Reproductive success of Whiskered Tern *Chlidonias hybrida* in eastern Spain in relation to water level variation (#7718)

First submission

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready **submit online**. The manuscript starts on page 3.

Important notes

Editor and deadline

Simon Griffith / 27 Dec 2015

Files 1 Table file(s)

Please visit the overview page to **download and review** the files

not included in this review pdf.

Declarations Involves vertebrate animals.

Involves a field study on animals or plants.

Please in full read before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standard**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Negative/inconclusive results accepted.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

Reproductive success of Whiskered Tern *Chlidonias hybrida* in eastern Spain in relation to water level variation

Alvaro Ortiz, Vicente Urios

A study on the Whiskered Tern *Chlidonias hybrida* was developed between 2002 and 2009 in wetlands of eastern Spain to evaluate how water level fluctuation affects its reproductive success. This species is catalogued as Endangered in Spain and has an unfavorable conservation status in Europe. Our study, which included 716 nest in total, showed a hatching success of 54.6% (829 chicks from 1,518 eggs). Fledgling success was 25.7% (213 fledged out of 829 chicks hatched), with a breeding success of 14.0% (213 fledged from 1,518 eggs). Strong variations in water level destroyed several nests, which affected the breeding success. The total mean percentages of nest, eggs and chicks that were lost after major water level fluctuations were 61.0%, 54.6% and 46.6% respectively. Therefore, it is crucial to keep the wetlands water levels as stable as possible during the breading season, which should not vary more than 5 cm once the nests are established. Unfavorable climatic events, such as strong rain or hail, also caused the lost of nests, eggs and chicks, even when wetland water levels remained constant.

1	
2 3	
4	
5	
6 7	
8	
9	
10	Reproductive success of Whiskered Tern Chlidonias hybrida in eastern Spain in relation to
11	water level variation
12	
13 14 15	
15	ÁLVARO ORTIZ LLEDÓ¹. VICENTE URIOS MOLINER²
16	Department of Environmental Sciences and Natural Resources.
17	Alicante University
18	Apt. Correos 99, 03690. San Vicente del Raspeig (Alicante) Spain.
19	Phone number: + 34 672 05 44 81
20	Corresponding author ¹ : milicora@yahoo.es
21	author ² : vicente.urios@ua.es
22	
23	
3.4	
24 25	Reproductive success on Whiskered Tern
26	1
27	
28	
29	
30	
31	
32	
33	
34	

35	
36	ABSTRACT
37	A study on the Whiskered Tern Chlidonias hybrida was developed between 2002 and 2009 in
38	wetlands of eastern Spain to evaluate how water level fluctuation affects its reproductive success.
39	This species is catalogued as Endangered in Spain and has an unfavorable conservation status in
40	Europe. Our study, which included 716 nest in total, showed a hatching success of 54.6% (829
41	chicks from 1,518 eggs). Fledgling success was 25.7% (213 fledged out of 829 chicks hatched),
42	with a breeding success of 14.0% (213 fledged from 1,518 eggs). Strong variations in water level
43	destroyed several nests, which affected the breeding success. The total mean percentages of nest,
14	eggs and chicks that were lost after major water level fluctuations were 61.0%, 54.6% and 46.6%
45	respectively. Therefore, it is crucial to keep the wetlands water levels as stable as possible during
46	the breading season, which should not vary more than 5 cm once the nests are established.
47	Unfavorable climatic events, such as strong rain or hail, also caused the lost of nests, eggs and
48	chicks, even when wetland water levels remained constant.
19	
50	Keywords : migratory species, phenology, reproductive success, water variability, wetland.
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
54	

Introduction

- 66 The population of Whiskered Tern *Chlidonias hybrida* (Pallas 1811), a migratory species of the
- 67 family Sternidae, have declined in the Iberian Peninsula and Europe between 1970–1990 (Urios
- 68 et al. 1991). Last decade the population was estimated to include between 35,000 and 52,000
- 69 pairs in the Western Palearctic (BirdLife 2004). Breeding populations are established in wetlands
- 70 with abundance of food and specific vegetation (table 2) for nests support (Dostine and Morton
- 71 1989; Tucker and Heath 1994; Latraube 2006; Paillisson et al. 2006; Ortiz, not publ), and shows
- synchrony on the date of laying and incubation (Paillisson et al. 2007). Disturbance during the
- 73 breeding season, either by climatic events or anthropogenic processes force the populations to
- move to more suitable areas for nesting, as it also occurs in other species of the same family
- 75 (Nisbet et al. 1995; Stienen & Brenninkmeijer 2002; Paillisson et al. 2006).
- 76 The future of the species in the Iberian Peninsula appears to be uncertain due to habitat
- destruction (Callaghan & Villaplana 1990). In the natural wetland of Albufera of Valencia (SE
- 78 Spain) nesting couples declined from 2000 to quit nesting in just one decade (1970-1980) and
- 79 still do not today.
- 80 The main aim of our study was to study the phenology and reproductive success of the
- Whiskered Tern in relation to water's level variability. We predicted that a strong variation of
- water level in a short period of time could negatively affect breeding success. This will bring
- 83 new knowledge to enhance the management and conservation of the species in the wetlands
- 84 where the species nests, that could serve as a model for management in other areas.

8586

Methods

- 87 A continuous study of the breeding colonies of the Whiskered Tern in the Pego-Oliva Natural
- 88 Park (Valencia Community, Spain) was developed between 2002 and 2009. Additional
- 89 observations were made at four further wetlands in Valencia Community: Hondo de Elche-
- 90 Crevillente N.P. (Alicante), Xeresa marsh (Valencia), Moro marsh (Castellón) and Almenara
- 91 marsh (Castellón). Valencia Community government gave me the permissión to come in the
- 92 wetlands. It was evaluated how the species behaves after water level variation, whether produced
- by sudden climatic changes, such as continuous rain or hail, or anthropogenic causes such as
- 94 draining of the marshes to irrigate crops or channelling works near the breeding area, in relation
- 95 with its breading success.

96	
97	To take census of pairs, nests, eggs and chicks, researchers directly accessed the breeding
98	colonies, on foot or by inflatable boat. In some cases, we could observed colonies from a
99	distance with binoculars where vegetation was not an obstacle. To catch fledglings and adults a
100	mist net was used at dawn. Colonies were visited once a week from April to June, more
101	frequently in June and July (every 3-7 days), and every 7-10 days in August.
102	
103	The following direct observations were made: date of arrival of pairs to the colony, the number
104	of pairs, the number of nest, the number of eggs, the date of hatching eggs, the number of empty
105	nests, the number of chicks, the number of chicks that were able to fly, the date of the first
106	fledglings, and the date when the adults with fledglings left the colony. With these parameters
107	we determined the number of chick /eggs in the nests, % hatching success of eggs, the %
108	survival of fledglings and the productivity. Mean values are given \pm SD. Nest monitoring was
109	carried out using labelled wooden stakes, on which the number of the nest was marked.
110	
111	Water level fluctuations were also recorded in the cited wetlands to study its influence on the
112	colony and its correlation with the reproductive success. Wooden stakes calibrated in centimeters
113	were used to observe the water level variations. In Pego-Oliva N.P. it was tried to control water
114	level fluctuations and maintain it as stable as possible, using gates for channels that supply the
115	entire marsh.
116	
117	
118	Results
119	Reproductive success (Table 1)
120	Our study in the Pego-Oliva N.P. during the 8 years show that the average percentage of nests
121	(N=334) with 1 egg was 11.75 ± 10.4 , with 2 eggs 47.05 ± 32.9 , with 3 eggs 40.73 ± 32.3 and
122	with 4 eggs 0.48 ± 0.9 , the latter being rare. The mean annual average of clutch size was $2.31 \pm$
123	0.34 eggs/nest. Hatching success was 64.6% (540 chicks / 836 eggs). The number of young that
124	fledged from eggs that hatched was 22.6% of chicks become fledglings (122 fledglings / 540
125	chicks). Total productivity over the eight years was 14.6% (122 fledgling / 836 eggs) from 414

126	nests.
127	
128	In all wetlands studied, a total of 716 nests, 1,518 eggs, 829 chicks and 213 fledglings were
129	counted. Total hatching success was 54.6%, fledglings success 25.7% and productivity 14.0%.
130	countries and the production of the production o
131	Water level fluctuations (Table 2)
132	
133	The water level in the studied wetlands varied between 20 and 200 cm, which had a strong
134	influence on the terns' reproduction. The depth average in our main area of study, the Pego-Oliva
135	N.P., was $51.8 \text{ cm} \pm 18.8 \text{ cm}$. However, in the Almenara marsh, some nests were built in areas
136	with a water depth of 200 cm, being anchored on the algae Cladophora sp., the latter attached to
137	Myriophyllum verticillatum.
138	
139	Two main factors affected to the water level in the studied wetlands. Firstly, at least six climatic
140	events, including rain and/or hail, caused water level to rise. In some occasions, the rain with hail
141	at the beginning of the summer destroyed most nests (table 2, colony 8). The increase of the
142	water level usually causes the destruction of the nests and the abandonment by the parents when
143	they do not rebuild them. Moreover, intense rain or hail can cause damage to the colony, even
144	when the water level does not vary considerably (Table 2, colony 8 and 16).
145	
146	Secondly, human activities affected considerably to the colonies. The watering of crops, such as
147	rice fields in Pego-Oliva P.N., reduces the water level in the wetland, and several nests were
148	destroyed when this process occurred in a short period of time, which can result in the complete
149	desiccation of the wetland, causing the abandonment of the whole colony (Table 2, colony 15).
150	Channelling works using heavy machinery also caused the decrease of the water level in some
151	areas which can affect the nests that are anchored on the vegetation (Table 2, colony 12).
152	Furthermore, on some occasions, colonies were damaged by streams of water, although the water
153	level remained more or less constant (Table 2, colony 6); this event was caused by the transfer of
154	masses of water within the wetlands by human activities.
155	
156	All these events can cause the lost of high percentages of nests, eggs and chicks, forcing the

157	parents to produce second clutches (Ortiz 2005) or abandon the colony, moving to a different
158	breeding area, like Albufera of Valencia, or another wetland.
159	
160	The percentage of nests, eggs and chicks lost in cases where populations did not suffer major
161	environmental problems was 6.1%, 52.4%, and 49.2% respectively (Table 2, colony 2).
162	However, when strong rain or hail occurred, followed by a rise of the water level in the wetland,
163	the losses were 96.3% of nest, 86% eggs, and 85.7% of chicks (Table 2, colony 8). The average
164	of the averages losses in cases where there were severe fluctuations in water levels were of
165	61.0% of nest, 54.6% of eggs and 46.6% of chicks.
166	
167	Discussion
168	
169	The mean annual average of cluth size in our study in the Pego-Oliva N.P. was 2.31 ± 0.34 ,
170	n=334, being very similar to other studies in France (2.71 \pm 0.49, n = 211, in 2004, 2.05 \pm 0.78, n
171	= 406, in 2005, Paillisson <i>et al.</i> 2006; and 2.35 ± 0.05 , n = 207, in 2006, Paillisson <i>et al.</i> 2008).
172	Other studies in Portugal showed averages of 2.91 (n = 45) in 1993 and 2.95 (n = 39) in 1994
173	(Catry et al. 1997).
174	
175	In Pego-Oliva N.P. the hatching success (64.6%) was similar to that found in other countries,
176	such as in the Northern Territory of Australia (66% in the 1970s; Cramp 1977). However,
177	considering all colonies studied in this work in the Valencia Community, hatching success
178	decreased to 54.6%. In the colonies excluding the Pego-Oliva N.P., hatching success was
179	42,4%, which was also influenced by climatic events and human activity (Table 2). Hatching
180	success was strongly influenced by fluctuating external conditions (climatic and anthropogenic)
181	in each wetland and year, varying from $> 80\%$ in years with favourable conditions to 14% in
182	years with unfavourable conditions (Table 1).
183	
184	Water level variation strongly influenced the terns' breeding success, resulting in the
185	abandonment of the laying when variation is too pronounced (Table 2), as was reported by Catry
186	et al. (1997) and Paillisson et al. (2006). We also observed that unfavourable climatic events,
187	such as intense rain or hail, or streams of water caused by human activities, also had the capacity

188 to disrupt incubation (Table 2), as was also reported by Tomialojć (1994). During the nesting 189 period, it is essential that the water level remains stable, without major fluctuations (less than \pm 5 190 cm) once nests are established on the vegetation, since this could otherwise result in the 191 destruction of nests and therefore the loss of eggs and chicks (Table 2). 192 193 Acknowledgements 194 195 With special reference to Javier García Gans for contributing to ringing in the Pego-Oliva marsh 196 (2002-2004). To Mario Martínez Azorín for his unconditional support. My partner Maria 197 Lorenzo for her support in the final stages of my work. To my family and friends for being 198 always there. Terra Natura Foundation, Department of Environmental Sciences and Natural 199 Resources of the University of Alicante (to finance displacement). To Juan Jimenez Conselleria 200 d'Infraestructures, Territori i Medi Ambient. Generalitat Valenciana (old data and gave me 201 permission to come in wetlands). To Martin Haubeck (Seabird Journal Editor), for his review. 202 203 References 204 205 **BirdLife** 2004. Birds in Europe: population estimates trends and conservation status. Birdlife, 206 Cambridge. 207 Callaghan P. & Villaplana J. 1990. "El Fumarel cariblanco (Chlidonias hybrida) en el marjal 208 de Xeresa". Ed. Testudo. Murcia. 259-270. 209 Catry P., Tomé R. & Cardoso A.C. 1997. Biologia da reprodução e estatuto da gavina-dos-210 pauis Chlidonias hybridus no Paul do Boquilobo. Airo 8: 7-15. 211 Cramp S. & Simmons, K.E.L. (eds) 1977. Handbook of the birds of Wester Palertic. 212 **Dostine P.L. & Morton S.R.** 1989. Feeding ecology of the Whiskered tern, *Chlidonias hybrida*, 213 in the Alligator Rivers Region, Northern-Territory. Australian Wildlife Research 16 (5): 549-214 562. 215 Lautrabe F. 2006. Biologie de la reproduction de la guifette moustac Chlidonias hibrida en 216 Brenne. Mémoire de l'Ecole Practique des hautes etudes. Université de Monpellier II, 217 Monpellier. 218 Nisbet I.C.T., Spendelow J.A. & Hatfield J.S. 1995. Variations in growth of roseate term

- 219 chicks. Condor 97: 335-344.
- 220 **Ortiz A.** 2005. "Colonia Tardía de Fumarel cariblanco en el marjal de Pego-Oliva". Revista
- 221 Quercus. Junio 2005: 41-42.
- 222 Paillisson J-M., Reeber S., Carpentier A. & Marion L. 2006. Plant-water regime management
- 223 in wetland: consequences for a floating vegetation-nesting bird, whiskered tern Chlidonias
- 224 *hybridus*. Biodiversity and Conservation. 15: 3469-3480.
- Paillisson J-M., Reeber S., Carpentier A. & Marion L. 2007. Reproductive parameters in
- relation to food supply in the whiskered tern *Chlidonias hybrida*. Journal of Ornithology. 148:
- 227 69-77.
- Paillisson J-M., Latraube F. & Reeber S. 2008. Assessing growth and age of whiskered tern
- 229 Chlidonias hybrida chicks using biometrics. Ardea 96(2): 271-277.
- 230 Stienen E.W.M. & Brenninkmeijer A. 2002. Variation in growth in sandwich terns Sterna
- 231 sandvicensis and the consequences for pre and post-fleding mortality. Ibis 144: 567-576.
- 232 **Tomialojć L.** 1994. Whiskered tern. In: Tucker, G.M. & Heath, M.F (eds) Birds in Europe. Birds
- 233 in Europe: their Conservation Status. Birdlife International (Birdlife Conservation Series 3)
- 234 Cambridge, pp. 302-303.
- 235 Tucker G.M. & Heath M.F. 1994. Birds in Europe: their Conservation Status. Birdlife
- 236 International Cambridge.
- Urios V., Escobar J.V., Pardo R., & Gomez J.A. 1991. "Atlas de las aves nidificantes de la
- 238 Comunidad Velanciana". Ed. Generalitat Valenciana. Conselleria d'Agricultura i Pesca. 182-183.

240

241

242

243

244

245

246

247

248

249

Table 1. Breeding parameters of Whiskered Tern *Chlidonias hybrida* in the studied wetlands of Valencia Community, 2002-2009.

Wetland	Year	Initial Adults no.	Pairs no.	Total Nests no.	Eggs no.	Chicks no.	Fledglings no.		Hatching success (%)	Fledglings / Chicks (%)
Pego-	2002	240	112	111	191	127	18	2.1	66.5	14.2
Oliva	2003	180	67	64	151	110	32	2.6	72.8	29.1
	2004	220	102	100	260	210	35	2.7	80.8	16.7
	2005	96	43	43	65	26	6	2.1	40	23.1
	2006	120	30	27	50	7	1	1.9	14	14.3
	2007	212	38	38	34	13	6	2.3	38.2	46.2
	2008	50	10	1	2	2	2	2	100	100
	2009	160	64	30*	83	45	22	2.8	54.2	48.9
Subtotal		1278	466	414	836	540	122	_	_	_
Mean		160	58	52	105	68	15	2.3	58.3	36.5
Moro	2004	154	67	55	134	61	23	2.4	66.2	58.8
	2005	66	30	30	61	13	9	2	21.3	69.2
	2009	70	32	32*	47	28	16	2.4	59.6	57.1
Hondo	2004	130	55	50	154	35	8	2	22.7	22.9
Xeresa	2005	240	120	114	257	130	24	2.3	50.6	18.5
Almenara	2008	46	23	21*	29	22	11	2.4	75.9	50
Subtotal		706	327	302	682	289	91	_	_	_
Mean		118	55	50	114	48	15	2.3	49.4	46.1
TOTAL		1984	793	716	1518	829	213			
TOTAL MEAN		142	57	51	108	59	15	2.3	53.9	41.3

* Sampled, not total.

Table 2. Water level variations that affected the reproductives success of Whiskered Tern

262 Chlidonias hybrida in the Valencia Community 2002-2009.

\sim	-	1
,	n	-
_	v	_

Colony no.	Year	Disturb Date	Wetland	Nests support	Averag e water depth	Events and water level variations	Effect on the reproductive success in the colonies
1	2002	12 to 17 July	Pego	Ph, Th, Sc, Ch	31	Watering crops. Water level decreases from 31 to 20 cm	Loss of 71% of nests (66/93), 43.6 % of eggs (17/39) and 7.7% of chicks (2/26)
2	2003	23 June to 31 July	Pego	Mv, Ph	75	No negative effect seen. Water level slightly decreases from 77 to 72 cm	Loss of 6.3% of nests (4/64), 52.4% of eggs (77/147) and 49.2% of chicks (31/63)
3	2004	14 to 21 June	Pego	Ph, Th, Sc	27	Rain. Water level rises from 22 to 34 cm	Loss of 35.6% of nests (27/76), 42% of eggs (34/81) and 86.2% of chicks (75/87)
4	2004	5 to 16 July	Pego	Mv, Ph	63	Watering crops. Water level decreases from 65 to 52 cm	Loss of 30% of nests (3/10), 53.8% of eggs (7/13) and 66.7% of chicks (4/6)
5	2004	23 July to 11 August	Pego	Mv, Ph	50	Watering crops. Water level decreases from 52 to 45 cm	Loss of 37.5% of nests (3/8), 42.9% of eggs (6/14) and 35.7% of chicks (5/14)
6	2005	25 June to 6 July	Pego	Ph, Th, Sc	41	Stream of water. Water level remains constant	Loss of 86.7% of nests (13/15), 100% of eggs (18/18) and 66.7% of chicks (4/6)
7	2005	25 June to 6 July	Pego	Mv, Cl	75	Rain. Water level raises from 69 to 75 cm	Loss of 100% of nests (25/25), 100% of eggs (4/4) and 78.9% of chicks (15/19)
8	2006	May- June	Pego	Ph, Th, Sc	75	Strong rain and hail. Water level raises from 65 to 75 cm	Loss of 96,3% of nests (26/27), 86% of eggs (43/50) and 85.7% of chicks (6/7)
9	2007	22 to 28 June	Pego	Ph	55	Rain. Water level raises from 50 to 60 cm	Loss of 50% of nests (19/38), 20.6% of eggs (7/34) and 14.3% of chicks (1/7)
10	2008	May- June	Pego	Ph, Th, Sc	50	Continuous rain. Water level raises from 40 to 60 cm	Loss of 90% of nests (9/10), 90% of eggs (18/20) and 0% of chicks (0/2)
11	2009	23 June	Pego	Ph	22	Rain. Water	Loss of 93.3% of nests

		to 13 July				level raises from 50 to 60 cm	(28/30), 0% of eggs (0/0) and 51% of chicks (23/45)
12	2004	18 June to 10 July	Hondo	Ph, Tg	46	Channelling works in the natural park. Water level decreases from 65 to 35 cm	Loss of 74.2% of nests (49/66), 94.6% of eggs (124/131) and 87.5% of chicks (14/16)
13	2004	9 to 20 July	Moro	Ph, Cl	35	Stream of water after watering crops. Water level decreases from 40 to 30 cm	Loss of 54.5% of nests (24/44), 86.3% of eggs (69/80) and 30.4% of chicks (7/23)
14	2004	6 to 23 July	Moro	Ph, Cl	28	Stream of water after watering crops. Water level decreases from 35 to 26 cm	Loss of 40% of nests (2/5), 18.2% of eggs (2/11) and 0% of chicks (0/9)
15	2005	15 June to 6 July	Xeresa	Ph	18	Desiccation after watering crops. Water level decreases from 20 to 5 cm	Loss of 89.5% of nests (102/114), 92.6% of eggs (75/81) and 81.4 % of chicks (96/118)
16	2005	6 to 20 July	Moro	Ph, Cl	47	Heavy rain destroying nests. Water level remains constant	Loss of 83.3% of nests (25/30), 78.9% of eggs (45/57) and 25% of chicks (3/12)
17	2008	24 June to 17 July	Almenara	Ph, Th, Cl	27	No negative effect seen. Water level slightly decreases from 30 to 25 cm	Loss of 33.3% of nests (4/12), 7,4 % of eggs (2/27) and 30% of chicks (6/20)
18	2009	19 June to 20 July	Moro	Th, Ph, Cl	31	No negative effect seen. Water level slightly decreases from 35 to 30 cm	Loss of 20% of nests (4/20), 40.4% of eggs (19/47) and 42.9% of chicks (12/28)

265

268

* Support (specific vegetation):

reed Phragmites australis: Ph.

267 cattail *Thypha dominguensis & T. latifolia*: Th.

rushes Scirpus tabernaemontani & S. maritimus: Sc.

tarays *Tamarix gallica*): Tg.

belfry of water Myriophyllum verticillatum: Mv.

algae Cladophora sp: Cl.; & Chara sp. Ch.