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ABSTRACT
Genome rearrangements have played an important role in the evolution of Yersinia
pestis from its progenitor Yersinia pseudotuberculosis. Traditional phylogenetic trees for
Y. pestis based on sequence comparison have short internal branches and low bootstrap
supports as only a small number of nucleotide substitutions have occurred. On the
other hand, even a small number of genome rearrangements may resolve topological
ambiguities in a phylogenetic tree. We reconstructed phylogenetic trees based on
genome rearrangements using several popular approaches such asMaximum likelihood
for Gene Order and the Bayesian model of genome rearrangements by inversions.
We also reconciled phylogenetic trees for each of the three CRISPR loci to obtain
an integrated scenario of the CRISPR cassette evolution. Analysis of contradictions
between the obtained evolutionary trees yielded numerous parallel inversions and
gain/loss events. Our data indicate that an integrated analysis of sequence-based
and inversion-based trees enhances the resolution of phylogenetic reconstruction. In
contrast, reconstructions of strain relationships based on solely CRISPR loci may not
be reliable, as the history is obscured by large deletions, obliterating the order of spacer
gains. Similarly, numerous parallel gene losses preclude reconstruction of phylogeny
based on gene content.

Subjects Bioinformatics, Genomics, Mathematical Biology
Keywords Phylogeny reconstruction, Bacteria evolution, Genome rearrangements

INTRODUCTION
Yersinia pestis, causing fulminant plague, has evolved clonally from an enteric pathogen,
Yersinia pseudotuberculosis, that, in contrast, causes a relatively benign enteric illness.
Horizontal gene acquisition, massive gene loss, and genome rearrangement events all have
played important roles in the evolution of Y. pestis from its progenitor (Achtman et al.,
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1999). Y. pseudotuberculosis and Y. pestis differ radically in their pathogenesis despite
sharing >97% identity in 75% of their chromosomal genes (Martínez-Chavarría &
Vadyvaloo, 2015). As only a small number of nucleotide substitutions have occurred,
traditional phylogenetic trees of Y. pestis strains based on sequence comparison have short
internal branches and low bootstraps.

Gene order in prokaryotes is relatively poorly conserved making it a convenient tool for
the analysis of the species and strain evolution, when changes in protein, and even gene
sequences do not provide sufficient resolution (Wolf et al., 2001). In addition, genome
rearrangements are less sensitive to homologous recombination and hence allow for
an alternative approach to construction of phylogenetic trees, as even a small number of
genome rearrangementsmay resolve topological ambiguities in a phylogenetic tree (Darling,
Miklós & Ragan, 2008).

Among factors affecting genome rearrangement are abundance of mobile elements
and the state of repair/recombination systems in the respective genomes (Novichkov et al.,
2009). Newly formed pathogens such as Y. pestis are known to have a particularly high rate
of rearrangements that may be caused by the prevalence of a large variety and number of
insert sequences (ISs) (Liang et al., 2014).

The comparison of the Y. pestis KIM genome sequence with Y. pestis strain CO92 has
divided both genomes into 27 conserved segments, and the most parsimonious series
of inversions for three multiple-inversion regions has been described (Deng et al., 2002).
Further, large-scale genome rearrangements have been described in strains Antiqua, Nepal
and Angola (Chain et al., 2006; Eppinger et al., 2010). Comparison of pairs of bacterial
genomes has revealed a characteristic ‘‘cross-like’’ pattern of localization of orthologous
genes, indicating that inversions around the origin of replication comprise one of the
dominant types of genome rearrangements (Eisen et al., 2000).

Multiple genome alignment of nine Y. pestis and Y. pseudotuberculosis genomes has
featured universal Locally Collinear Blocks (LCBs) yielding seven parsimonious scenarios
of the inversion history. The reconstructed pattern of genome rearrangements confirms
strong preference for the replichore balance and over-representation of ‘‘symmetric
inversions’’—inversions with endpoints that are equally distant from the origin of
chromosomal replication (Darling, Miklós & Ragan, 2008).

Several algorithms based on a variety of optimization approaches have been developed
for the reconstruction of the rearrangement history (Avdeyev et al., 2016; Hu, Lin & Tang,
2014). However, reconstruction for large datasets remains a challenge, since the minimum
length series of inversions (the optimal sorting path) is often not unique and equally many
optimal sorting paths exist (Miklós & Darling, 2009).

Later, the LCB model has been used to infer the phylogenetic relationships among eight
complete Y. pestis genomes from the breakpoint distance matrix, yielding the conclusion
that the pattern of Y. pestis chromosome rearrangements reflects the genetic features of
specific geographical areas and might be applied to distinguish Y. pestis isolates (Liang et
al., 2010). A set of gene families from thirteen Yersinia species has been used to reconstruct
a complete genome sequence for the ancestor, integrating information from the sequences,
the species tree, and the gene order (Duchemin, Daubin & Tannier, 2015).
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Being a traditional object for the spoligotyping, a special type of genotyping based
on the spacer nucleotide analysis, CRISPR systems of Y. pestis strains often serve as a
model for CRISPR-based evolutionary studies. All three separate genomic CRISPR loci
have been described in detail (Pourcel, Salvignol & Vergnaud, 2005), including numerous
strains without complete genomes (Vergnaud et al., 2007; Cui et al., 2008; Riehm et al.,
2012; Barros et al., 2014; Riehm et al., 2015). Relationships between strains have been
studied using the distance based on shared and differential spacers content only (Barros
et al., 2014) or taking into account the principles of evolutionary cassette dynamics. In
particular, the evolutionary history of Y. pestis based on CRISPR polymorphism has been
reconstructed in the form of an acyclic oriented graph (Cui et al., 2008). Later, a general
mathematical model of CRISPR evolution has been applied to reconstruct the relationships
of strains for each of the three CRISPR loci (Kupczok & Bollback, 2013).

Here, we integrate the history at different levels of genome evolution, including gene
flux, sequence divergence, chromosome segmental inversions, and spacer acquisitions and
deletions in CRISPR cassettes, for genomes of twelve completely sequenced Y. pestis strains
and four Y. pseudotuberculosis strains.

MATERIALS AND METHODS
Genomes
Complete genome sequences of four Yersinia pseudotuberculosis and twelve Yersinia pestis,
all available as of August 1st, 2013, were taken from the NCBI Genome database (Benson
et al., 2015) and are listed in Table S1.

Construction of orthologs
Bidirectional best hits (BBHs) were constructed for each pair of strains using
BLASTP (Zhang & Madden, 1997). BLASTP hits with identity <50% or coverage of
the shorter sequence <67% were ignored. At the next step, if paralogs were more similar
to each other than to either BBH partner, both paralogs were added to the orthologous
group. Then, maximal connected components were constructed. This was done using
ad hoc software based on the Relational Database Management System (RDBMS) Oracle
Database Express Edition.

Trees based on nucleotide alignments
First we performed codon alignment and filtering for each of the 2117 orthologous groups
using Mafft version v7.123b (Katoh & Standley, 2013) and Guidance 2.01 (Penn et al.,
2010). Orthologous groups containing sequences with score below 0.8 were excluded
from further analysis. Poorly aligned residues (guidance score below 0.8) were masked.
The resulting sequences were concatenated and the tree was constructed with RAxML
v8.2.9 (Stamatakis, 2014) using the GTR+Gamma model with 100 bootstrap runs.

Synteny blocks reconstruction
Synteny blocks were constructed using the Sibelia algorithm (Minkin et al., 2013) with the
block length threshold 5,000 bp. To ensure robustness of the tree topology relative to this
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parameter we also performed calculations with the block length thresholds of 500 bp and
2,000 bp (see Figs. S2–S4). We used two approaches for the blocks construction. Splitting
the chromosomes on non-repetitive common blocks was used for inversions analysis as
the construction of all types of blocks allowed us to consider all type of rearrangements
such as losses and gains.

Trees based on gene order
Trees based on gene order were build using two approaches. The trees using the Maximum
Likelihood approach for the gene order were constructed using the MLGO software (Hu,
Lin & Tang, 2014) for two data sets, synteny blocks having only one copy in every genome,
and all synteny blocks found in these genomes. For both datasets we performed 1,000
replicates for the bootstrap analysis. The phylogenetic network was obtained using the
Bayesian model of genome rearrangements by inversions implemented in the BADGER
software (Larget, Simon & Kadane, 2002). We calculated 1,510,000 modification proposal
steps, discarded the first 10,000 steps of each chain as burn-in and then subsampled every
50 steps as described in (Darling, Miklós & Ragan, 2008). The convergence of the Markov
chain was assessed across multiple independent runs of BADGER as recommended in
the BADGER manual. We used SplitsTree v4 (Huson & Bryant, 2006) for the network
visualization.

Trees based on CRISPR cassettes composition
CRISPR cassettes were downloaded from CRISPRdb (Grissa, Vergnaud & Pourcel, 2007).
Phylogenetic trees were reconstructed manually based on the CRISPR cassettes evolution
rules. At that, two types of events were allowed, addition of a new spacer at the leader end,
and deletion of one or several adjacent spacers from any part of a cassette. We further
assumed (1) no independent additions of the same spacer to two different cassettes; (2)
rare, but possible independent deletions of the same cassette segments; and (3) more
probable single deletion of a segment including several adjacent spacers compared to
several subsequent deletions of the segment parts.

RESULTS AND DISCUSSION
Phylogenetic trees based on sequences alignments
The phylogenetic tree for the analyzed Y. pseudotuberculosis and Y. pestis was constructed
based on 2408 single-copy universal genes using a concatenation of individual nucleotide
alignments (Fig. 1). We used the Y. enterocolitica genome to root the tree. We observed
that Y. pestis strains formed a clade within the Y. pseudotuberculosis subtree, in agreement
with previous genome analyses (Chain et al., 2006; Rasmussen et al., 2015).

There seemed to be several key noise factors. A small number of nucleotide substitutions
resulted in low bootstrap values in several vertices, e.g., for Z176003, CO92, and A1122.
Also, homologous recombination events might dramatically influence the tree topology
reconstruction and lead to low level of bootstrap supports.
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Figure 1 (A) Phylogenetic tree of the Yersinia spp., based on nucleotide alignments of 2408 single-
copy universal genes; (B) phylogenetic tree of the Y. pestis branch only.

Full-size DOI: 10.7717/peerj.4545/fig-1

Phylogenetic trees based on gene order
As genome rearrangements had played an important role in the evolution of Yersinia
pestis, we constructed phylogenetic trees based on the gene order to check the topology
and resolve nodes with low-level bootstrap support. Based on whole-genome alignments,
123 synteny blocks that were common for all strains under consideration with length more
than 5,000 bp were obtained. We applied the Bayesian model of genome rearrangements
by inversions and visualized phylogenetic tree signal as a consensus network (Fig. 2).
This network has a complicated structure with ambiguous positions of the long branches
but it has well-resolved clades with closely related strains that are not resolved in the
alignment-based tree (Fig. 1B).

Application of the Maximum Likelihood approach (Hu, Lin & Tang, 2014) to synteny
blocks common for all Y. pestis strains revealed the optimal tree topology (Fig. 3A). Strains
D106004 and Z176003 formed a separate branch in the inversions-based tree due to the
same inversion with length about 150 kB that had occurred in these strains and D182038
that was an outgroup; at that, in the sequence-based tree Z176003 was an outgroup with
a low bootstrap support of this node (Fig. 1B). One more parallel inversion with length
about 350 kB was found in A1122 and D182038 that had lead to a low support in this
node in the inversions-based tree. The boundaries of the inversions are formed by repeated
sequences (transposases).

The observed parallel inversions could be explained by homologous recombination
(horizontal transfer between strains) involving a segment containing the inverted
fragments. If this were the case, sequence trees constructed using the genes from the
inverted fragments would cluster together strains with the parallel inversions. However,
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Figure 2 Phylogenetic trees network of the Yersinia pestiswith Bayesian posterior probability thresh-
old= 0.1.

Full-size DOI: 10.7717/peerj.4545/fig-2
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Figure 3 Phylogenetic trees of the Yersinia spp. based on gene order. (A) Optimal topology based on
inversions. (B) Optimal topology based on all types of rearrangements. Nodes that produce differences in
the trees are labeled in red.

Full-size DOI: 10.7717/peerj.4545/fig-3
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Main locus Additional locus 1 Additional locus 2
Yp A1122 sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp5 sp4 sp3 sp2 sp1 sp3 sp2 sp1
Yp CO92 sp7 sp6 sp5 sp4 sp3 sp2 sp1 sp0 sp0 sp1 sp2 sp3 sp4 sp0 sp1 sp2
Yp D106001 sp7 sp6 sp5 sp4 sp3 sp2 sp1 sp4 sp3 sp2 sp1 sp1 sp2 sp3
Yp Z176003 sp7 sp6 sp5 sp4 sp3 sp2 sp1 sp1 sp2 sp3 sp4 sp1 sp2 sp3
Yp Pestoides F sp5 sp4 sp3 sp2 sp1 sp0 sp5 sp4 sp3 sp2 sp1 sp0 sp4 sp3 sp2 sp1 sp0
Yp D182038 sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp1 sp2 sp3 sp4 sp3 sp2 sp1
Yp Antiqua sp5 sp4 sp3 sp2 sp1 sp0 sp2 sp1 sp0 sp0 sp1 sp2
Yp Angola sp4 sp3 sp2 sp1 NO NO
Yp KIM sp0 sp1 sp2 sp0 sp1 sp2 sp3 sp2 sp1 sp0
Yp Microtus 91001 sp2 sp1 sp0 sp3 sp2 sp1 sp0 NO
Yp Harbin 35 sp5 sp6 sp7 sp4 sp3 sp2 sp1 sp3 sp2 sp1
Yp Nepal 615 sp0 sp0 sp1 sp2 sp3 sp2 sp1 sp0

Figure 4 CRISPR cassettes of completely sequenced Y. pestis strains. Cassette IDs and spacer numbers
are given according to CRISPRdb (Grissa, Vergnaud & Pourcel, 2007). Identical spacers are shown by
the same color; unique spacers are set in frames.

Full-size DOI: 10.7717/peerj.4545/fig-4

the trees for both inversions are poorly resolved and hence provide no information about
possible horizontal transfer (Fig. S1).

One more short parallel inversion was found in Y. pestis KIM and Y. pestis Nepal
at decreased synteny length threshold (Fig. S4). The inverted block of length 3,500 bp
contained integrase, antibiotic biosynthesis monooxygenase, dihydroorotase, DNA
damage-inducible protein I, biofilm formation regulatory protein BssS, and IS256 family
transposase. A possible explanation could be an incorporation of a mobile element in
different orientations.

Adding the information about non-common blocks leads to decrease of the bootstrap
supports (Fig. 3B). This may be explained by numerous parallel gains and losses natural
to fast-evolving bacterial genomes such as recently formed pathogens. In particular, the
Antiqua strain moves to the Microtus node, in agreement with the fact that, according to
the ability to ferment glycerol and to reduce nitrate, strains Antiqua, Pestoides, Microtus,
and Angola belong to the Antiqua biovar (Chain et al., 2006).

Based on the phylogenetic patterns, most events are losses, with only three blocks likely
to have been inserted and three blocks having mosaic patterns that cannot be interpreted.
However, as the latter have the same position in the genomes, they probably represent
parallel losses. The inserted blocks are a prophage insertion, a fragment with a gene
encoding a penicillin-binding protein and a transposase, and a gene encoding domains of
an invasin-like inverse autotransporter protein.

CRISPR analysis
CRISPR cassettes of the considered Y. pestis strains are shown in Fig. 4. Initially, we
constructed separate phylogenetic trees for each of the three CRISPR loci using the
parsimony approach (Fig. 5, see ‘Methods’). As the number of events in each locus was
small, the history of each locus could be reconstructed unambiguously.

However, the genome of Y. pestis evolves as a whole and the individual histories of the
loci should be reconciled. In this case the reconstruction is ambiguous, as there are two
equivalent reconstructions of the common ancestors and five equal positions of the Nepal
strain on the maximum parsimony tree. Two maximum parsimony trees most compatible
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Figure 5 Cladograms (A, B, C) and schemas of evolution (D, E, F) of three CRISPR loci of Y. pestis. (A,
D) The main, most variable, locus; (B, E) additional locus 1; (C, D) additional locus 2.

Full-size DOI: 10.7717/peerj.4545/fig-5

with the sequence tree are shown in Fig. 6. The trees constructed based on nucleotide
sequences or rearrangements satisfy the rules of CRISPR cassette evolution (see Methods),
but each of them implies two additional losses of cassette segments in comparison with the
maximum parsimony tree. In particular, the sequence-based tree implies two independent
parallel losses of the same segments of the main locus in the Angola and Antiqua strains
branches.

No direct evidence for homologous recombination or horizontal transfer of complete
CRISPR loci or smaller groups of spacers was observed. While the parallel losses could
be interpreted as a sign of homologous recombination/horizontal transfer, parallel events
seem more likely, given the overall high rate of spacer loss. Generally, the problem of
horizontal transfer vs. parallel events, duplications, and losses is a difficult one in the
comparative genomics of prokaryotes (Koonin, 2016).
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Full-size DOI: 10.7717/peerj.4545/fig-6

CONCLUSIONS
Detailed reconstruction of evolution of bacterial strains provides a framework for
epidemiological studies and analysis of acquired pathogenesis loci and drug resistance
determinants.

Using Y. pestis as an example, we demonstrate that integrated analysis of sequence-based
and inversion-based trees enhances the resolution of the phylogenetic reconstruction. At
that, inversions may resolve branches with low bootstrap support.

In contrast, reconstructions of strain relationships based on solely CRISPR loci may not
be reliable, as the history is greatly obscured by large deletions, obliterating the order of
spacer gains. Even less reliable seem to be reconstructions based on shared spacer content.
Similarly, numerous parallel gene losses preclude reconstruction of phylogeny based on
gene content.
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