of Altmteric Scores was highly right-skewed, indicating that a few
papers can have very wide-reaching attention but most do not. However, average
Attention Scores have increased rapidly since 2011—a trend explained, in part, by broader
engagement of the public with all forms of online content and the increased use of
Twitter to disseminate research (Fig. 1). In addition to this broader societal trend, many
researchers are heeding calls to engage in outreach through social media (Milkman &
Berger, 2014; Parsons et al., 2014; Cooke et al., 2017). Postdoctoral fellowship programs in
E&C, such as the Liber Ero Fellowship (Canada: http://www.liberero.ca), the Smith Fellows
(USA: https://conbio.org/mini-sites/smith-fellows), Wilburforce Fellows (USA/Canada:
http://www.wilburforce.org/grants/fellowship/), and others provide specialized training in
social media engagement for E&C researchers. In the future, graduate and undergraduate
E&C students may routinely receive training in social media as part of their studies.

The association between Attention Scores and citation rates varies by type of media
within the Attention Score: tweets contributed most to Attention Score for E&C papers,
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but blogs had the greatest influence on citation rates. This may signal that researchers turn
to blogs as a form of information curation, or that other forms of media (e.g., facebook,
twitter, radio, news) create the initial article ‘‘hype’’ which then signals bloggers to cover
the article. We cannot discern the causes of these patterns from our analyses, but indeed
we observed the latter pattern in a recently published article (Lamb et al., 2018) where
twitter and news ‘‘hype’’ rapidly accumulated after publication, followed by blogs once the
Attention Score had surpassed 200. Finally, the degree and type of social media attention
an article receives is also dictated by the article’s content, with articles featuring charismatic
animals, climate change, or sharing positive news draw more attention (Papworth et al.,
2015), but we were unable to include these factors in our analysis.

Twitter is a rapidly growing science-communication tool in E&C and likely contributes
to the increasing Attention Scores received by articles (Figs. 1B and 1C). Previous work by
Peoples et al. (2016) found a weak and highly variable relationship between tweet volume
and citation rates, whereas we find a stronger, more positive relationship (Fig. S1), likely
due to our application of BRT models to address interactive and non-linear effects (Elith,
Leathwick & Hastie, 2008). Finally, we detected asymptotic relationships between citation
rate and each of the media sources comprising the Attention Score. Similar to our study,
Finch, O’Hanlon & Dudley (2017) also found asymptotic relationships between citation
rates, impact factor and Almetric Scores for research focused on the E&C subdiscipline of
ornithology. Thus, investigators will likely realize the greatest citation return on investment
by diversifying their media outreach channels among blogs, traditional media, twitter, and
other outlets for E&C-related subdisciplines.

In spite of the growth in socialmedia activity by researchers, there are asymptotic benefits
for traditional measures of scholarly impact (i.e., citation rates). If we assume that social
media exposure predicts or contributes towards citation rates (see Eysenbach, 2011; Finch,
O’Hanlon & Dudley, 2017), then our results suggest a diminishing return on investment:
it now takes up to four times the Attention Score to achieve an equivalent citation rate as
it did 5–10 years ago. This weakening return on investment is consistent with the idea that
media consumption is finite (Rodriguez, Gummadi & Schölkopf, 2014), and that increasing
the number of communicators in a social media network may not increase the amount
of media consumed (Kaplan & Haenlein, 2010; Milkman & Berger, 2014; Ferrara & Yang,
2015). This asymptotic relationship between social media and citation rates has important
implications for how researchers and institutions should devise media outreach plans, and
if/how social media impact can be used to measure research impact. Next steps will be for
science communication professionals to work with their research and outreach personnel
to optimize strategies.

While our results suggest that an increasing amount of social media attention is needed
to generate maximal gains in E&C article citation rates, our results also show that minor
increases in social media attention are associated with a steep rise in citation rates for
articles with few citations—social media can transform the highly obscure to the notable.
This transformation is important, because research impact at many institutions is evaluated
both by publication in high impact journals (i.e., impact factors >10) and citation rates—
which are positively correlated (Fig. 3, Wade, 1975; Judge et al., 2007). Since space in
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high impact journals is highly competitive, social media can help level the playing field
between the few papers accepted into such high-profile outlets and the many more that
are rejected. Indeed, we were surprised to discover that the influence of social media
exposure on E&C article citation rates was actually far greater than journal impact factor
between 2005–2009, and comparable more recently (see Fig. 2). We also found that journal
impact factor had diminishing returns on E&C article citation rates, peaking around 13
before levelling off. Combined, these results suggest that, generally, evaluation of research
impact should consider discipline-specific asymptotes in media attention and impact
factor (i.e., ‘‘twimpact factor’’; sensu Eysenbach, 2011). Finally, our results also suggest
that conservationists concerned about reaching a broad audience can do so as effectively
with high impact and moderate-impact journals, as has been suggested elsewhere (Peoples
et al., 2016).

For many E&C researchers, the benefits of social media outreach extend well beyond
boosting citation rates. Socialmedia is also a tool to engage with peers, the public, and policy
makers from around the world (Kaplan & Haenlein, 2010; Parsons et al., 2014; Bombaci
et al., 2016; Cooke et al., 2017). Quantifying causal links between research innovation,
Attention Scores, citations rates, and policy changes is challenging (e.g., Danaher, 2017);
yet such linkages are likely why many in E&C fields use social media (Bombaci et al.,
2016; Peoples et al., 2016). Our analysis provides guidance on the potential benefits of
social media engagement for research impact. However, we have not identified a specific
mechanism linking citations to Attention Scores. A number of factors constrain the
effectiveness of science communication in general, including via social media (e.g., the
appearance and race of the scientist;Milkman & Berger, 2014; Gheorghiu, Callan & Skylark,
2017). Moreover, linkages between social media, policy/management change, and public
engagement were beyond the scope of our work, but are important avenues of continued
inquiry in contemporary scientific communication (King, Schneer & White, 2017).

Researchers need to weigh the benefits of social media—potentially enhanced citation
rates and public engagement—against the costs of time and risk of exposure (Cooke et al.,
2017). Understanding how to better harness the power of social media will be a growth
area for applied disciplines like E&C, and for evaluation of research impact in the modern
era of science communication.

CONCLUSIONS
Our correlative analysis shows a strong association between science communication
(measured by the Altmetric Attention Score) and citation rates. Most online science
communication happens within weeks of publication while traditional citations generally
begin accumulating months and years later. Pairing the chronology of metric accumulation
and an assumption that not all researchers are able to stay up to date with all publications,
we believe it is reasonable to suggest that science communication and increasing the
profile of one’s work may increase citation rates. Of course, to verify this, an experimental
approach or additional data to what we had here would be required. We encourage E&C
researchers to engage in science communication due to potential benefits such as increased
citation rates, networking and public engagement.
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