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Background. The Zika virus was first discovered in 1947. It was neglected until a major outbreak
occurred on Yap Island, Micronesia, in 2007. Teratogenic effects resulting in microcephaly in newborn
infants is the greatest public health threat. In 2016, the Zika virus epidemic was declared as a Public
Health Emergency of International Concern (PHEIC). Consequently, mathematical models were
constructed to explicitly elucidate related transmission dynamics.

Survey Methodology. In this review article, two steps of journal article searching were performed. First,
we attempted to identify mathematical models previously applied to the study of vector-borne diseases
using the search terms “dynamics,” “mathematical model,” “modeling,” and “vector-borne” together
with the names of vector-borne diseases including chikungunya, dengue, malaria, West Nile, and Zika.
Then the identified types of model were further investigated. Second, we narrowed down our survey to
focus on only Zika virus research. The terms we searched for were “compartmental,” “spatial,”
“metapopulation,” “network,” “individual-based,” “agent-based.” AND “Zika.” All relevant studies were
included regardless of the year of publication. Our review study was performed from April to July 2017. In
this publication survey, we explored the Google Scholar and PubMed databases.

Results. We found five basic model architectures previously applied to vector-borne virus studies,
particularly in Zika virus simulations. These include compartmental, spatial, metapopulation, network,
and individual-based models. We found that Zika models carried out for early epidemics were mostly fit
into compartmental structures and were less complicated compared to the more recent ones. Simple
models are still commonly used for the timely assessment of epidemics. Nevertheless, due to the
availability of large-scale real-world data and computational power, recently there has been growing
interest in more complex modeling frameworks.

Discussion. Mathematical models are employed to explore and predict how an infectious disease
spreads in the real world, evaluate the disease importation risk, and assess the effectiveness of
intervention strategies. As the trends in modeling of infectious diseases have been shifting towards data-
driven approaches, simple and complex models should be exploited differently. Simple models can be
produced in a timely fashion to provide an estimation of the possible impacts. In contrast, complex
models integrating real-world data require more time to develop but are far more realistic. The
preparation of complicated modeling frameworks prior to the outbreaks is recommended including the
case of future Zika epidemic preparation.
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24

25 Abstract

26 Background. The Zika virus was first discovered in 1947. It was neglected until a major outbreak 

27 occurred on Yap Island, Micronesia, in 2007. Teratogenic effects resulting in microcephaly in 

28 newborn infants is the greatest public health threat. In 2016, the Zika virus epidemic was declared 

29 as a Public Health Emergency of International Concern (PHEIC). Consequently, mathematical 

30 models were constructed to explicitly elucidate related transmission dynamics. 

31 Survey Methodology. In this review article, two steps of journal article searching were performed. 

32 First, we attempted to identify mathematical models previously applied to the study of vector-

33 borne diseases using the search terms “dynamics,” “mathematical model,” “modeling,” and 

34 “vector-borne” together with the names of vector-borne diseases including chikungunya, dengue, 

35 malaria, West Nile, and Zika. Then the identified types of model were further investigated. Second, 

36 we narrowed down our survey to focus on only Zika virus research. The terms we searched for 

37 were “compartmental,” “spatial,” “metapopulation,” “network,” “individual-based,” “agent-

38 based.” AND “Zika.” All relevant studies were included regardless of the year of publication. Our 

39 review study was performed from April to July 2017. In this publication survey, we explored the 

40 Google Scholar and PubMed databases.

41 Results. We found five basic model architectures previously applied to vector-borne virus studies, 

42 particularly in Zika virus simulations. These include compartmental, spatial, metapopulation, 

43 network, and individual-based models. We found that Zika models carried out for early epidemics 

44 were mostly fit into compartmental structures and were less complicated compared to the more 

45 recent ones. Simple models are still commonly used for the timely assessment of epidemics. 
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46 Nevertheless, due to the availability of large-scale real-world data and computational power, 

47 recently there has been growing interest in more complex modeling frameworks.

48 Discussion. Mathematical models are employed to explore and predict how an infectious disease 

49 spreads in the real world, evaluate the disease importation risk, and assess the effectiveness of 

50 intervention strategies. As the trends in modeling of infectious diseases have been shifting towards 

51 data-driven approaches, simple and complex models should be exploited differently. Simple 

52 models can be produced in a timely fashion to provide an estimation of the possible impacts. In 

53 contrast, complex models integrating real-world data require more time to develop but are far more 

54 realistic. The preparation of complicated modeling frameworks prior to the outbreaks is 

55 recommended including the case of future Zika epidemic preparation.

56

57 Introduction

58 Zika is a single-stranded RNA flavivirus, a member of the Flaviviridae family (Lopes et 

59 al., 2016). The virus is genetically related to some others responsible for encephalitis in humans, 

60 including chikungunya, dengue, Japanese encephalitis, West Nile, and the yellow fever virus 

61 (Lucey & Gostin, 2016; Goeijenbier et al., 2016; Vest, 2016). Zika is one of the arboviruses 

62 transmitted by Aedes mosquitoes. The main vectors are Aedes aegypti and Aedes albopictus (Al-

63 Qahtani et al., 2016). These mosquitoes are mostly found in tropical and subtropical regions 

64 (Petersen et al., 2016). 

65 The Zika virus was first discovered in rhesus monkeys in 1947 while researchers were 

66 studying yellow fever in Zika Forest, Uganda, and it was isolated from Aedes africanus mosquitoes 

67 the subsequent year (Dick, Kitchen, & Haddow, 1952). The first human isolation was recorded in 

68 Nigeria six years later (MacNamara, 1954; Petersen et al., 2016). For decades, the viral infection 
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69 was sporadically reported in Africa and Southeast Asia (Hayes, 2009; Goeijenbier et al., 2016). 

70 The first large outbreaks occurred on Yap Island, Federated States of Micronesia, in 2007 (Duffy 

71 et al., 2009). In this epidemic, 49 confirmed cases were found together with another 59 probable 

72 cases. It was estimated that up to 73% of the Yap Island residents were asymptomatically infected 

73 (Duffy et al., 2009; Kindhauser et al., 2016). The episodes of large-scale Zika virus outbreaks 

74 happened in 2013, when the virus migrated to French Polynesia, a French territory located in the 

75 South Pacific. This outbreak was the largest recorded at the time (Cao-Lormeau et al., 2014, 2016; 

76 Musso, 2015). Overall, 19,000 suspected cases were estimated throughout the epidemic’s course 

77 (Cao-Lormeau et al., 2014). The first evidence of Guillain-Barré syndrome related to the Zika 

78 virus was also seen in this historic outbreak (Cao-Lormeau et al., 2016). Subsequently, the virus 

79 from French Polynesia dispersed to many countries in the Pacific Ocean, finally reaching Easter 

80 Island, Chile, in 2014 (Tognarelli et al., 2015). The virus seems to have established well on the 

81 continent, especially in Latin American countries (Shi et al., 2016). For example, the 

82 autochthonous transmission was first confirmed in Brazil in 2015 (Zanluca et al., 2015) and the 

83 Brazilian Ministry of Health estimated the number of suspected cases at 440,000 to 1,300,000 that 

84 year. The Zika infection was also linked to the unusual rising incidence of microcephaly in 

85 newborn infants (Mlakar et al., 2016; de Oliveira & da Costa Vasconcelos, 2016; Heymann et al., 

86 2016) together with some other neurological disorders including Guillain-Barré syndrome (de 

87 Oliveira et al., 2017). On February 1, 2016, the World Health Organization (WHO) Director-

88 General declared Zika virus outbreaks in Latin American countries as a Public Health Emergency 

89 of International Concern (PHEIC) (Heymann et al., 2016). As of March 9, 2017, vector-borne Zika 

90 virus transmission was found in 84 countries, territories, or subnational areas (WHO, 2017).
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91 In addition to the Zika, in the twenty-first century many emerging and reemerging 

92 infectious diseases threaten the human race. With rapid globalization, these diseases are often 

93 disseminated at unprecedented speed. The epidemics of severe acute respiratory syndrome (SARS) 

94 in 2003 and the H1N1 influenza pandemic of 2009 are excellent evidence in the first decade 

95 (Mackey & Liang, 2012). More recently, we face new threats almost every year, for example, the 

96 Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia in 2012 (de Groot 

97 et al., 2013), the Ebola virus in the West African region in 2014 (WHO Ebola Response Team, 

98 2014). In such epidemics, the real-time evaluation of the ongoing situation is vitally important. To 

99 serve this purpose, mathematical modeling has been exploited to monitor the outbreak progression, 

100 predict the trend of disease transmission, and tailor related control strategies (McVernon, McCaw, 

101 & Mathews, 2007; de Jong & Hagenaars, 2009).

102 Infectious disease modeling is an interdisciplinary approach. Modelers are obligated to 

103 comprehend not only the mathematical frameworks but also the biological knowledge behind the 

104 epidemics (Rock et al., 2014b). Recently, mathematical modeling has been well established as an 

105 epidemiological tool. It has been used to combat many infectious diseases. The very first 

106 mathematical model was traced back to the work of Daniel Bernoulli in the eighteenth century. 

107 Bernoulli employed a simple model to estimate life expectancy due to variolation practices in 

108 smallpox epidemics (Bernoulli, 1766). However, the modern era of infectious disease modeling 

109 was actually initiated a century ago with a mosquito-borne model proposed by Sir Ronald Ross. 

110 Ross developed a set of mathematical equations to illustrate how malaria parasites were 

111 transmitted between mosquitoes and humans (Ross, 1911). The model was later complemented by 

112 the work of Macdonald (MacDonald, 1952), and finally became the well-known Ross-Macdonald 

113 models. This modeling framework still plays an important role in research on malaria and other 
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114 mosquito-borne diseases (Smith et al., 2012). Nevertheless, there were also many other scientists 

115 working on malaria transmission dynamics. For instance, Kermack and McKendrick incorporated 

116 the law of mass action into the Ross model and proposed new and modern compartmental models 

117 (Kermack & McKendrick, 1927, 1932, 1933) that later became the most widely used basic 

118 structures in infectious disease modeling.

119 The present review aimed to provide an overview of mathematical modeling methods, 

120 particularly those developed for Zika virus transmission.  However, it is not possible to cover, in 

121 a review, all kinds of mathematical models applied to infectious disease studies. In this review, we 

122 describe some common models developed thus far. We explain different approaches ranging from 

123 simple compartments to sophisticated models integrating real-word data. The idea is to provide 

124 some basic knowledge of mathematical projections before further exploring the models, 

125 particularly those developed for Zika virus transmission. We also discuss recent advances and 

126 trends of research in the infectious disease modeling. 

127

128 Survey Methodology

129 We attempt to cover different types of mathematical models applied to the study of vector-

130 borne disease, particularly the Zika virus. First, we provide basic knowledge on methodological 

131 approaches in order to facilitate non-mathematical background readers. We therefore initiated our 

132 survey to investigate previously published modeling frameworks. Subsequently, we further 

133 explore specifically the use of models in the study of the Zika virus. In our publication survey, we 

134 used the Google Scholar (https://scholar.google.com/) and PubMed 

135 (http://www.ncbi.nlm.nih.gov/pubmed/) databases to search for the relevant peer-reviewed journal 

136 articles. In the first step, we used the search terms “dynamics,” “mathematical model,” 
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137 “modeling,” and “vector-borne” together with the names of vector-borne diseases including 

138 chikungunya, dengue, malaria, West Nile, and Zika. Then, we expanded our search to include the 

139 related models identified by the prior screening. The secondary search terminologies included 

140 “compartmental,” “spatial,” “metapopulation,” “network,” “individual-based,” and “agent-based.” 

141 In the second step, we examined only the models applied to Zika virus simulations. We strictly 

142 searched for publications focusing on the applications of mathematical modeling in Zika virus 

143 research. The search terms were then designated as the names of the modeling techniques 

144 described earlier AND “Zika.” We consistently excluded unrelated studies throughout the review 

145 process. For the publications that met our criteria, we intensively reviewed their modeling 

146 methods, categorized into the modeling types and compared to other related studies we found. The 

147 papers with irrelevant methodology were then removed.

148 As we tried to capture all available studies, the publication year was unrestricted. However, 

149 the mathematical modeling approach in the Zika virus study has recently emerged. Hence, most of 

150 the research was recently published. Our review study was performed from April to July 2017.

151

152 Results

153 We found five basic model architectures previously applied to vector-borne research. 

154 These include compartmental, spatial, metapopulation, network, and individual-based models. We 

155 reviewed these accordingly.

156

157 Basic compartmental model

158 In the classical compartmental model, the whole population is divided into groups 

159 according to individual health status (Hethcote, 2000). For example, in the SIR model, the 
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160 population is split into the compartments of susceptible (S, healthy individuals), infectious (I, 

161 diseased and contagious individuals), and recovered (R, immune individuals). During the course 

162 of disease transmission, each individual may progress across the compartments, with the rate 

163 illustrated by these ordinary differential equations (Figure 1A):

164 𝑑𝑆
𝑑𝑡 =‒ 𝛽𝑆𝐼

𝑁 ,

165  and (1)𝑑𝐼
𝑑𝑡 = 𝛽𝑆𝐼

𝑁 ‒ 𝛾𝐼,

166 ,𝑑𝑅
𝑑𝑡 = 𝛾𝐼

167 where  denotes the transmission rate, dictating the speed at which susceptible individuals become 𝛽

168 infectious, and  represents the recovery rate, which defines how fast the infectious individuals 𝛾

169 recovered from the disease. The force of infection in this case is defined as  where  is the 𝛽𝐼/𝑁, 𝑁

170 total population. In this simplest case, it is assumed that the dynamics of disease transmission are 

171 much faster than the dynamics of demographic processes, for example, births, deaths, and 

172 migration; hence, these demographic dynamics can be ignored. In addition to SIR, other forms of 

173 compartmental models exist, for instance, SI, SIS, SIRS, SEIR, SEIRS, MSIR, MSEIR, and 

174 MSEIRS, among others. E and M are acronyms for exposed (individuals already exposed to the 

175 disease but not yet infectious) and maternal (those with maternal immunity), respectively. The 

176 inclusion of different compartments is based on the nature of the diseases (Hethcote, 2000). The 

177 models have been applied to many emerging infectious diseases, for example, avian influenza (de 

178 Jong & Hagenaars, 2009), Ebola (Browne, Gulbudak, & Webb, 2015; Khan et al., 2015; 

179 Santermans et al., 2016; Asher, 2017), HIV/AIDS (Akpa & Oyejola, 2010; Luo et al., 2015), and 

180 many others.

181 One of the most important parameters that is always measured in the compartmental model 

182 is the basic reproduction number R0. The R0 is defined as “the average number of secondary cases 
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183 produced by a single infectious individual in a totally susceptible population in the initial stage of 

184 the outbreak” (Hethcote, 2000; Rock et al., 2014b). The R0 is regarded as a threshold at which the 

185 epidemic is still progressing. The infection may persist and the transmission continues if the R0 is 

186 greater than 1, whereas the epidemic is going to cease in the long term when the R0 is otherwise 

187 (Hethcote, 2000; Rock et al., 2014b; Sidiki & Tchuente, 2014). This parameter is estimated by 

188  in the SIR framework (Rock et al., 2014b). Nonetheless, the R0 varies considerably from 𝛽/𝛾

189 disease to disease. For example, the approximate R0 for measles, mumps, and polio is 16, 12, and 

190 5, respectively (Glomski & Ohanian, 2012). Furthermore, the R0 values are also different in the 

191 same disease but at a different place and time. For example, during the 2014-2015 Ebola virus 

192 outbreaks, the R0 values were 1.71 for Guinea, 1.83 for Liberia, and 2.02 for Sierra Leone (WHO 

193 Ebola Response Team, 2014). Therefore, the R0 is not likely referable across spatiotemporal 

194 entities.

195

196 Vector-borne compartmental model

197 The models applied for vector-borne diseases are still globally based on the standard 

198 compartmental model. Nonetheless, the compartments designed to visualize the dynamics of 

199 vector populations are always incorporated. Indeed, the vector-borne model accounts for a multi-

200 species approach involving interspecies disease transmission. Hosts and vectors must be present; 

201 otherwise, the pathogen cannot spread. The most notable model may refer to the Ross-Macdonald 

202 models (Ross, 1911; MacDonald, 1952) for the transmission of malaria. However, the vector-

203 borne models are often represented in the SEIR and SEI frameworks for human and vector 

204 compartments, respectively (Figure 1B). Here, we demonstrate a model developed to illustrate 

205 Zika virus transmission (Funk et al., 2016):
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206 Hosts
𝑑𝑆𝐻

𝑑𝑡 =‒  𝜆𝐻𝑆𝐻,

207  
𝑑𝐸𝐻

𝑑𝑡 = 𝜆𝐻𝑆𝐻 ‒ 𝛿𝐻𝐸𝐻,

208
𝑑𝐼𝐻

𝑑𝑡 = 𝛿𝐻𝐸𝐻 ‒ 𝛾𝐻𝐼𝐻,

209 (2)
𝑑𝑅𝐻

𝑑𝑡 = 𝛾𝐻𝐼𝐻,

210 Mosquitoes
𝑑𝑆𝑀

𝑑𝑡 = 𝜗𝑀 ‒  𝜆𝑀𝑆𝑀 ‒  𝜇𝑀𝑆𝑀,

211 , and
𝑑𝐸𝑀

𝑑𝑡 = 𝜆𝑀𝑆𝑀 ‒  (𝛿𝑀 + 𝜇𝑀)𝐸𝑀

212 ,
𝑑𝐼𝑀

𝑑𝑡 = 𝛿𝑀𝐸𝑀 ‒ 𝜇𝑀𝐼𝑀

213 where the subscripts  and  stand for the host and mosquito, respectively. The parameters  𝐻 𝑀 𝜆, 𝛿, 𝜗,

214 and  represent the force of infection, incubation rate, birth rate, and death rate, respectively. The 𝜇

215 forces of infection for humans and mosquitoes were calculated as:

216  and  (3)𝜆𝐻 = 𝑎𝑝𝐻𝑚𝐼𝑀

217 ,𝜆𝑀 = 𝑎𝑝𝑀
𝐼𝐻

𝑁𝐻

218 where  is the mosquito biting rate,  is the probability that a bite from an infectious mosquito 𝑎 𝑝𝐻

219 will lead to infection in human,  is the probability of a mosquito being infected from biting an 𝑝𝑀

220 infectious human,  is the number of human individuals, and  represents the number of 𝑁𝐻 𝑚

221 mosquitoes contacting one human.

222 To get a better understanding of the range of dynamics in these vector-borne diseases, we 

223 calculate the number of secondary human cases generated from an average human case, 

224 incorporating the cycle of transmission through the vector. To do so, we start with one freshly 

225 infected human. From this primary human case, the expected number of infected mosquitoes is the 

226 product of the infectious duration in humans, the rate of disease transmission, and the probability 
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227 that a newly infected mosquito will progress to the infectious stage: . Similarly, the  ( 1
𝛾𝐻

)𝜆𝑀(
𝛿𝑀

𝛿𝑀 + 𝜇𝑀
)

228 expected number of human individuals infected by an infectious mosquito is calculated as ( 1
𝜇𝑀

)𝜆𝐻

229 . Thus, the R0 is given by the product of these two terms (Rock et al., 2014a) 𝑁𝐻

230 . (4)𝑅0 = ( 1
𝛾𝐻

)𝜆𝑀( 𝛿𝑀

𝛿𝑀 + 𝜇𝑀)( 1
𝜇𝑀

)𝜆𝐻𝑁𝐻 =
𝑎2𝑝𝑀𝑝𝐻𝑚𝛿𝑀

𝛾𝐻𝜇𝑀(𝛿𝑀 + 𝜇𝑀)

231 It is noteworthy that this value of R0 that includes a complete cycle of transmission is the square 

232 of the value calculated using the next-generation matrix approach (Diekmann, Heesterbeek, & 

233 Roberts, 2010); however, they agree on the invasion threshold.

234 Like direct-contact diseases, the R0 for vector-borne epidemics varies across space-time 

235 settings. For example, the R0 for the dengue virus in Brazil ranged from 2-103 in different 

236 epidemics in the country from 1996-2003 (Tabachnick, 2016). For Zika, the R0 in the outbreaks 

237 on Yap Island was estimated between 4.3 and 5.8 in 2007, whereas the value was found at 1.8-2.0 

238 in the French Polynesian epidemics in 2013-2014 (Nishiura et al., 2016a). In the recent Zika virus 

239 epidemic in Columbia in 2015-2016, the R0 was approximately 2.2-14.8 (Nishiura et al., 2016b).

240

241 Spatial epidemic model

242 According to the first law of geography proposed by Waldo Tobler, “everything is related 

243 to everything else, but near things are more related than distant things” (Tobler, 1970). This idea 

244 has become a fundamental concept of spatial studies. Spatial epidemiology is area field concerning 

245 the geographical distributions of disease incidences (Lawson, 2013). The most primitive tool is 

246 disease mapping. However, spatial modeling is much more advanced. This method incorporates 

247 the spatial features of disease occurrences and disease transmission behaviors. In many cases, 

248 diseases were observed to spread around the index case. One of the best examples is the airborne 

PeerJ reviewing PDF | (2017:08:19981:2:0:NEW 27 Jan 2018)

Manuscript to be reviewed

John Palmer




249 virus foot-and-mouth disease (FMD). The FMD virus is capable of transmission by air up to 60 

250 km on land and up to 250 km above water bodies (Lee et al., 2013). In addition, spatial cluster 

251 causes closer places to become more vulnerable (Lessler et al., 2016). To calculate the spatial 

252 probability, the transmission kernel is calculated. The transmission kernel is defined as the 

253 probability distribution of distances between the infectious premise and other related places 

254 (Lessler et al., 2016). The estimation of this parameter can be performed using various forms, for 

255 example, exponential (E), Gaussian (G), and fat-tailed (F) methods, which are demonstrated as

256 ,𝐾𝐸(𝑥) = 𝛼𝑒 ‒ 𝛼𝑥

257 , and (5)𝐾𝐺(𝑥) = 𝛼
𝜋𝑒 ‒ 𝛼2𝑥2

258 ,𝐾𝐹(𝑥) = 𝛼
4𝑒 ‒ 𝛼1/2𝑥1/2

259 where  denotes the kernel parameter (Szmaragd et al., 2009).𝛼

260 The spatial epidemic models have also been applied to vector-borne diseases. For instance, 

261 in the studies of dengue (Delmelle et al., 2016; Sardar & Saha, 2017; Vincenti-Gonzalez et al., 

262 2017), West Nile (Crowder et al., 2013; Harrigan et al., 2014; Lin & Zhu, 2017), and Zika 

263 (Fitzgibbon, Morgan, & Webb, 2017), different modeling approaches were used. In the study of 

264 the dengue virus, a power-law form time-dependent transmission kernel (Sardar & Saha, 2017), 

265 hot-spot detection and risk factor analysis (Vincenti-Gonzalez et al., 2017), and geographically 

266 weighted regression model (Delmelle et al., 2016) were used to illustrate how the virus spreads. In 

267 the West Nile virus study, a weighted ensemble model (Harrigan et al., 2014) and a spatially 

268 explicit model incorporating land-use and climate variables (Crowder et al., 2013) as well as a 

269 reaction-diffusion model using a spatial-temporal risk index (Lin & Zhu, 2017) were constructed 

270 to explain the spatial diffusion of the virus under different circumstances. For Zika, spatially 

271 dependent differential equations were employed to describe the 2015–2016 Zika outbreak in Rio 
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272 de Janeiro Municipality in Brazil. (Fitzgibbon, Morgan, & Webb, 2017). A location-specific 

273 projection was also performed to estimate the magnitude of Zika virus infections in childbearing 

274 women on the American continent (Perkins et al., 2016).

275

276 Metapopulation model

277 The term “metapopulation” was coined by Richard Levins in 1969 (Levins, 1969) to 

278 systematically delineate the dynamics of insect pest population in farms. However, the term and 

279 its concepts have been widely expanded to different scientific communities including 

280 epidemiology. Metapopulation assumes that the whole population is divided into different discrete 

281 spatial subgroups called “patches.” The subpopulation mixes homogeneously whereas the contact 

282 between the patches only occurs at some rates (Rock et al., 2014b). Consequently, we can fit 

283 compartmental models such as SIR and SEIR into each patch to better project how the disease of 

284 interest spreads within the subgroups (Rock et al., 2014b; Wang & Li, 2014). At this point, the 

285 metapopulation becomes the combination of compartmental and spatial epidemic models. This 

286 approach allows us to simulate a very large population with a well-defined spatial distribution 

287 (Banos et al., 2015). 

288 For a SIR-based metapopulation model, a suitable modified version of the classical SIR 

289 approach, equation (1), would be

290
𝑑𝑆𝑖

𝑑𝑡 =‒ 𝜆𝑖𝑆𝑖,

291          and (6)
𝑑𝐼𝑖

𝑑𝑡 = 𝜆𝑖𝑆𝑖 ‒ 𝛾𝐼𝑖,

292    
𝑑𝑅𝑖

𝑑𝑡 = 𝛾𝐼𝑖,

PeerJ reviewing PDF | (2017:08:19981:2:0:NEW 27 Jan 2018)

Manuscript to be reviewed



293 where the subscript i indicates the parameters and variables that are particular to patch i. The force 

294 of infection,  incorporates transmission from both the infectious individuals within patch i and 𝜆𝑖,

295 the infectious individuals from patch j. The exact formula of  depends on the assumed mechanism 𝜆𝑖

296 of transmission and the strength of the interaction between the patches. In general, the force of 

297 infection is expressed as (Rock et al., 2014a; Sornbundit, Triampo, & Modchang, 2017)

298 , (7)𝜆𝑖 =  ∑𝑛
𝑗 = 1𝛽𝑖𝑗

𝐼𝑗

𝑁𝑗

299 where  is the transmission rate from the infectious individuals in patch j to the susceptible 𝛽𝑖𝑗

300 individuals in patch i,  is the total number of individuals in patch j, and n is the number of 𝑁𝑗

301 patches. 

302 In vector-borne disease modeling, the ideas of metapopulation have already been deeply 

303 imbedded. The models always involve different subgroups, that is, the hosts and vectors. In many 

304 cases, spatial distribution patterns were concurrently considered. As demonstrated in a previous 

305 dengue study (Lee & Castillo-Chavez, 2015), a two-patch model was constructed to explore the 

306 influence of between-patch human movements on viral transmission dynamics. In the patches, the 

307 SEIR and SEI models were architected for human and mosquito populations, respectively. This 

308 was done to imitate how diseases spread within subpopulations. Another example is a study on the 

309 impact of human movement on the dynamics and persistence of vector-borne diseases at the city 

310 scale (Adams & Kapan, 2009). The authors constructed metapopulation models which assume that 

311 human population lives in a home patch free of mosquitoes but moves to and fro patches with 

312 immobile mosquito subpopulations. Different human movement patterns were represented by 

313 different connection patterns between human and mosquito subpopulations.  It was found that 

314 more variable human movement pattern increases the influence of the large vector population 

315 patches in establishing new foci of transmission and enhances pathogen persistence (Adams & 
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316 Kapan, 2009). In Zika virus research, a metapopulation-typed model was constructed to investigate 

317 the effects of sexual transmission and human migration in the spread of the virus (Baca-Carrasco 

318 & Velasco-Hernández, 2016). Recently, Zhang et al. expanded the Global Epidemic and Mobility 

319 Model (GLEAM) (Balcan et al., 2010), a metapopulation model integrating real-world 

320 demographic data and human mobility patterns, to incorporate data on mosquito density and 

321 entomological-related parameters. The expanded GLEAM model was employed to analyze the 

322 spread of the Zika virus in the Americas. It was estimated that the first introduction of the virus to 

323 Brazil may occurred between August 2013 and April 2014 (Zhang et al., 2017).

324

325 Network model

326 In fact, the interactions between actors in mathematical models are governed by the concept 

327 of the contact network. It is assumed in the homogeneous compartmental model that all individuals 

328 are linked by a regular random pattern (Bansal, Grenfell, & Meyers, 2007). On the other hand, the 

329 heterogeneous models, namely spatial and metapopulation, possess different assumptions that take 

330 into account the higher realistic contact structures. The idea of a contact network emerged from 

331 the mathematical graph theory and was first used in social sciences. Two fundamental components 

332 that form a network are called “vertex” and “edge” (Lanzas & Chen, 2015). A vertex is a unit of 

333 interest for an individual, a group of people, a village, a city, or even an entire country. An edge is 

334 the link between a pair of vertices. The edge represents the bond between vertices, which is 

335 important in disease transmission, such as animal movement or human transportation. The 

336 interaction is further divided into directed and undirected (Martínez-López, Perez, & Sánchez-

337 Vizcaíno, 2009), of which the directed links dictate the incoming and outgoing edges; for example, 

338 flight itineraries, whereas the undirected approach does not consider directions, such as co-author 
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339 networks. In epidemiology, contact network modeling has often been used to investigate disease 

340 transmission in both humans (Vazquez-Prokopec et al., 2013; Machens et al., 2013) and animals 

341 (Craft, 2015; Rossi et al., 2017). The network structure exploration is helpful for targeting risk 

342 actors and tailoring prevention and control strategies.

343 Determining a “real” network structure requires knowledge of all individuals in a 

344 population and all possible relationships among them. In large networks, this is an impractical and 

345 time-consuming task. However, several techniques have been exploited to approximate the 

346 structure of the network, for example, a radio-based wearable device was used to identify high-

347 resolution close proximity interactions (less than 1.5 meters) among 75 individuals dwelling in 5 

348 different households in rural Kenya (Kiti et al., 2016). The study makes it possible to collect a 

349 high-resolution human contact data without any direct observations. Similar wireless sensor was 

350 also used to explore social contact interactions among students, teachers and staff in an American 

351 high school (Salathé et al., 2010). The network structure can also be approximated using movement 

352 data, for example, airline route maps (Hufnagel, Brockmann & Geisel, 2004) or livestock 

353 movement patterns (Wiratsudakul et al., 2014; Chintrakulchai, Vuttichai & Wiratsudakul, 2017; 

354 Khengwa et al., 2017). However, these data sources have the disadvantage that the network 

355 generally links sub-populations or groups of hosts rather than being a network between individuals. 

356 Alternatively, the spatial contact proximity can be detected from mobile phones (Eagle et al., 2009) 

357 or other Global Positioning System (GPS) data-loggers (Vazquez-Prokopec et al., 2013). Data 

358 retrieved from these devices make the contact network to be more realistic which further improve 

359 the accuracy of related epidemic models. 

360 Besides using approximated “real” networks, several forms of computer-generated 

361 networks have also been employed in previous studies. Examples of these “idealized”  networks 
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362 include a random network (Erdös & Rényi, 1959; Gilbert, 1959), in which each pair of nodes is 

363 connected randomly, and a scale-free network (Barabási & Albert, 1999), where the probability 

364 that a node is connected is proportional to its degree. These computer-generated networks are 

365 proven to be useful in some aspects of infectious disease transmission (Keeling & Eames, 2005; 

366 Pastor-Satorras et al., 2015). A bipartite network, a network whose nodes are divided into two 

367 separate groups with a scale-free degree distribution, was also used to simulate vector-borne 

368 disease transmission (Bisanzio et al., 2010). The authors found that the spread of disease strongly 

369 depends on the degree distribution of the two classes of nodes.

370 The contact network has also been used to describe disease transmission patterns in 

371 mosquito-borne diseases. For instance, a previous study employed a contact-tracing investigation 

372 to identify possible contact-site clusters. The authors suggested that house-to-house human 

373 movement was likely to indicate how the dengue virus spread spatially (Stoddard et al., 2013). 

374 This contact-identification technique is applicable to other mosquito-borne disease, including Zika 

375 (Scatà et al., 2016; Saad-Roy, van den Driessche & Ma, 2016). 

376

377 Individual-based model

378 The individual-based approach, also known as the agent-based model, allows us to mimic 

379 the complexity of individual interactions. Each individual can be explicitly simulated with a set of 

380 characteristics including spatial location, interaction preference, behavior traits, etc. Moreover, 

381 these state variables dictate how individuals interact with each other. However, they can change 

382 over time (DeAngelis & Grimm, 2014). Exploitation of the micro-level pattern (the bottom-up 

383 method) can prevent the rough estimation that inevitably occurs from the top-down approaches, 

384 for example, the compartmental model. The individual-based model is powerful for the integration 
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385 of different scales and datasets. Therefore, it has been applied to various fields of scientific studies 

386 (El-Sayed et al., 2012, Merler et al., 2015, Matheson, Satterthwaite, & Highlander, 2017). 

387 However, the trade-off between the model complexity and technological requirements must be 

388 considered. The realistic models integrating large-scale real-word data apparently demand more 

389 sophisticated machines (Lanzas & Chen, 2015). Individual-based models have been extensively 

390 applied to diseases that require highly unique individual features such as HIV/AIDS (White et al., 

391 2014), influenza (Eichner et al., 2014), tuberculosis (Graciani Rodrigues, Espíndola, & Penna, 

392 2015), and Ebola (Merler et al., 2015). In mosquito-borne diseases, individual-based models were 

393 previously used to describe the transmission dynamics of the chikungunya virus (Dommar et al., 

394 2014), the dengue virus (Chao, Longini, & Halloran, 2013), malaria (Pizzitutti et al., 2013), and 

395 the Zika virus (Matheson, Satterthwaite, & Highlander, 2017). It is noteworthy that state-of-the-

396 art structures, including the individual-based, metapopulation, and network models, are not 

397 necessarily more realistic than compartmental models. Indeed, the advantage of these modeling 

398 structures is that modelers are allowed to fully integrate the models with large-scale real-world 

399 data. Consequently, such models are believed to be highly realistic (Lessler et al., 2016). A 

400 graphical presentation of the basic models described in this review is illustrated in Figure 1.

401  

402 Mathematical modeling for Zika virus epidemics

403 The Zika virus has been circulating among human beings for more than 70 years. However, 

404 it has been in the sights of modelers for just a decade following a series of outbreaks on Yap Island. 

405 Since then, a number of models have been proposed. This study compared some examples based 

406 on model structures and discussed the uses of mathematical models in Zika import risk estimation 

407 and intervention planning.
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408

409 Model architectures

410 As shown in Table 1, it is noticeable that Zika models carried out for early epidemics were 

411 less complicated compared to the more recent ones. To our knowledge, the compartmental 

412 approach was a fundamental framework for other sophisticated models that were recently 

413 developed. In Zika modeling, all early works were fit into compartmental structures. It was 

414 relatively fast and convenient to start with existing knowledge from other related diseases and 

415 change the relevant parameters for the Zika virus. However, the compartmental model was still 

416 regularly used as a backbone for later models.

417 Compartmentally, the crisscross transmission between humans and mosquitoes has been 

418 popularly simulated. However, the models specially designed for only one (Monaghan et al., 2016; 

419 Riou, Poletto, & Boëlle, 2016; Scatà et al., 2016) or even another species (Althouse et al., 2015) 

420 were also observed. Focusing on the model architecture, SEIR was usually used for humans 

421 whereas SEI was commonly used for mosquitos. In addition, a model focusing only on human 

422 compartments was recently proposed (Castro et al., 2017). Nonetheless, other compartmental 

423 orientations were occasionally proposed, for example, the susceptible-infectious-recovered (SIR) 

424 (Perkins et al., 2016), the susceptible-exposed-asymptomatic-infectious-recovered (SEAIR) (Gao 

425 et al., 2016), the susceptible-preventive isolated-infectious-recovered (S IR), and the unaware-𝑖𝑝

426 aware-faded (UAF) models (Scatà et al., 2016). 

427 Spatial models were developed to demonstrate how the Zika virus moves across 

428 geographical spaces. Frequently, the spatial framework was complementarily driven by other types 

429 of models (Zinszer et al., 2017; Fitzgibbon, Morgan, & Webb, 2017). The most prominent 

430 advantage of the spatial models is their virtualizing power. Apparently, the maps generated from 
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431 spatial modeling were the most comprehensible tools for the general public compared to other 

432 model outputs. Hence, their final products, viral distribution maps, were always exploited in public 

433 communication. These maps were circulated through various channels such as governmental 

434 authorities, mainstream media, and even informal online platforms. The disease maps were widely 

435 used to increase public awareness and to design specific prevention and control strategies for Zika 

436 (Rodriguez-Morales et al., 2016) and other emerging diseases (Coburn & Blower, 2013; 

437 Emmanuel, Isac, & Blanchard, 2013; Koch, 2015).

438 We found that the early metapopulation, network, and individual-based models were 

439 mostly structured without geographical or timeframe references (Table 1) (Scatà et al., 2016; Baca-

440 Carrasco & Velasco-Hernández, 2016; Saad-Roy, van den Driessche, & Ma, 2016). It seemed 

441 difficult to immediately fit the real-world data into these sophisticated frameworks. However, not 

442 long after the Zika epidemic started in Brazil, a data-driven metapopulation model incorporating 

443 large-scale real-world data was presented (Zhang et al., 2017). The GLEAM model (Balcan et al., 

444 2010) was expanded to incorporate data on mosquito density and other entomological-related 

445 parameters (Zhang et al., 2017). Inclusion of these real-world data into the model is believed to 

446 improve the ability of the model to reproduce the observed data and reliably predict future 

447 epidemic dynamics. 

448

449 Import risk model

450 Disease transmission models are developed to explore how a pathogen spreads in an 

451 epidemic zone. However, the disease, especially a virus, may spread across the globe overnight. 

452 Therefore, an import risk model is used in this assessment. A particular framework is designed to 

453 quantitatively assess the likelihood of viral importation into a certain territory. Such a model was 
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454 previously built to evaluate the importation risk of different emerging diseases, for instance, the 

455 Ebola virus (Chen et al., 2014; Wiratsudakul et al., 2016), MERS-CoV (Nishiura et al., 2015; Nah 

456 et al., 2016), and severe acute respiratory syndrome (SARS) (Goubar et al., 2009). For the Zika 

457 virus, the imported cases were well documented in many countries on different continents (Pyke 

458 et al., 2014; Bachiller-Luque et al., 2016; Jang et al., 2016; Sokal et al., 2016; Zhong et al., 2016; 

459 Hashimoto et al., 2017; Xiang et al., 2017). The import risk models are necessary to foresee the 

460 probability of Zika importation into other unaffected countries. As Brazil was recently in the 

461 spotlight for Zika epidemics, models focused on the Zika virus escaping the country were 

462 increasingly produced. In particular, models considering the risk of mass gatherings for 

463 international events such as the Olympic games were recently proposed (Grills et al., 2016; 

464 Massad, Coutinho, & Wilder-Smith, 2016; Burattini et al., 2016). Herein, we described three basic 

465 methods used in import risk estimation, deterministic and stochastic risk estimation and risk 

466 estimation by force of infection.

467 Deterministic risk estimation

468 This method roughly calculated the probability of Zika virus importation into different 

469 countries around the world via commercial air travel. In a previous model, the virus was designated 

470 to spread from Brazil (Quam & Wilder-Smith, 2016). The risk was formulated as 𝑅𝐼

471 , where the risk ( ) is the product of the number of air passengers ( ) who traveled =  𝑇 ×  𝐼 ×  𝑃 𝑅𝐼 𝑇

472 from the Zika epidemic areas, the estimated infectious incidence per individual ( ), and the 𝐼

473 probability of infection in the travel period ( ). The results suggested that 584-1,786 Zika cases 𝑃

474 may have been exported from Brazil during the 2014-2015 epidemics.

475 Stochastic risk estimation
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476 This process takes into account the stochasticity of travel volumes. The model was 

477 previously employed to estimate the risk of Ebola virus importation into the top 20 destination 

478 countries of travelers departing from the three Ebola epidemic countries in West Africa 

479 (Wiratsudakul et al., 2016). The risk was estimated using the binomial distribution 𝑅𝑛,𝑒,𝑡 =

480 , where  represents the risk of viral importation into country  from  𝐵𝑖𝑛𝑜𝑚(𝑇𝑛,𝑒,𝑡 ×  𝐼𝑛,𝑒,𝑡) 𝑅𝑛,𝑒,𝑡 𝑛

481 affected country  at time  whereas  and  denote the corresponding number of flight 𝑒 𝑡 𝑇𝑛,𝑒,𝑡 𝐼𝑛,𝑒,𝑡

482 travelers and outbreak country incidence, respectively. This simulation indicated that the risk of 

483 importing the Ebola virus during the peak of the epidemics could have reached 0.73 in Ghana, 

484 where the highest number of air passengers were observed.

485 Risk estimation by force of infection

486 This method was previously used in the import risk assessment for dengue virus diffusion 

487 from Brazil to other countries during the 2016 summer Olympic games (Ximenes et al., 2016). 

488 First, the force of infection  was estimated from a Gaussian function , 𝜆 𝜆(𝑡) = 𝐶1𝑒𝑥𝑝[ ‒
(𝑡 ‒ 𝐶2)2

𝐶3 ]𝐹(𝑡)

489 where determines the highest incidence,  is the peak incidence time, and  is the period of 𝐶1 𝐶2 𝐶3

490 incidence function.  represents the ad hoc function, which is written in a logistic form as 𝐹(𝑡) 𝐹(𝑡)

491 , where  and  are the rate of incidence acceleration and the initial infection =  1
1 + exp ( ‒ 𝐶4(𝑡 ‒ 𝐶5)) 𝐶4 𝐶5

492 time, respectively. Subsequently,  was used to calculate the risk of dengue infection during times 𝜆

493  and  as . This model scenario indicated that the number of 𝑡1 𝑡2 𝜋(𝑡1,𝑡2) = 1 ‒  exp[ ‒ ∫𝑡2
𝑡1𝜆(𝑠)𝑑𝑠]

494 asymptomatic dengue cases among tourists may have reached 206 during the study period.

495

496 Intervention model 

PeerJ reviewing PDF | (2017:08:19981:2:0:NEW 27 Jan 2018)

Manuscript to be reviewed



497 Apart from disease dynamic illustration, mathematical models also functioned as a basic 

498 framework to assess the effectiveness of different interventional strategies. For example, a 

499 simulated outbreak scenario was examined for the performance of control measures against highly 

500 pathogenic avian influenza in Ontario, Canada (Lewis et al., 2015). An import risk model was 

501 tested for the mitigation capability of pandemic Ebola outbreaks through commercial air travel 

502 restrictions (Wiratsudakul et al., 2016). The intervention models were also constructed for Zika. 

503 A previous study exploited the prior knowledge of rubella control to construct a Zika virus 

504 simulation. Rubella is a classic example of teratogenic agents causing viruses in humans. In 

505 addition, the body of knowledge on rubella in terms of virology, epidemiology, and mathematical 

506 modeling has been well documented (Metcalf & Barrett, 2016). This is an excellent example of a 

507 modeling framework derived from other well-known diseases. An intervention model for a related 

508 emerging disease could be well supported in a timely fashion using such solid mathematical 

509 environments.

510 Theoretical network modeling was also used in the strategic planning for Zika virus 

511 outbreak alleviation (Scatà et al., 2016). The model selectively removed some specific vertices in 

512 the network based on the eigenvector-like centrality and awareness values. Their findings 

513 highlighted the importance of heterogeneity and public awareness in the control of infectious 

514 diseases under different socioeconomic conditions. Prospectively, the authors planned to include 

515 an analogy of HIV epidemics into the sexual transmission of Zika as well as an economic impact 

516 evaluation of the disease (Scatà et al., 2016). For the economic aspects, a model addressing the 

517 cost-effectiveness of Zika control interventions was proposed (Alfaro-Murillo et al., 2016). The 

518 research team created a user-friendly online tool that was flexible enough to include new 

519 parameters and provided a real-time analysis. The program facilitated the financial allocation and 
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520 assessed its effectiveness. Another example is the economic appraisement of a newly established 

521 policy. In the United States, blood centers were ordered to test for the Zika virus to prevent 

522 transfusion-transmitted infection. An economic model was built to assess the implementation costs 

523 and to suggest alternatives to reduce them (Ellingson et al., 2017). The model was essential for 

524 predicting the overall investments and selecting the most cost-effective one. In addition to financial 

525 management, other supporting facilities should also be considered. A previous study used a 

526 modeling approach to assess the requirement of healthcare resources in real-time (Andronico et 

527 al., 2017). The authors claimed that their model could provide an accurate prediction. 

528 According to our examples, there are several ways to simulate strategic manipulation using 

529 mathematical models. Most modelers designed their models based on existing or newly established 

530 policies in order to guide policy makers and precisely meet the needs of societies. However, the 

531 field data accuracy and baseline simulations directly affect the prediction power of strategic 

532 models. One must seriously consider these factors before translating models into practices.

533

534 Perspectives on Zika virus epidemic models

535 We noticed that the compartmental model is still commonly used for the timely assessment 

536 of epidemics. However, much more complex modeling frameworks (metapopulation, network, and 

537 individual-based models) have been of increasing interest due to the recent availability of large-

538 scale real-world data and computational power. As we know, the computational capacity of 

539 modern computers is presently very high. This allows us to deploy a sophisticated model to observe 

540 the changes and predict the trends of disease dynamics in real-time. Moreover, the model will help 

541 policy makers choose the most appropriate intervention to fight outbreaks and further assess the 

542 corresponding results in a timely manner. In Zika virus modeling, state-of-the-art structures (the 
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543 metapopulation, network, and individual-based models) have been increasingly developed using 

544 advanced computational capacity. In other diseases such as Ebola, the real-word data was placed 

545 into a complicated individual-based modeling framework. The study made it possible to produce 

546 a more realistic output reflecting the actual outbreak situations (Merler et al., 2015). Mathematical 

547 modeling is now an essential tool for disease epidemic management. 

548 “Big data” is an emerging field arising from the extremely large amount of data available 

549 together with the advancement in computer infrastructures. In biomedical informatics, large-scale 

550 health-related data shared among health professionals are undoubtedly beneficial for the 

551 unprecedented development of healthcare services (Bellazzi, 2014). Automated modeling could 

552 be enabled with the integration of big data and machine learning (Furqan et al., 2017). The future 

553 of infectious disease modeling including vector-borne diseases may alter the classical methods. 

554 Multiple modeling outputs may be generated automatically right after raw data are entered into 

555 computers. However, there are some challenges, for example, the reproducibility of the results as 

556 well as privacy and data reuse issues (Bellazzi, 2014). 

557 In epidemiology, big data are increasingly being used to estimate disease spread and 

558 investigate effectiveness of interventions. Recent works in infectious disease dynamics have been 

559 characterized by an increasing focus on data-driven approaches. For example, the mobile call data 

560 records (CDRs) have been used to explain the dynamics of large-scale Ebola outbreaks in West 

561 Africa (Wesolowski et al., 2014). The CDR-based transmission models have also been employed 

562 to analyze the spread of rubella disease in Kenya (Wesolowski et al., 2015). The individual-based 

563 model that integrates detailed geographical and demographic data, and movements of individuals 

564 was used to estimate the transmission of Ebola virus and investigate the effectiveness of 

565 interventions in Liberia (Merler et al., 2015). For Zika, the data-driven metapopulation model 
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566 integrating real-world demographic, human mobility, socioeconomic, temperature, and vector 

567 density data has also been used to analyze the spread of the Zika virus in the Americas (Zhang et 

568 al., 2017). These emerging data-driven approaches further allow the metapopulation, network, and 

569 individual-based models better simulating the real epidemics.

570 In general, epidemic models can be used either as predictive tools or as a means of 

571 understanding fundamental epidemiological processes. However, prediction is perhaps the most 

572 obvious use of epidemic models. These allow us to predict the population-level epidemic dynamics 

573 from an individual-level knowledge of epidemiological factors, and assess the effectiveness of 

574 intervention strategies. As the trends in modeling of infectious diseases have been shifting towards 

575 data-driven approaches (Lessler et al., 2016), the model complexity itself may hamper the use of 

576 models by nonspecialists and public health practitioners. These complex modeling architectures 

577 should be translated into a comprehensible environment. The modelers may adopt some strategies 

578 taught in classes on translational medicine to evaluate how to turn epidemic models into practices. 

579 Alternatively, user-friendly interfaces are helpful for health professionals to include mathematical 

580 models in their strategic plans. For example, the GLEAM framework provides a user-friendly and 

581 easy-to-use graphical tool for general modelers and public health agencies 

582 (http://www.gleamviz.org). This is an excellent initiation of the translation of complex 

583 mathematical models into a touchable framework. The results presented by Zhang et al. (2017) 

584 were also delivered via user-friendly and easy-to-read graphics on a web application 

585 (http://www.zika-model.org/). Therefore, an alliance with computer and graphical scientists is 

586 encouraged. Moreover, some educational mobile applications are suggested to acquaint the general 

587 public and especially younger generations with epidemic simulations. An excellent example is a 

588 simulation game available at the App Store and Google Play called Plague Inc. (Ndemic Creations, 
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589 Bristol, UK). The game makes mathematical models feel touchable and not too difficult, leading 

590 to more familiarity and acceptance.

591 To fully implement mathematical modeling, one must persuade policy makers to include 

592 the methods and try to prove that they are necessary. In this case, the translation of mathematical 

593 language into political contexts is crucial. Moreover, simple and complex models should be 

594 exploited differently. Simple models can be produced in a timely fashion to provide an estimation 

595 of the possible impacts. In contrast, complex models require more time to develop but are far more 

596 realistic. The models are much more powerful in terms of predictive capability. The preparation 

597 of complicated models before outbreaks is recommended. 

598

599 Conclusions

600 Mathematical models can be used either as predictive tools or as a means of understanding 

601 fundamental epidemiological processes. This review provides basic knowledge of different 

602 mathematical models used in studies of disease dynamics. We demonstrated how the models were 

603 applied during the course of Zika virus outbreaks and discussed the uses of mathematical models 

604 in Zika import risk estimation and intervention planning. We found that Zika models carried out 

605 for early epidemics were less complicated compared to the more recent ones. The compartmental 

606 model is still commonly used for the timely assessment of epidemics. However, more complex 

607 modeling frameworks including metapopulation, network, and individual-based models have been 

608 of increasing interest due to the recent availability of large-scale real-world data and computational 

609 power. Inclusion of these real-world data into the model is believed to improve the ability of the 

610 model to reproduce the observed data and reliably predict future epidemic dynamics.

611
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612 Figure Legend

613 Figure 1 Conceptual frameworks of different epidemic models. The colors represent 

614 epidemiological status: susceptible (S, blue), exposed (E, gray), infectious (I, red), and recovered 

615 (R, green). (A) Basic SIR compartmental model. Individuals are assumed to be well-mixed and 

616 are classified only according to their epidemiological status. (B) Vector-borne compartmental 

617 model. The subscripts H and M denote human and mosquito, respectively. Both host and vector 

618 individuals are assumed to be well-mixed and are classified only according to their 

619 epidemiological status. (C) Spatial model. Individuals are located at different locations. The 

620 transmission of infection between an infectious individual and a susceptible individual at distance 

621 x may occur with probability K(x). (D) Metapopulation model. The entire population is divided 

622 into two distinct subpopulations, each with independent disease transmission dynamics, together 

623 with interactions between subpopulations. The subpopulation in each patch is mixed 

624 homogeneously. (E) Network model. The model is formed by at least two basic components: 

625 vertex and edge. Vertices are connected by edges defined by the relationship of interest such as 

626 trade or travel. Infectious diseases are modeled to spread via the edges in this model. (F) 

627 Individual-based model. In this most complicated model, the stochastic epidemiological dynamics 

628 for each individual can be explicitly simulated with a set of characteristics including 

629 epidemiological status, spatial location, interaction preference, behavior traits, etc.

630
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Table 1(on next page)

Examples of mathematical models used in Zika virus studies, 2007–2017.

Note that a model is marked as “compartmental" only when the population is divided into

groups according to only their health status.

PeerJ reviewing PDF | (2017:08:19981:2:0:NEW 27 Jan 2018)

Manuscript to be reviewed



1 Examples of mathematical models used in Zika virus studies, 2007–2017. Note that a model is 

2 marked as “compartmental" only when the population is divided into groups according to only 

3 their health status.

Model architecture

Period

Location

(Country/Region/

Continent)

Population 
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References

2007–2012 Micronesia Human (SEIR)

Mosquito (SEI)

X Funk et al., 

2016

2007,

2013–2014,

2014

Micronesia, 

French Polynesia, 

New Caledonia 

Human (SEIR)

Mosquito (SEI)

X Champagne 

et al., 2016

2013–2014 French Polynesia Human (SEIR)

Mosquito (SEI)

X Kucharski 

et al., 2016

2013–2016 French Polynesia, 

French West 

Indies

Human (SIR) X Riou et al., 

2017

2014–2017 American  

continent

Human (SEIR)

Mosquito (SEI)

X Zhang et 

al., 2017

2015 American  

continent

Human (SIR) X Perkins et 

al., 2016

2015–2016 Brazil Human (SI)

Mosquito (SI)

X Fitzgibbon 

et al., 2017

2015–2016 Brazil Human (ND) X Zinszer et 
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al., 2017

2015–2016 Brazil, 

Colombia, 

El Salvador

Human (SEAIR)

Mosquito (SEI)

X Gao et al., 

2016

2016 United States Human (SEIR) X Castro et 

al., 2017

2016 Brazil Human (SEIR)

Mosquito 

(SEIR)

X Matheson 

et al., 2017

ND Brazil Non-human 

primates (SIR)

Mosquito (SI)

X Althouse et 

al., 2016

ND Worldwide Human (ND)

Mosquito (ND)

X  Alaniz, 

Bacigalupo 

& Cattan, 

2017

ND ND Human 

(SIR/SEIR)

Mosquito (SI)

X X Baca-

Carrasco 

& 

Velasco-

Hernández 

, 2016

ND ND Human (SIR)

Mosquito (SI)

X X Saad-Roy 

et al., 2016
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4

5 *ND = Not designated

6

ND ND Human 

(SIR,

S IR,𝑖𝑝

UAF)

X Scatà et al., 

2016
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Figure 1(on next page)

Conceptual frameworks of different epidemic models.

The colors represent epidemiological status: susceptible (S, blue), exposed (E, gray),

infectious (I, red), and recovered (R, green). (A) Basic SIR compartmental model. Individuals

are assumed to be well-mixed and are classified only according to their epidemiological

status. (B) Vector-borne compartmental model. The subscripts H and M denote human and

mosquito, respectively. Both host and vector individuals are assumed to be well-mixed and

are classified only according to their epidemiological status. (C) Spatial model. Individuals are

located at different locations. The transmission of infection between an infectious individual

and a susceptible individual at distance x may occur with probability K(x). (D) Metapopulation

model. The entire population is divided into two distinct subpopulations, each with

independent disease transmission dynamics, together with interactions between

subpopulations. The subpopulation in each patch is mixed homogeneously. (E) Network

model. The model is formed by at least two basic components: vertex and edge. Vertices are

connected by edges defined by the relationship of interest such as trade or travel. Infectious

diseases are modeled to spread via the edges in this model. (F) Individual-based model. In

this most complicated model, the stochastic epidemiological dynamics for each individual are

explicitly simulated with a set of characteristics including epidemiological status, spatial

location, interaction preference, behavior traits, etc.
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