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Although comparative studies of anuran ontogeny have provided new data on
heterochrony in the life cycles of frogs, most of them have not included ossification
sequences of Neotropical frogs. Using different staining techniques, we describe the
cranial and poscranial elements development in two hylid species, Scinax ruber and
Dendropsophus labialis, providing new data for more comprehensive ontogenetic studies
in Colombian species. We examined specimens from Gosner stages 25 to 45. We found
differences in the infrarostral and suprarostral cartilages, optic foramen, planum
ethmoidale, and the gill apparatus. In the ossification sequence, the first elements to ossify
were the transverse process of spinal column and atlas in both species, and the
parasphenoid in the skull. These two species showed the suprascapular process as have
been described in other Hylids species cleared and stained until now. New descriptions of
skeletal development and ossification sequences of larval stages of these two species,
mainly data concerning the postcranium, contribute with useful information for analysis of
sequential heterochrony, because although the hylids are widely known, there are few
works (15 of 700 species) about ossification sequence that include the whole skeleton.
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Abstract Although comparative studies of anuran ontogeny have provided new data

on heterochrony in the life cycles of frogs, most of them have not included ossification
sequences-offrogs. Using differential staining techniques, we observe and describe
differences and similarities of cranial and postcranial development in two hylid species,
Scinax ruber (Scinaxinae) and Dendropsophus labialis (Hylinae), providing new data of
ontogenetic studies in Colombian species. We examined tadpoles ranging from Gosner
Stages 25 to 45. We found differences between the species in the infrarostral and
suprarostral cartilages, optic foramen, planum ethmoidale, and gill apparatus. In both
species, the first elements to ossify were the atlas and transverse processes of
vertebral column; and the parasphenoid. Both species exhibited suprascapular
processes as described in other Hylids. Although the hylids comprise a large group
(over 700 species), postcranial ossification sequence is only known for 15 species.
Therefore, the descriptions of the skeletal development and ossification sequences

provided herein should be useful for future analyses of heterochrony in the group.
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24 Introduction

25 Comparative morphological descriptions have provided useful systematic characters

26 since the 1960 (e.g. Cannatella 1999; Duellman et al. 2016). However, most studies of
27 frog morphological characters focus on adults (Faivovich 2002; Faivovich et al. 2005;
28 Maglia et al. 2007; Wiens et al. 2010; Pyron and Wiens 2011; Yildirnm and Kaya 2014,
29 Duellman et al. 2016), and tadpoles arg, often, overlooked (Alcalde et al. 2011). Of those
30 comparative studies that examine tadpoles, most consider external morphological

31 characters and; skeletal characters are often neglected (Fabrezi and Lavilla 1992;

32 Faivovich 2002; Maglia et al. 2007; Hoyos et al. 2012; Yildirim and Kaya 2014). When
33 skeletal features are considered, the chondrocranium is most often described, and the
34 postcranium is frequently ignored (e.g. Orton 1953; Starrett 1973; Wassersug 1980;

35 Wassersug and Heyer 1988; Haas 2003). However, as with other groups, relatively few
36 detailed comparative morphological studies of hylid tadpole skeletal development have
37 been completed. Given the sizg and recent taxonomic re-arrangements of the hylids

38 (Duellman et al. 2016; Jungfer 2017) is important to amass as much comparative

39 information about the group as possible. Thus, there continues to be a pressing need to
40 conduct comprehensive comparative studies of hylids developmental morphology.

41 Interspecific variations in morphology help to clarify taxonomic groups within in the

42 Hylidae. The family is predominantly distributed across the Neotropical region (Frost

43 2018; Duellman et al. 2016) and comprises 706 species subdivided into seven

44  subfamilies: Acridinae, Cophomantinae, Dendropsophinae, Hylinae, Lophyophylinae,
45 Pseudinae, and Scinaxinae (Faivovich et al. 2005; Wiens et al. 2010; Duellman et al.

46 2016; Frost 2018). Ossification sequences are known for only 15 species, and only
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eight of those include the postcranial skeleton: Acris blanchardi (Havens 2010: Maglia
et al. 2007), Boana lanciformis (former Hyla lanciformis, De Sa 1988), Boana pulchella
(former Hypsiboas pulchellus Hoyos et al. 2012), Dryophytes chrysoscelis (former Hyla
chrysoscelis, Sherman and Maglia 2014), Dryophytes versicolor (former Hyla
chrysoscelis, Sheil et al. 2014), Hyla orientalis (Yildirnm and Kaya 2014), Osteopilus
septentrionalis (Sheil et al. 2014), Pseudacris crucifer (Havens 2010).

Because identifying variations in developmental morphology and ossification sequence
can lead to informative phylogenetic characters (Weisbecker and Mitgutsch 2010;
Harrington et al. 2013), herein we provide a detailed anatomical comparisons of the
cranial and postcranial development (including the sequence of onset of ossification)

between two species of Andean hylids, Dendropsophus labialis and Scinax ruber.
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Materials and methods

We cleared and double stained for bone and cartilage (Dingerkus and Uhler 1977). We
modificed to theAprotoco@i proportion of ethanol (SIGMA Ref. 459836-2L) and acetic
acid (SIGMA Ref. K36101663 620) was changed to 70:30; 2,.The Alcian blue (SIGMA
Ref. A5268-25G) was increased to 75 mg, which was dissolved in ethanol and acetic
acid; and 3; staining timse, of this last solution was increased to 72 hours. The tadpoles
and metamorphs number of Dendropsophus labialis was N= 32, and Scinax ruber was
N=114. The number in each series corresponds to the availability of specimens stored
at the Museo de Historia Natural “Lorenzo Uribe” at the Universidad Javeriana (MUJ)
and the Instituto de Ciencias Naturales at the Universidad Nacional in Bogota —
Colombia (ICN). The larval stages of D. labialis were collected from the Municipio Tenjo,
Cundinamarca Departament, 3200 m (MUJ 9250). The larval stages of S. ruber were
collected from the Mun. Neiva, Huila Dep., 570 m; Mun. Granada, Meta Dep., 470 m
(MUJ 3727, MUJ 6178, ICN 46015-46017). Tadpoles and metamorphs were staged
according to Gosner’s (1960).

Observations and photographs were made with a stereomicroscope (Advanced
optical); a camera (Infinity 1 Lumenera Corporation) with white LED light and Image Pro
Insight program (version 8.0.3). The drawings were made using a digitizing tablet
(Wacom Bamboo Connect pen) and edited using Adobe lllustrator 5. Anatomical
nomenclature for tadpoles follows Parker 1876; Higgins 1921; Jolie 1962; Ro¢ek 1981;
Duellman and Trueb 1986; Haas [1995; Haas 1997; Hall and Larsen 1998; Maglia and
Puagener 1998; Cannatella 1999; Haas 1999; Sheil and Alamillo 2005; Pugener and

Maglia 2007; Bowatte and Meegaskumbura 2011; Hoyos et al. 2012; adult
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82 nomenclature is based on Avilan and Hoyos (2006), using the Latin names given by the
83 ICVAN (1973), and taking into account a (NeiiiciANSiomcaBaiEachologicaltoEsIeh
= am O

85 The ossification sequence was constructed-with the first appearance of benegl/e

86 refer to metamorphic climax (MC) sensu Banbury and Maglia (2006) as the Gosner

87 stages at which major modifications and fundamental structural changes occur,

88 resulting in the loss of most of the larval characters. We also used the term "rank" to

89 refer to the ordinal number within an ossification sequence at which an element begins
90 to ossify. We decide-on the first time any specimen at that stage showed stain. If two or
91 more elements begin ossifying at the same time Gosner stage, they were assigned the

92 same rank (i.e. a tie) as per Nunn and Smith (1998).
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93 Results

94 Skeletal development and sequence of onset of ossification of the cranial and
95 postcranial elements of Dendropsophus labialis and Scinax ruber are showegd in Table 1
96 and 2.

en (ESElncrEEsSEuTIISamplesiEe Vost of the poorly stained specimens were between

98 Stages 26 and 35) after Stage 35 specimens stained more clearly.

=

99 Chondrocranium
100 We observed similar changes in the shape, size, and modification of structures in the
101 development of chondrocranium in the two species. The elements of the skeleton were
102 compared according to the beginningLo ossification and not in a specificdg
103 because in the two study species @il occurred in different Gosner states (Table 3). The
104  overall width of the chondrocranium in Dendropsophus labialis and Scinax ruber is
105 roughly 80-90% of this total length (Fig 1). The chondrocranium in D. labialis is wider
106 (dorsal view) and lower (lateral view) than S. ruber (Fig 1A, 1B, 1C). Basicranial
107 fenestrae did not differentiate with Alcian Blue in either species. We perceived a
108 stronger blue coloration in D. labialis, and the jugular, prootic, and oculomotor foramen
109 were clearly differentiated, whereas in S. ruber we could not see the oculomotor
110 foramen.
111  The cartilaginous region of the taenia tecti medialis and tectum sinoticum both represent
112 a quarter of the basis cranii, extending from the frontoparietal fontanelle in both species.
113 The tectum nasi roofs the nasal region, and the ethmoid plate forms the floor. The
114 tectum nasi is separated from the orbit by a wall, the lamina orbitonasalis (=planum

115 antorbitale sensu Cannatella 1999). Because these regions are weakly chondrified, the
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lamina orbitonasalis is not observable in the tadpole stages, and the nasal capsules
become visible-on after metamorphic climax (Stage 42 and beyond). The taenia tecti
marginalis is evident and clearly differentiated by (@88l in D. /abialis and by GS35 in S.
ruber. In neither species did we observe a frontoparietal fenestra, nor was a taenia tecti
transversalis visible on the edge of the frontoparietal fontanelle (Fig. 1A).
Suprarostral cartilage. In both species, the suprarostral cartilage is composed of a
discontinuous cartilaginous plate divided into a corpus suprarostralis and a pars alaris;
posterolaterally we observed a distal syndesmotic junction between the corpus and the
ala. The ala has three processes: two rounded anterolateral processes that join
syndesmotically with the cornu trabecula, and one process posterolaterally (Fig. 1C).
Fenestrations were not observed in the suprarostral cartilage nor, in the adrostral
cartilage near the processus posterodorsalis (=processus dorsalis posterior, sensu
Bowatte and Meegaskumbura 2011). In D. labialis the corpus suprarostral is curved,
while in S. ruber it is straighter and wider distally, articulating proximally with the cornu
trabecula (trabecular horn, sensu Cannatella 1999). The cornua trabecula are
approximately 35% of the total length of chondrocranium (lateral view) in both species;
they are shorter and narrower in D. labialis than in S. ruber. The cornua trabeculae
articulate anteriorly with the corpus rostrale and laterally with the pars alaris of the
suprarostral cartilage.

Cartilago Meckeli. The cartilago Meckeli (= Meckel's cartilage, sensu Cannatella,
1999) has three processes: the retroarticular (short and blunt), the dorsomedial, and the
ventromedial. These processes articulate with the infrarostral cartilage (commissura

intramandibularis, sensu Cannatella, 1999) which is composed of two syndesmotically,
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joined flat plates; and the processus muscularis quadrati;-the shape of the processus
dorsomedialis and the processus ventromedialis are the same in both species. The
palatoquadrate cartilage and the commissura quadratocranialis are joined anteriorly to
the base cranii. Laterally, the palatoquadrate cartilage forms the arcus subocularis. The
process muscularis quadrati is joined to the processus antorbitalis (= pars plana sensu
Parker 1876; = lamina externa sensu Higgins 1921; = processus antorbitalis sensu
Rocek 1981; = triangular plane sensu Hall and Larsen 1998 = cartilaginous planum
triangulare sensu Pugener and Maglia 2007) anterolaterally, projecting above the cornu
trabecula. The processus hyoquadrati of the palatoquadrate cartilage articulates
ventrally with the ceratohyalia of the hyobranchial apparatus (Fig. 1D).

Otic capsule. This structure is longer and higher than wide, occupying about a fifth of
the total length of the skull. The crista parotica exhibits a more pronounced lateral
projection in D. labialis than in S. ruber. The crista parotica is laterally developed,
forming a small processus posterolateralis (= processus lateralis posterior sensu
Bowatte and Meegaskumbura 2011) and a small processus anterolateralis (more
developed in D. labialis). The processus anterolateralis projects vertically, descending
obliquely and overlapping the ventral posterolateral margin of the palatoquadrate
cartilage. The otic capsule is perforated by the fenestra ovalis, which occupies about
20% of the otic capsule.

Hyobranchial apparatus. The large ceratohyal has a processus anterioris hyalis, a
processus posterioris hyalis, and a processus anterolateralis hyalis. The first two
processes are longer than the third, which extends to meet the transverse crease of the

processus lateralis hyalis.
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The basihyal plate is oval and extends proximally to the copula anterior (= Basibranchial
| sensu Duellman and Trueb 1986; = basihyale sensu Haas 1995 and Haas 1997; =
Copula | sensu Maglia and Pugener 1998; Sheil and Alamillo 2005) in D. labialis, but is
absent in S. ruber. The basibranchial plate is semi-oval and located between the two
hypobranchial plates (= planum hypobranchiale sensu Haas 1999; = plate hyoid sensu
Maglia and Pugener 1998; = hyobranchial plate sensu Sheil and Alamillo 2005) a
branchial bridge is present in both species, being wider in S. ruber than in D. labialis.
The junction between each ceratobranchium and the planum hypobranchiale is
syndesmotic. The ceratobranchia are united posteriorly by the commissura terminalis
and bear three spicules anteriorly (Fig. 1D).

The chondrocranial morphology and hyobranchial apparatus is generally similar
between the species examined herein and those previously studied but we did identify
several differences between in; 1) the shape of the suprarostral, 2) the size and width of
infrarostral cartilages, 3) the length of processus articularis, 4) the thickness of
palatoquadrate, 5) the size of optic foramen, 6) the presence of an operculum and
processus posterolateralis of the otic capsule, 7) the thickness of the processus
muscularis quadrati, 8) the attachment of the ascending process to the braincase, 9) the
thickness of the planum ethmoidale, 10) the development of the branchial apparatus,11)
the presence of Copula |, and 12) the type of junction between the ceratobranchia and
planum hypobranchiale (Fig. 1 and 2). These differences likely represent species-
specific differences among, the taxa examined.

Appendicular skeleton
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Shoulder girdle. The pectoral girdle is arciferal in both species. The earliest
ossification of clavicle, coracoid, and scapula appears at GS36 (Fig. 3A). The clavicle
and the cleithrum are distinct, and an epicoracoid cartilage is prominent between the
clavicle and the coracoid. The epicoracoids are not mineralized. In D. labialis the
omosternum is elongated and the sternum has two projections;-the omosternum and the
sternum are oval in S. ruber. The clavicle articulates with the coracoid, which is ossified
in D. labialis at GS41 and in S. ruber at GS46. The sternum is formed by the
epicoracoid and the mesosternum, which joins the medial junction of the epicoracoids
(Fig. 2B).

Pelvic girdle. In both species, the primordium of the ilium appears at GS34 and is fully
developed by GS41. The ilium begins to ossify by GS41, D. labialis and by GS39/40 in
S. ruber; and articulates anteriorly with the ventral surface of the lateral margin of the
sacral diapophyses by GS42. The iliac crest appears dorsally prominent;-the primordia
of the pubis and the ischium appear at GS36, and are synchondrotically fused by GS38
in both species. The sacral diapophyses is wider in D. labialis that in S. ruber. The pubis
is completely fused by GS40. The pelvic girdle is completely ossified with the halves
fused at the midline, extending anterodorsally forming an angle of 55° with the head of
the femur by GS45 (Fig. 3).

Forelimb and hindlimb. The first cartilaginous elements of the forelimbs (radius, ulna,
and humerus) appear at GS32, and those of the hindlimbs at GS33 (femur, tibia, and
fibula). The tibia and fibula are fused in D. labialis by GS41 and in S. ruber by GS38.

We observed ossification of the radius and ulna in D. labialis (GS41) and S. ruber (post
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metamorphic); these, elements are fused in both species. Primordia of the four carpal
and five tarsal elements appear by GS33 and complete development by GS41.

The phalangeal carpal formula is 3-3-4-4 and the phalangeal tarsal formula is 3-3-4-5-4
in both species. Metacarpals are curved and phalanges are cylindrical, having a conical
shape at the tip of the terminal phalanges. Digits IV (manus and pes) and V (pes) begin
to ossify by GS42 in D. labialis, although all phalanges are ossified at GS45 in both
species (Fig. 3). The carpal were cartilaginous in all specimens and stages examined,
and the distal tarsals were cartilaginous in S. ruber. The relative size of carpal elements
is 3 <4 <2 <1< prehallux and the tarsal elements is 4 <5 <3 <2 <1 < prepollex.
Sesamoids are absent from GS25 to GS45. Figure 3A shows the limb elements
(central, fibulare, radiale, tibiale, ulnare, and intermedium) at Stage 45.

Axial skeleton

The vertebral column is composed of eight procoelous presacral vertebrae, the sacrum,
and the urostyle. The notochord diminishes as the tadpoles grow; and is complete,
resorbed by GS44 in both species (Fig. 4). We found that the axial skeleton was more
chondrified in D. labialis than in S. ruber. The first postcranial skeletal elements to
develop in both species were the nine pairs of semicircular cartilaginous primordia of
neural arches, included eight presacral vertebrae, the sacrum, the urostyle and the
hypochord. The sacral diapophyseal primordia are cylindrical. The last postsacral
vertebra (first coccygeal or Vertebra X sensu Haas 1999) and the second coccygeal
vertebra ossify only in D. labialis by GS45. Simultaneously to the ossification of
presacral vertebrae, there is notochord absorption, coccygeal elements fusion and

urostyle formation. The urostyle has a bicondylar articulation with the sacral vertebra
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and the condyles are widely separated in both species (Fig. 4).

The atlas is concave at its point of articulation with the convex occipital condyles at
the base of the skull. Semicircular procoelous (sensu Jolie 1962) vertebral centra begin
to develop as early as GS31 in D. labialis and GS32 in S. ruber, increasing the
thickness of both the neural arches and the transverse process. The neural arches
appear as cartilage at GS33 in both species;-these-are complete at GS34 in D. labialis
and at GS38 in S. ruber. The arches are fused dorsally at the midline at GS38 in S.
ruber and at GS38 in D. labialis. The transverse processes are the first elements to
ossify in both species (Tables 1 and 2). Postzygapophyses and prezygapophyses are
conspicuous in presacral vertebrae I, lll, and IV in both species. Sesamoids are absent
from GS25 to GS45.

Ossification sequence

The earliest stage examined in both species was GS25. Ossification in D. labialis
appears by GS34 and in S. ruber by GS35 (Fig. 1A and Fig. 4). Ossification in D.
labialis begins with the atlas and the transverse processes, whereas in S. ruber it
begins with the parasphenoid, the Transverse Processes I-VIl and Neural Arches I-IlI.

Metamorphic climax (MC) begins at GS41 in D. labialis and GS39-40 in S. ruber. We
identified seven ranks (I-VIl) in D. labialis and five ranks (I-V) in S. ruber (Tables 1 and
2). Ossified elements were perceptible in D. labialis from GS35 to GS45, with 46
ossified elements, and from GS36 to GS43 in S. ruber, with 26 ossified elements.
Metamorphic climax in D. labialis was at GS45 with 14 ossified elements and in S. ruber
at GS39-40 with seven ossified elements. Of these, the structures in common are the

femur, tibia, fibula, humerus, ilium, and radioulna.
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Discussion

Despite Colombia housing the second number of hylid species on the planet, few
previous studies have considered developmental ossification of Colombian hylids. The
family Hylidae has gone through a number of taxonomic re-arrangements, as elucidated
by various phylogenetic hypotheses based on molecular, chromosomal, and
morphological data from both larvae and adults (Faivovich 2002; Faivovich et al. 2005;
Wiens et al. 2010; Pyron and Wiens 2011; Duellman et al. 2016). Data from additional
morphological studies of Colombia hylids may help to support or refute these
hypotheses.

Previous studies the cranial morphology in hylid tadpoles include Acris crepitans
(Maglia et al. 2007); Boana lanciformis (de Sa 1988; Alcalde and Rosset 2003); Boana
pulchella (Hoyos et al. 2012); Boana raniceps and Dendropsophus nanus (former Hyla
raniceps and Hyla nana Fabrezi and Lavilla 1992; Vera Candioti et al. 2004);
Dryophytes versicolor (former Hyla versicolor, Sheil et al.2014); Hyla orientalis (Yildirim
and Kaya 2014); Julianus acuminatus (former Scinax acuminatus, Fabrezi and Lavilla
1992; Faivovich 2002; Alcalde and Rosset 2003; Alcalde et al. 2011), J. uruguayus, J.
aff. pinimus (former Scinax uruguayus and Scinax aff. pinima, Alcalde et al. 2011;
Rodrigues et al. 2017); Ololygon aromothyella and O. berthae (former Scinax berthae,
Rodrigues et al. 2017; Alcalde et al. 2011; Faivovich 2002); O. skuki (Rodrigues et al.
2017 _Scinax granulatus and S. squalirostris (Rodrigues et al. 2017 Alcalde and Rosset
2003); S. boulengeri (Rodrigues et al. 2017; Vera Candioti 2007); S. fuscovariatus

(Fabrezi and Vera 1997); S. nasicus (Rodrigues et al. 2017; Vera Candioti 2007; Vera
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Candioti et al. 2004; Fabrezi and Vera 1997); S. ruber (Haas 1996). For a complete
overview of the findings of these studies please see Appendix 1.

Several of the differences between the two species examined, present interesting
avenues for future examination. For example, processus ethmoidalis of the quadrate in
S. ruber is wide, and it is not clearly distinct from the processus articularis; whereas_in
D-labialis, the processes are easily distinguishable; and similar to that described by
Alcalde and Rosset (2003), who found similar features in Boana raniceps compared
with to the Scinax group (S. squalirostris and S. granulatus, Scinax ruber group). The
palatoquadrate is similar between-the-species but the processus ascendens of the
palatoquadrate in D. labialis is wider than in S. ruber, and the distal side of the cornu
trabecula extends posteriorly toward the otic capsule,the anterior region of the
palatoquadrate is distinctively broader in S. ruber than in D. labialis, in S. ruber the
dorsomedial process is wider than the ventromedial process in D. labialis.

When comparing the decelopment of in D. labilis with D. nanus (Vera Candioti et al.
2004; Alcalde and Rosset 2003) we found that D. labialis can be differentiated by the
reduction of the buccopharyngeal and branchial basket structures; and theg, sinus
posterior hypobranchialis and the processus quadrato-ethmoidale are-missing. On the
other hand, the information that is available for Scinax species (Fabrezi and Lavilla
1992; Haas 1996; Fabrezi and Vera 1997; Faivovich 2002; Alcalde and Rosset 2003;
Vera Candioti et al. 2004; Vera and Haas 2007; Alcalde et al. 2011; Rodrigues et al.
2017) shows that there are a-great-morphological variations that requires extending the
morphological studies in tadpoles.

Scinax ruber presents alae and corpus of suprarostral cartilage with deeper notches;
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the chondrocranium, hyobranchial apparatus, and the suprarostral body, joined
syndesmotically as found by Vera and Haas (2007) in microphagous tadpoles of S.
nasicus and S. boulengeri. Dendropsophus labialis like Dendropsophus nanus shows a
suprarrostral cartilage with corpus and alae forming a continuous structure which is,
evidently, associated with a deviation of the macrophophagous mechanisms described
by Alcalde and Rosset (2003).

The lateral development of the crista parotica is more prominent in S. ruber than in D.
labialis. It is possible that some of the variation in the anatomical structures of the otic
capsule are functionally related to perception of vocalizations (i.e. same species
recognition) in adult stages, but experiments must be conducted to check the
relationship of these anatomical structures with hearing physiological functions
(Ruggero and Temchin 2002; Boistel et al. 2013).

The chondrification of skull in S. ruber is faint when viewed laterally, and foramina are
not clearly visualized. By contrast, in D. labialis, much more blue coloration was
observed. This could be due to the abundant chondrification of these parts or to the
early developmental stages of this anatomical area in which it is allowed differentiation
of craniopalatine carotid foramina.

Although the sample size for the Dendropsophus labialis is very small in comparison
with S. ruber, Dendropsophus labialis exhibited more ossified elements with stronger
chondrification and less intraspecific variation, while S. ruber showed more intraspecific
variation and less overall chondrification in the samples (Fig. 1). D. labialis presented
uniformly stained (ossified) elements in all individuals (Table 3).

This variation between S. ruber and D. labialis could be caused by intrinsic factors that
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determine the timing of development or extrinsic factors affecting osteogenesis (Vera
and Ponssa 2014). It may not be a coincidence that S. ruber is a generalist species and
D. labialis is an endemic one (Frost 2018).

Haas (1996) reported that the (BEIGIGINEINS) |-\ are fused in Scinax ruber and
Megophrys montana nasuta, characteristics that separate them from other species.
Herein,-this-state-was confirmed,in S. ruber but not in D. labialis. The ceratohyal in D.
labialis has a process on the articular condyle that is not present in S. ruber. Alcalde
and Rosset (2003) found this process in both S. granulatus and S. squalirostris.
Spicules I-1ll on the posterior margin of the hypobranchial plate are present in D. labialis
and S. ruber, but Spicule IV is not.

Copula Il is present in both species; but- Copula | is present in D. labialis as in S.
squalirostris, but absent in S. ruber as in S. granulatus, Boana raniceps (Alcalde and
Rosset@)%and Tlalocohyla smithii (Vera and Haas 2004). Although the presence of
@BpEld | is extremely variable in hylids; and is shared by all non-hylid, (Vera and Haas
2004), a relationship between this structure and the ecological function that it performs
(e.g. prey utilization) has not been identified.

Additional characteristics of the developmental morphology of these close species,
them with other hylids that have been studies previously. For example, the urostyle of
D. labialis and S. ruber forms a bicondylar articulation with the sacral vertebra and the
condyles are widely separated. The shoulder girdle of both species present differences
in the shape of the omosternum and sternum at GS 45. Dendropsophus labialis and S.
ruber present suprascapular processes in tadpoles and adults similar to those in other

hylids: Hypsiboas lanciformis (De Sa 1988), Boana pulchella (Hoyos et al. 2012),
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Pseudacris crucifer, Acris blanchardi (Havens 2010) and A. crepitans (Maglia et al.
2007) but is absent in Scinax catharinae Clade (Faivovich et al. 2005).

Variations of larval characters between Scinax and Dendropsophus have been
included in several phylogenetic studies (Fabrezi and Vera 1997; Haas 1996; 1999;
2003; Alcalde and Rosset 2003; Vera 2007). In our study, the skeleton shows significant
differences between the species Scinax ruber and Dendropsophus labialis, beginning
with fact that elements ossified in S. ruber exhibit more intraspecific variability than in D.
labialis (see Table 3).

Regarding ossification sequence, the first bones ossified in the cranium were the
exoccipital, the frontoparietal and the parasphenoid by GS 36. Haas (1999) found that in
S. ruber this occurre one stage later by GS37. Similar to those that Haas (1999)
described for other hylids, the ossification of the vertebrae begins from the centra of the
presacral vertebrae and continues ventrally along the notochord, forming osseous rings
around the notochord in both species. We found that the ossification of the centra in
both species we studied begins ventrally and proceeds dorsally. Haas (1999) recorded
the ossification transverse processes of Presacral Vertebrae II--1ll as the first to ossify,
while we found that the timing of ossification of Neural Arches goes, from | to IX in D.
labialis (GS37) and from | to lll in S. ruber (GS36) (Fig 4).

The detection of more intraspecific variability in Scinax ruber than in Dendropsophus
labialis could also be due to the presence of more intra-generic diversity in the clade
Scinax-ruber. Alcalde and Rosset (2003) associated the type of feeding with the
development of the lateral anterohial process of the ceratohial, in species with

macrophage larvae (Dendropsophus nanus), and scraping microphages (Boana
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pulchellus, Julianus acuminatus and S. nasicus). This may indicate that morphological
characteristics of the jaw may be involved in the type-of feeding that the tadpoles have
and therefore these traits would help tojdentify. the species (Appendix 1).

Differences between the ossification sequences of these two species are also evident
when examining the ossification ranks and number of ossified bones;jin particular, D.
labialis has more ranks in the sequence and more elements that begin ossification prior
to metamorphosis. With respect to the postcranium, the number of elements ossified
appears earlier in D. labialis than in S. ruber. Because Gosner stages are based on
external characteristics that rely on underlying skeletal change, it is only a relative
measure of timing and should not be used as a way to compare between species.
Instead, we compared the relative timing of events in the ossification sequence; by
examining the order of onset of ossification of each element. Nunn and Smith (1998:86)
considered “ontogeny may be ordered by age, size, or stage; none of these measures
are useful for comparing ontogeny across significantly divergent taxa”.

Table 4 outlines the ossification sequences of different species of the family Hylidae
among-these-species; the number of ranks that include elements of the skull and
postcranium vary from one to five. The number of ranks increase when postcranial
elements are included. Weisbecker and Mitgutsch (2010), Harrington et al. (2013), and
Sheil et al. (2014) used similar ranked ossification sequence data to reconstruct
phylogenetic trees of amphibians in the families of Leptodactylidae, Ranidae and
Bufonidae. These researchers suggested to-usg cranium and post-cranium data,
relating them to the type of development, and to include sequences of fossils-too; as far

as possible.
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Although the morphology and systematics of amphibians have been extensively
studied (Cannatella and Trueb 1988; de Sa and Hillis 1990; Baez and Pugener 2003;
Roelants and Bossuyt 2005; Faivovich et al. 2005, Frost et al. 2006; Pyron and Wiens
2011; Duellman et al. 2016), additional comprehensive descriptions of skeletal
development and ossification sequences, truly understand patterns of heterochrony in
the group (Appendix 1).

ome of the biological implications of heterochrony, which are well known in
amphibians (Alberch 1985; Reilly et al. 1991) include changes in structures, and
changes in the rate of growth of entire organisms (Raff 1996; Smith 2001; 2002; 2003).
Some scholars have recognized that heterochrony may work as modules of
developmental events with evolutionary implications that can promote or restrict the
development of individual morphologies (Wagner 1996).

Studies that have used statistical methods (e.g. Parsimov) to analyze ossification
sequences have revealed heterochrony in the timing of onset ossification in some
cranial elements such as parasphenoid and prootic in S. ruber vs H. pulchellus (Hoyos
et al. 2012), or the frontoparietal, dentary,and maxilla in D. labialis vs. Pseudis platensis
(Fabrezi and Goldberg 2009). In our study, we found that the parasphenoid was the first
element to ossify in both D. labialis and S. ruber,and the exoccipital; frontoparietal and
prootic were the second elements to ossify in both species.

It is possible that the difference in cartilage formation between the two species
examined herein is due to paracrine factors induced in cells that express mesodermal
transcription factors involved in the activation of genes specific to cartilage (Gilbert

2000; Kozhemyakina et al. 2015); however, we did not account for these factors.
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Additionally, the intraspecific variation in the ossified elements between these species

could be linked to specific genes (Raff 1996).

Conclusions

The contribution of ontogenetic data (development and ossification sequences of
skeletal structures) herein provides further information to help understand the
interactions between ontogeny and phylogeny in morphological and ecological diversity
of frog, Ossification sequence data combined with evolutionary hypotheses may shed
light on patterns of development to be used in future phylogenetic hypotheses. As
Larson et al. (2003) suggested; “variation in chondrocranial morphology in larval
anurans can be phylogenetically informative, even among closely related taxa”.
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Table 1(on next page)

Ossification sequence of cranial and postcranial elements in Dendropsophus labialis
(Peters, 1863)
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stage
Rank (Number of
) Cranium Postcranium
specimens
Gosner, 1960)

26(3), 27(3),

28(2), 29(2),

| 31(3), 32(1),
1

33(1), 34(1)
35 (1) Transverse process |-V
[l 36 (2) Parasphenoid Transverse process VI-VIII
1] 37 (3) Frontoparietal, Neural arches I-VIlI
exoccipital
v 38 (1) Hypochord
Femur, tibiofibula, humerus,
Vv 41 (3) ilium, radioulna, clavicle, pubis,
metatarsal Ill-V, coracoids
Vi 42 (3) Metacarpal IV, urostyle

. Manus IV proximal phalange,
Mentomeckelian,
. _ Metacarpal Ill and V, scapula,
premakxilla, maxilla,
Vi 45 (1) _ pedal digit IV proximal
angulosplenial,
phalange, Metacarpal | and I,
dentary
metatarsal |, prepollex

Neopalatine, nasal,
terygoid, vomer,
VI 46 (1) Peng _
septomaxilla,

squamosal
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Table 2(on next page)

Ossification sequence of the cranial and postcranial elements in Scinax ruber (Laurenti,
1758).
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Table 3(on next page)

Onset of ossification of cranial and poscranial elements of Dendropsophus labialis and
Scinax ruber
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Species Dendropsophus labialis Scinax ruber
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(No. Specimens M@ [E) MGG M) M) )] ®)|©) 3B |4 G| E) @ ) 1)
with elements
ified)
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o ||
I 1 6 |9 |3 |3 3 14 |3 |3 |1 |1
! 1 (1 |1 (1 {3 |3 (1 {1 |1 |5 |6 (3 |3 3 14 |3 |3 |1 |1
§ [} 1 /1 (1 /1 3 |3 (1 |1 |1 |5 |6 |3 |3 3 14 |3 |3 |1 |1
S|V 1 (1 |1 (1 ({3 |3 (1 |1 |1 |5 |6 (3 |3 3 14 |3 |3 |1 |1
a |V 1 /1 |1 |1 [3 [3 |1 |1 [1]3 |6 |3 |3 3 |4 [3 [3 [1 [1
o lw 1 (1 (1 1 (3 |3 (1 |1 |1 |3 |6 |3 |3 3 14 |3 |2 |1 |1
g [ Vil T (1 [1 |1 (3 [3 |1 [1 (1|1 |4 |23 |33 (3|2 [1 |1
2 | v 1 (1 {1 |3 (3 |1 |1 |1 |1 (2 |2 |3 3 12 |3 |1
Z X 1 113 [1 [1 |3
I 1 |1 3 13 |1 |1 3 |3 |3 3 14 |3 |3 |1 |1
! 1 3 13 |1 |1 3 |3 |3 3 13 |3 (3 |1 |1
[} 1 2 |3 |3 3 13 |3 |3 |1 |1
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S|V 1 2 |3 3 |1 ]3
£ T‘: Vil 1 1 |3 2 3
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g i :\)Il(etacarpal 1 1
le) ©
a | =il
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1l

Metacarpal 1 2 |1

1]

Metacarpal 1 1 2 |1

v
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\"/

Metatarsal 1 2 1
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1l
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Clavicle 1 2 |2 1 3 1 3
Coracoids 1 2 |2 1
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Table 4(on next page)

Ossification sequences of different species of the family Hylidae including postcranial
elements.
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Subfamily Specie Element raNnok's Ossification sequence References
c 9 |Ps[ex, fp, po] [pm, sm]ma, ns, vo [an, de]lme, pt, qj, qu,
. sq] sp
Acris . :
blanchardi ps, ve [ex, fe, fp, po][fi, hu, mt, pf, ra, sc, ul, tf, ti][c], co, ct, | Havens, 2010
C,P 11 il, mc, ph][is, pm, sm]ma, ns, vo, [an, de][me, pt, qj, qu, sq]
Sp
Hyliola regilla c 6 |PS: fplex po] pvma, ns, pm, sm, sq] [ag, de, ptlicm, me, | .40 1973
- pa, qj, sp]
Acridinae -
C g |Pslex fpl [pf, po] [ma, pm, sm] ns [an, vo] [me, pt, gj, qu,
. sqlsp
Pseudacris -
crucifer ps ,ve, fe [hu, il, ra, su, ul] [ct, ex, fp, fr, sc, tf, tI] [cl, co, mt, | Havens, 2010
C,P 13 | pf, po] [mc, ph] is [ma, pm, sm] ns [an, vo] [me, pt, qj, qu,
sq] sp
Pseudacris 4 [ex, fp, pm] [de, ma, ns, pt, qj, sq, vo][m, po][cm, ha, pa, Stokely & List
triseriata ps, sp] 1954
Dend " C 3 ps [ex, fp, po] [an, de, ma, me, np, pm, sm, sq, VO]
Dendropsophinae | " I;Zﬁ;fgp us cp g |lvellps] [ex, fp, po] [cl, co, fe, hu, il, mt, ru, tf] [mc, sc]lan, This study
’ de, ma, me, np, pm, sm, sq, VO]
C 8 fp, ps, ex, po [ pm, sm] [ns, ma][an, de, sq][sp, me, qj, Vo,
pa, pt]
Boana :
lanciformis fp [ps, ve] ex [fr, cl, co, ct, fe, hu, mc, mt, po, sc, tf, tI] pf De Sa, 1988
C,P 9 [[pm, sm] [ns, ma][an, de, is, sq][ap, me, pa, ph, pt, qj, sp,
Cophomantinae vo]
c 2 |[ex, fp, ps] [an, de, ma, pm, po, sq]
B
oana [ex, fp, ps, ve][fe, hu, il, ru, sc, tf][cl, co, ct, hy, mc, mt, pf, Hoyos et al.,
pulchella C.P 4
’ ph][an, de, ma, pm, po, sq] 2012
- Dryophytes C 8 | ps [ex][fe][fp]lsm, pm, po][ma][de, ns, an, sq][vo] Sherman and
Hylinae ) .
chrysoscelis Maglia, 2014
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ps [ex, na, cn][fe][sc, cl, co, hu, ra, ul, il, ti, fi, tb,mc,

C.P | 10 Imiph. pfllfpllsm, pm, polima, is][de, ns, an, sq][vo]
C 6 s [ex, fp] [ma, pm, po] [an, de, s a, pt, gj
Dryophytes ps [ex, fp] [ . pm, p .] [ al [p pt, qjl Sheil et 4.,
versicolor C P 7 ps [cl, co, fe, fi, fr, hu, il, na, ra, sc, ti, tl, ul] [ex, fp,' mc, ph, 2014
’ pf, ve] [ma, pm, po] [an, de, sq] [ns, me] [pa, pt, qj]
C 5 ps [ex, po] fp [ns, sm] [an, de, ma, pm, pt, sq, vo]
, . - Yildirrm and
Hyla orientalis ps [ex, hu, na, po, ve][ct, fe, fr, il, mc, tf, tl, ru][fp, cl, co,
C,P 6 . , Kaya, 2014
’ mt, pf, ph][ns, sm][an, de, is, ma, pm, pt, sq, pu, vo] gj
- fp [ex, ps, sm] [ag, de, ma, pm, sq] [ns, pt, qj] [me, pa, Trueb, 1966
Smilisca c 7 pv][cm, sp] po
baudinii i
I[;a;, fp, ps, sm][ma, pm, sq][ns, pt][pa, qj, vo][cm, et] so, Gaudin, 1973
Triprion c g |fP.ns[an, de, ex, ma, me, pa, pm, ps, pt, gj, sm, sq][cm, Trueb, 1970
petasatus pv] sp, po
3 fp_, sm [ag, cm, de, et, ex, ma, me, ns, pa, pm, po, ps, pt, Trueb, 1966
qj, sq, Vo]
C 7 |fp. sm [an, de, ex, ma, ns, pm, ps, pt, pv, sq] pa, gj [me, Trueb, 1970
. po, sp] cm
Lophyohylinae Osteopilus f d t i
septentrionalis 5 [SS] smileg, de, ex, ns, ma, pm, ps, pt, pv, sal pa, dj [po, Gaudin, 1973
ps, ve, fe [hy, il, ra, su, ul] [ct, ex, fp, fr, sc, tf, tl] [cl, co, mt, Sheil et al
C,P 13 | pf, po] [mc, ph]is [ma, pm, sm] ns [an, vo] [me, pt, qj, qu, 2014
sq] sp
. Pseudis Fabrezi and
Pseudinae platensis C 5 [[fp, ps] [ex, po] [ns, pm, sq] ma [de, pt, vo] Goldberg, 2009
C 3 ps, [fp, po] [an, de, ma, me, np, pc, pm, sm, sq, VO]
Scinaxinae Scinax ruber cp 2 |ps. ve [ex, fp, pollfe, hu, il, ru, sc, tf, ti] is [an, de, ma, me, This study

pm, pc] [np, sm, sq, vo]

C, cranium; P, poscranium
ag, angular; an, angulosplenial; ap, plectral apparatus; cl, clavicle; cu, columella; co, coracoid; ct, cleithrum; de, dentary;
et, ethmoid; ex, exoccipital; fe, femur; fi, fibula; fp, frontoparietalis; fr, fibulare; ha, hyoid apparatus; hu, humerus; hy,
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hypochord; il, ilium; is, ischium; ma, maxilla; mc, metacarpals; me, mentomeckelian; mt, metatarsals; na, neural arches;
nc, neural center; np, neopalatine; ns, nasal; pa, palatine; pc, coronoid process; pr, presacral vertebrae; pf, phalanges of
feet; ph, phalanges of manus; pm, premaxilla; po, prootic; ps, parasphenoid; pt, pterygoid; pv, pre vomer; qj,
quadratojugal; qu, quadrate; ra, radius; ru, radioulna; sc, scapula; sm, septomaxilla; sp, sphenethmoid; sq, squamosal; su,
suprascapula; ti, tibia; tf, tibiofibula; tl, tibiale; tp, transverse process; ul, ulna; ve, vertebra (including na, nc, pr, tp); vo,
vomer.

C = Cranial elements; P = Postcranial elements.

[Rank = absolute time of ossification of various structures simultaneously]
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Figure 1

Larval chondrocranium of Dendropsophus labialis (GS 34 - MUJ 9250) and Scinax ruber
(GS 34 - MUJ 6178)

A. Dorsal view, B. Ventral view, C. Lateral view, D. Ventral views of hyobranchial apparatus in
Dendropsophus labialis (GS36 - MU) 9250) and Scinax ruber (GS36 - MUJ 3727).

Scale 1 mm. Chondrocranium: a, alae suprarostralis; ci, cartilago infrarostralis; cm, cartilago Meckeli; cqc,
commissura quadratocranialis; cs, suprarostral cartilage; ct, cornu trabeculae; fo, fenestra ovalis; jf, jugular
foramen; pal, processus anterolateralis; pmq, processus muscularis quadrati; pof, prootic foramen; pq,
palatoquadrate; oc, otic capsule; of, oculomotor foramen; opf, optic foramen, ts, tectum sinoticum.
Hyobranchial apparatus: ca (1), copula anterioris; cb I-IV; ceratobranchialis I-IV; cp (Il), copula posterioris; ct;
commisura terminalis; pah, processus anterioris hyalis; palh, processus anteriolateralis hyalis; phb, planum
hypobranchiale; plh, processus lateralis hyalis; pph, processus posterioris hyalis; pr, pars reuniens; sp,
spicula. Blue: cartilage, light blue: fontanella.
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Dendropsophus labialis Scinax ruber

C D. labialis

S. ruber
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Figure 2

Appendicular skeleton of Dendropsophus labialis (GS45 - MUJ497) and Scinax ruber
(GS45 - MUJ6018).

A. Scapula, B. Pectoral girdle, C. Ventral view pelvic girdle. Scale 1 mm. ¢, clavicle; co,
coracoid; e, epicoracoid; ps, processus suprascapularis; o, omosternum; st, sternum; il, ilium;

is, ischium; pu, pubis Red, ossified; blue, condrificated.
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Figure 3

Dorsal view of manus and pes of Dendropsophus labialis (GS45 - MUJ497) and Scinax
ruber (GS45 - MUJ6018).

A. Manus, B. Pes. Scale 1 mm. ce, centrale; fi, fibulare; mc, metacarpal, mt, metatarsus; ph,
prehallux; pr, prepollex; rd; radiale; rad, radioulna; ul, ulnare and intermedium; ti, tibiale. |-V,

phalanges. Red, ossified; blue, condrificated.
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A D. labialis S. ruber
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Figure 4

Ventral view of ossification development in vertebral column of Dendropsophus labialis
and Scinax ruber at GS 26-45.

Scale 1 mm. h, hypochord; a, Atlas; np, neural process; d, diapophysis; sd, sacral diapophysis; u, urostyle
Red, ossified; blue, condrificated.
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