Comparative description and ossification patterns of Dendropsophus labialis (Peters, 1863) and Scinax ruber (Laurenti, 1758)(Anura: Hylidae) (#20437)

Second revision

Editor guidance

Please submit by 20 Feb 2018 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 4 Figure file(s)
- 5 Table file(s)

Q Custom checks

Vertebrate animal usage checks

- Have you checked the authors ethical approval statement?
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Structure your review

The review form is divided into 5 sections.

Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Comparative description and ossification patterns of Dendropsophus labialis (Peters, 1863) and Scinax ruber (Laurenti, 1758)(Anura: Hylidae)

Angélica Arenas-Rodríguez $^{\text{Corresp.}-1}$, Juan Francisco Rubiano 2 , Julio Mario Hoyos $^{\text{Corresp.}-1}$

Corresponding Authors: Angélica Arenas-Rodríguez, Julio Mario Hoyos Email address: angelica.arenas@javeriana.edu.co, jmhoyos@javeriana.edu.co

Although comparative studies of anuran ontogeny have provided new data on heterochrony in the life cycles of frogs, most of them have not included ossification sequences of Neotropical frogs. Using different staining techniques, we describe the cranial and poscranial elements development in two hylid species, *Scinax ruber* and *Dendropsophus labialis*, providing new data for more comprehensive ontogenetic studies in Colombian species. We examined specimens from Gosner stages 25 to 45. We found differences in the infrarostral and suprarostral cartilages, optic foramen, planum ethmoidale, and the gill apparatus. In the ossification sequence, the first elements to ossify were the transverse process of spinal column and atlas in both species, and the parasphenoid in the skull. These two species showed the suprascapular process as have been described in other Hylids species cleared and stained until now. New descriptions of skeletal development and ossification sequences of larval stages of these two species, mainly data concerning the postcranium, contribute with useful information for analysis of sequential heterochrony, because although the hylids are widely known, there are few works (15 of 700 species) about ossification sequence that include the whole skeleton.

¹ Facultad de Ciencias, UNESIS (Unidad de Ecología y Sistemática), Pontifica Universidad Javeriana, Bogotá, Colombia

² Facultad de Ciencias, Universidad del Bosque, Bogotá, Colombia

- 1 Comparative description and ossification patterns of *Dendropsophus labialis*
- 2 (Peters, 1863) and Scinax ruber (Laurenti, 1758) (Anura: Hylidae)
- 3 Angélica Arenas-Rodríguez¹, Juan Francisco Rubiano², Julio Mario Hoyos¹
- ¹Facultad de Ciencias, UNESIS (Unidad de Ecología y Sistemática), Pontifica Universidad Javeriana,
- 5 Bogotá, Colombia
- 6 ²Facultad de Ciencias, Universidad del Bosque, Bogotá, Colombia

8 Short Title: Skeletal development of two hylids

10	Abstract Although comparative studies of anuran ontogeny have provided new data
11	on heterochrony in the life cycles of frogs, most of them have not included ossification
12	sequences of frogs. Using differential staining techniques, we observe and describe
13	differences and similarities of cranial and postcranial development in two hylid species,
14	Scinax ruber (Scinaxinae) and Dendropsophus labialis (Hylinae), providing new data of
15	ontogenetic studies in Colombian species. We examined tadpoles ranging from Gosner
16	Stages 25 to 45. We found differences between the species in the infrarostral and
17	suprarostral cartilages, optic foramen, planum ethmoidale, and gill apparatus. In both
18	species, the first elements to ossify were the atlas and transverse processes of
19	vertebral column, and the parasphenoid. Both species exhibited suprascapular
20	processes as described in other Hylids. Although the hylids comprise a large group
21	(over 700 species), postcranial ossification sequence is only known for 15 species.
22	Therefore, the descriptions of the skeletal development and ossification sequences
23	provided herein should be useful for future analyses of heterochrony in the group.

Introduction

.3	Comparative morphological descriptions have provided useful systematic characters
26	since the 1960 (e.g. Cannatella 1999; Duellman et al. 2016). However, most studies of
27	frog morphological characters focus on adults (Faivovich 2002; Faivovich et al. 2005;
28	Maglia et al. 2007; Wiens et al. 2010; Pyron and Wiens 2011; Yıldırım and Kaya 2014;
9	Duellman et al. 2016), and tadpoles are often overlooked (Alcalde et al. 2011). Of those
0	comparative studies that examine tadpoles, most consider external morphological
1	characters and, skeletal characters are often neglected (Fabrezi and Lavilla 1992;
2	Faivovich 2002; Maglia et al. 2007; Hoyos et al. 2012; Yıldırım and Kaya 2014). When
3	skeletal features are considered, the chondrocranium is most often described, and the
4	postcranium is frequently ignored (e.g. Orton 1953; Starrett 1973; Wassersug 1980;
5	Wassersug and Heyer 1988; Haas 2003). However, as with other groups, relatively few
6	detailed comparative morphological studies of hylid tadpole skeletal development have
7	been completed. Given the size and recent taxonomic re-arrangements of the hylids
8	(Duellman et al. 2016; Jungfer 2017) is important to amass as much comparative
9	information about the group as possible. Thus, there continues to be a pressing need to
0	conduct comprehensive comparative studies of hylids developmental morphology.
1	Interspecific variations in morphology help to clarify taxonomic groups within in the
2	Hylidae. The family is predominantly distributed across the Neotropical region (Frost
3	2018; Duellman et al. 2016) and comprises 706 species subdivided into seven
4	subfamilies: Acridinae, Cophomantinae, Dendropsophinae, Hylinae, Lophyophylinae,
-5	Pseudinae, and Scinaxinae (Faivovich et al. 2005; Wiens et al. 2010; Duellman et al.
6	2016; Frost 2018). Ossification sequences are known for only 15 species, and only

17	eight of those include the postcranial skeleton: Acris blanchardi (Havens 2010: Maglia
18	et al. 2007), Boana lanciformis (former Hyla lanciformis, De Sá 1988), Boana pulchella
19	(former Hypsiboas pulchellus Hoyos et al. 2012), Dryophytes chrysoscelis (former Hyla
50	chrysoscelis, Sherman and Maglia 2014), Dryophytes versicolor (former Hyla
51	chrysoscelis, Sheil et al. 2014), Hyla orientalis (Yıldırım and Kaya 2014), Osteopilus
52	septentrionalis (Sheil et al. 2014), Pseudacris crucifer (Havens 2010).
53	Because identifying variations in developmental morphology and ossification sequence
54	can lead to informative phylogenetic characters (Weisbecker and Mitgutsch 2010;
55	Harrington et al. 2013), herein we provide a detailed anatomical comparisons of the
56	cranial and postcranial development (including the sequence of onset of ossification)
57	between two species of Andean hylids, Dendropsophus labialis and Scinax ruber.
58	

Materials and methods

ου	we dealed and double stained for bone and cartilage (Dingerkus and Onlei 1977). We
61	modificed to the protocol: 1, proportion of ethanol (SIGMA Ref. 459836-2L) and acetic
62	acid (SIGMA Ref. K36101663 620) was changed to 70:30; 2, The Alcian blue (SIGMA
63	Ref. A5268-25G) was increased to 75 mg, which was dissolved in ethanol and acetic
64	acid; and $3_{\bar{z}}$ staining time of this last solution was increased to 72 hours. The tadpoles
65	and metamorphs number of <i>Dendropsophus labialis</i> was N=_32, and <i>Scinax ruber</i> was
66	N=114. The number in each series corresponds to the availability of specimens stored
67	at the Museo de Historia Natural "Lorenzo Uribe" at the Universidad Javeriana (MUJ)
68	and the Instituto de Ciencias Naturales at the Universidad Nacional in Bogotá –
69	Colombia (ICN). The larval stages of <i>D. labialis</i> were collected from the Municipio Tenjo
70	Cundinamarca Departament, 3200 m (MUJ 9250). The larval stages of S. ruber were
71	collected from the Mun. Neiva, Huila Dep., 570 m; Mun. Granada, Meta Dep., 470 m
72	(MUJ 3727, MUJ 6178, ICN 46015-46017). Tadpoles and metamorphs were staged
73	according to Gosner's (1960).
74	Observations and photographs were made with a stereomicroscope (Advanced
75	optical), a camera (Infinity 1 Lumenera Corporation) with white LED light and Image Pro
76	Insight program (version 8.0.3). The drawings were made using a digitizing tablet
77	(Wacom Bamboo Connect pen) and edited using Adobe Illustrator 5. Anatomical
78	nomenclature for tadpoles follows Parker 1876; Higgins 1921; Jolie 1962; Roček 1981;
79	Duellman and Trueb 1986; Haas 1995; Haas 1997; Hall and Larsen 1998; Maglia and
80	Púgener 1998; Cannatella 1999; Haas 1999; Sheil and Alamillo 2005; Púgener and
81	Maglia 2007; Bowatte and Meegaskumbura 2011; Hoyos et al. 2012; adult

- 82 nomenclature is based on Avilán and Hoyos (2006), using the Latin names given by the
- 83 ICVAN (1973), and taking into account a Nomina Anatomica Batrachologica does not

92

85 The ossification sequence was constructed with the first appearance of bone. We 86 refer to metamorphic climax (MC) sensu Banbury and Maglia (2006) as the Gosner 87 stages at which major modifications and fundamental structural changes occur, 88 resulting in the loss of most of the larval characters. We also used the term "rank" to 89 refer to the ordinal number within an ossification sequence at which an element begins 90 to ossify. We decide on the first time any specimen at that stage showed stain. If two or more elements begin ossifying at the same time Gosner stage, they were assigned the

same rank (i.e. a tie) as per Nunn and Smith (1998).

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

Results

- 94 Skeletal development and sequence of onset of ossification of the cranial and
- 95 postcranial elements of *Dendropsophus labialis* and *Scinax ruber* are showed in Table 1
- and 2. A number of specimens in our series of *Scinax ruber* did not show clear staining,

- 97 thus we increased our sample size. Most of the poorly stained specimens were between
- 98 Stages 26 and 35) after Stage 35 specimens stained more clearly.

Chondrocranium

We observed similar changes in the shape, size, and modification of structures in the development of chondrocranium in the two species. The elements of the skeleton were compared according to the beginning of the ossification and not in a specific state because in the two study species this occurred in different Gosner states (Table 3). The overall width of the chondrocranium in *Dendropsophus labialis* and *Scinax ruber* is *roughly* 80-90% of this total length (Fig 1). The chondrocranium in *D. labialis* is wider (dorsal view) and lower (lateral view) than *S. ruber* (Fig 1A, 1B, 1C). Basicranial fenestrae did not differentiate with Alcian Blue in either species. We perceived a stronger blue coloration in *D. labialis*, and the jugular, prootic, and oculomotor foramen were clearly differentiated, whereas in *S. ruber* we could not see the oculomotor foramen.

111 The cartilaginous region of the taenia tecti medialis and tectum sinoticum both represent

a quarter of the basis cranii, extending from the frontoparietal fontanelle in both species.

The tectum nasi roofs the nasal region, and the ethmoid plate forms the floor. The

tectum nasi is separated from the orbit by a wall, the lamina orbitonasalis (=planum

antorbitale sensu Cannatella 1999). Because these regions are weakly chondrified, the

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

lamina orbitonasalis is not observable in the tadpole stages, and the nasal capsules become visible on after metamorphic climax (Stage 42 and beyond). The taenia tecti marginalis is evident and clearly differentiated by GS37 in D. labialis and by GS35 in S ruber. In neither species did we observe a frontoparietal fenestra, nor was a taenia tecti transversalis visible on the edge of the frontoparietal fontanelle (Fig. 1A). Suprarostral cartilage. In both species, the suprarostral cartilage is composed of a discontinuous cartilaginous plate divided into a corpus suprarostralis and a pars alaris; posterolaterally we observed a distal syndesmotic junction between the corpus and the ala. The ala has three processes: two rounded anterolateral processes that join syndesmotically with the cornu trabecula, and one process posterolaterally (Fig. 1C). Fenestrations were not observed in the suprarostral cartilage nor, in the advostral cartilage near the processus posterodorsalis (=processus dorsalis posterior, sensu Bowatte and Meegaskumbura 2011). In *D. labialis* the corpus suprarostral is curved, while in *S. ruber* it is straighter and wider distally, articulating proximally with the cornu trabecula (trabecular horn, sensu Cannatella 1999). The cornua trabecula are approximately 35% of the total length of chondrocranium (lateral view) in both species; they are shorter and narrower in D. labialis than in S. ruber. The cornua trabeculae articulate anteriorly with the corpus rostrale and laterally with the pars alaris of the suprarostral cartilage. Cartilago Meckeli. The cartilago Meckeli (= Meckel's cartilage, sensu Cannatella, 1999) has three processes: the retroarticular (short and blunt), the dorsomedial, and the ventromedial. These processes articulate with the infrarostral cartilage (commissura intramandibularis, sensu Cannatella, 1999) which is composed of two syndesmotically,

140

141

142

143

145

147

150

151

153

155

156

159

160

161

joined flat plates, and the processus muscularis quadrati, the shape of the processus dorsomedialis and the processus ventromedialis are the same in both species. The palatoquadrate cartilage and the commissura quadratocranialis are joined anteriorly to the base cranii. Laterally, the palatoguadrate cartilage forms the arcus subocularis. The process muscularis quadrati is joined to the processus antorbitalis (= pars plana sensu 144 Parker 1876; = lamina externa sensu Higgins 1921; = processus antorbitalis sensu Roček 1981; = triangular plane sensu Hall and Larsen 1998 = cartilaginous planum 146 triangulare sensu Púgener and Maglia 2007) anterolaterally, projecting above the cornu trabecula. The processus hyoquadrati of the palatoquadrate cartilage articulates 148 ventrally with the ceratohyalia of the hyobranchial apparatus (Fig. 1D). 149 Otic capsule. This structure is longer and higher than wide, occupying about a fifth of the total length of the skull. The crista parotica exhibits a more pronounced lateral projection in *D. labialis* than in *S. ruber*. The crista parotica is laterally developed, 152 forming a small processus posterolateralis (= processus lateralis posterior sensu Bowatte and Meegaskumbura 2011) and a small processus anterolateralis (more 154 developed in *D. labialis*). The processus anterolateralis projects vertically, descending obliquely and overlapping the ventral posterolateral margin of the palatoquadrate cartilage. The otic capsule is perforated by the fenestra ovalis, which occupies about 157 20% of the otic capsule. 158 Hyobranchial apparatus. The large ceratohyal has a processus anterioris hyalis, a processus posterioris hyalis, and a processus anterolateralis hyalis. The first two processes are longer than the third, which extends to meet the transverse crease of the processus lateralis hyalis.

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

The basihyal plate is oval and extends proximally to the copula anterior (= Basibranchial I sensu Duellman and Trueb 1986; = basihyale sensu Haas 1995 and Haas 1997; = Copula I sensu Maglia and Púgener 1998; Sheil and Alamillo 2005) in D. labialis, but is absent in S. ruber. The basibranchial plate is semi-oval and located between the two hypobranchial plates (= planum hypobranchiale sensu Haas 1999; = plate hyoid sensu Maglia and Púgener 1998; = hyobranchial plate sensu Sheil and Alamillo 2005) a branchial bridge is present in both species, being wider in S. ruber than in D. labialis. The junction between each ceratobranchium and the planum hypobranchiale is syndesmotic. The ceratobranchia are united posteriorly by the commissura terminalis and bear three spicules anteriorly (Fig. 1D). The chondrocranial morphology and hyobranchial apparatus is generally similar between the species examined herein and those previously studied but we did identify several differences between in: 1) the shape of the suprarostral, 2) the size and width of infrarostral cartilages, 3) the length of processus articularis, 4) the thickness of palatoquadrate, 5) the size of optic foramen, 6) the presence of an operculum and processus posterolateralis of the otic capsule, 7) the thickness of the processus muscularis quadrati, 8) the attachment of the ascending process to the braincase, 9) the thickness of the planum ethmoidale, 10) the development of the branchial apparatus, 11) the presence of Copula I, and 12) the type of junction between the ceratobranchia and planum hypobranchiale (Fig. 1 and 2). These differences likely represent speciesspecific differences among the taxa examined.

Appendicular skeleton

184	Shoulder girdle. The pectoral girdle is arciferal in both species. The earliest
185	ossification of clavicle, coracoid, and scapula appears at GS36 (Fig. 3A). The clavicle
186	and the cleithrum are distinct, and an epicoracoid cartilage is prominent between the
187	clavicle and the coracoid. The epicoracoids are not mineralized. In D. labialis the
188	omosternum is elongated and the sternum has two projections; the omosternum and the
189	sternum are oval in S. ruber. The clavicle articulates with the coracoid, which is ossified
190	in D. labialis at GS41 and in S. ruber at GS46. The sternum is formed by the
191	epicoracoid and the mesosternum, which joins the medial junction of the epicoracoids
192	(Fig. 2B).
193	Pelvic girdle. In both species, the primordium of the ilium appears at GS34 and is fully
194	developed by GS41. The ilium begins to ossify by GS41 D. labialis and by GS39/40 in
195	S. ruber, and articulates anteriorly with the ventral surface of the lateral margin of the
196	sacral diapophyses by GS42. The iliac crest appears dorsally prominent; the primordia
197	of the pubis and the ischium appear at GS36, and are synchondrotically fused by GS38
198	in both species. The sacral diapophyses is wider in <i>D. labialis</i> that in <i>S. ruber</i> . The pubis
199	is completely fused by GS40. The pelvic girdle is completely ossified with the halves
200	fused at the midline, extending anterodorsally forming an angle of 55° with the head of
201	the femur by GS45 (Fig. 3).
202	Forelimb and hindlimb. The first cartilaginous elements of the forelimbs (radius, ulna,
203	and humerus) appear at GS32, and those of the hindlimbs at GS33 (femur, tibia, and
204	fibula). The tibia and fibula are fused in <i>D. labialis</i> by GS41 and in <i>S. ruber</i> by GS38.
205	We observed ossification of the radius and ulna in D. labialis (GS41) and S. ruber (post

metamorphic); these elements are fused in both species. Primordia of the four carpal and five tarsal elements appear by GS33 and complete development by GS41. The phalangeal carpal formula is 3-3-4-4 and the phalangeal tarsal formula is 3-3-4-5-4 in both species. Metacarpals are curved and phalanges are cylindrical, having a conical shape at the tip of the terminal phalanges. Digits IV (manus and pes) and V (pes) begin to ossify by GS42 in *D. labialis*, although all phalanges are ossified at GS45 in both species (Fig. 3). The carpal were cartilaginous in all specimens and stages examined, and the distal tarsals were cartilaginous in *S. ruber*. The relative size of carpal elements is 3 < 4 < 2 < 1 < prepallux and the tarsal elements is 4 < 5 < 3 < 2 < 1 < prepollex. Sesamoids are absent from GS25 to GS45. Figure 3A shows the limb elements (central, fibulare, radiale, tibiale, ulnare, and intermedium) at Stage 45.

Axial skeleton

The vertebral column is composed of eight procoelous presacral vertebrae, the sacrum, and the urostyle. The notochord diminishes as the tadpoles grow, and is complete resorbed by GS44 in both species (Fig. 4). We found that the axial skeleton was more chondrified in *D. labialis* than in *S. ruber*. The first postcranial skeletal elements to develop in both species were the nine pairs of semicircular cartilaginous primordia of neural arches, included eight presacral vertebrae, the sacrum, the urostyle and the hypochord. The sacral diapophyseal primordia are cylindrical. The last postsacral vertebra (first coccygeal or Vertebra X sensu Haas 1999) and the second coccygeal vertebra ossify only in *D. labialis* by GS45. Simultaneously to the ossification of presacral vertebrae, there is notochord absorption, coccygeal elements fusion and urostyle formation. The urostyle has a bicondylar articulation with the sacral vertebra

231

232

233

234

235

236

237

238

239

240

and the condyles are widely separated in both species (Fig. 4).

The atlas is concave at its point of articulation with the convex occipital condyles at the base of the skull. Semicircular procoelous (*sensu* Jolie 1962) vertebral centra begin to develop as early as GS31 in *D. labialis* and GS32 in *S. ruber*, increasing the thickness of both the neural arches and the transverse process. The neural arches appear as cartilage at GS33 in both species; these are complete at GS34 in *D. labialis* and at GS38 in *S. ruber*. The arches are fused dorsally at the midline at GS38 in *S. ruber* and at GS38 in *D. labialis*. The transverse processes are the first elements to ossify in both species (Tables 1 and 2). Postzygapophyses and prezygapophyses are conspicuous in presacral vertebrae II, III, and IV in both species. Sesamoids are absent from GS25 to GS45.

Ossification sequence

241 The earliest stage examined in both species was GS25. Ossification in *D. labialis* 242 appears by GS34 and in S. ruber by GS35 (Fig. 1A and Fig. 4). Ossification in D. labialis begins with the atlas and the transverse processes, whereas in S. ruber it 243 244 begins with the parasphenoid, the Transverse Processes I-VII and Neural Arches I-III. 245 Metamorphic climax (MC) begins at GS41 in D. labialis and GS39-40 in S. ruber. We 246 identified seven ranks (I–VII) in D. labialis and five ranks (I–V) in S. ruber (Tables 1 and 247 2). Ossified elements were perceptible in *D. labialis* from GS35 to GS45, with 46 248 ossified elements, and from GS36 to GS43 in *S. ruber*, with 26 ossified elements. 249 Metamorphic climax in D. labialis was at GS45 with 14 ossified elements and in S. ruber 250 at GS39-40 with seven ossified elements. Of these, the structures in common are the 251 femur, tibia, fibula, humerus, ilium, and radioulna.

Discussion

253	Despite Colombia housing the second number of hylid species on the planet, few
254	previous studies have considered developmental ossification of Colombian hylids. The
255	family Hylidae has gone through a number of taxonomic re-arrangements, as elucidated
256	by various phylogenetic hypotheses based on molecular, chromosomal, and
257	morphological data from both larvae and adults (Faivovich 2002; Faivovich et al. 2005;
258	Wiens et al. 2010; Pyron and Wiens 2011; Duellman et al. 2016). Data from additional
259	morphological studies of Colombia hylids may help to support or refute these
260	hypotheses.
261	Previous studies the cranial morphology in hylid tadpoles include Acris crepitans
262	(Maglia et al. 2007); Boana lanciformis (de Sá 1988; Alcalde and Rosset 2003); Boana
263	pulchella (Hoyos et al. 2012); Boana raniceps and Dendropsophus nanus (former Hyla
264	raniceps and Hyla nana Fabrezi and Lavilla 1992; Vera Candioti et al. 2004).
265	Dryophytes versicolor (former Hyla versicolor, Sheil et al.2014); Hyla orientalis (Yıldırım
266	and Kaya 2014); Julianus acuminatus (former Scinax acuminatus, Fabrezi and Lavilla
267	1992; Faivovich 2002; Alcalde and Rosset 2003; Alcalde et al. 2011), J. uruguayus, J.
268	aff. pinimus (former Scinax uruguayus and Scinax aff. pinima, Alcalde et al. 2011;
269	Rodrigues et al. 2017); Ololygon aromothyella and O. berthae (former Scinax berthae,
270	Rodrigues et al. 2017; Alcalde et al. 2011; Faivovich 2002); O. skuki (Rodrigues et al.
271	2017 Scinax granulatus and S. squalirostris (Rodrigues et al. 2017 Alcalde and Rosset
272	2003); S. boulengeri (Rodrigues et al. 2017; Vera Candioti 2007); S. fuscovariatus
273	(Fabrezi and Vera 1997); S. nasicus (Rodrigues et al. 2017; Vera Candioti 2007; Vera

274	Candioti et al. 2004; Fabrezi and Vera 1997); S. ruber (Haas 1996). For a complete
275	overview of the findings of these studies please see Appendix 1.
276	Several of the differences between the two species examined present interesting
277	avenues for future examination. For example, processus ethmoidalis of the quadrate in
278	S. ruber is wide, and it is not clearly distinct from the processus articularis, whereas in
279	D. labialis, the processes are easily distinguishable, and similar to that described by
280	Alcalde and Rosset (2003), who found similar features in Boana raniceps compared
281	with to the Scinax group (S. squalirostris and S. granulatus, Scinax ruber group). The
282	palatoquadrate is similar between the species but the processus ascendens of the
283	palatoquadrate in D. labialis is wider than in S. ruber, and the distal side of the cornu
284	trabecula extends posteriorly toward the otic capsule, the anterior region of the
285	palatoquadrate is distinctively broader in S. ruber than in D. labialis, in S. ruber the
286	dorsomedial process is wider than the ventromedial process in D. labialis.
287	When comparing the decelopment of in D. labilis with D. nanus (Vera Candioti et al.
288	2004; Alcalde and Rosset 2003) we found that <i>D. labialis</i> can be differentiated by the
289	reduction of the buccopharyngeal and branchial basket structures, and the sinus
290	posterior hypobranchialis and the processus quadrato-ethmoidale are missing. On the
291	other hand, the information that is available for Scinax species (Fabrezi and Lavilla
292	1992; Haas 1996; Fabrezi and Vera 1997; Faivovich 2002; Alcalde and Rosset 2003;
293	Vera Candioti et al. 2004; Vera and Haas 2007; Alcalde et al. 2011; Rodrigues et al.
294	2017) shows that there are a great morphological variations that requires extending the
295	morphological studies in tadpoles.
296	Scinax ruber presents alae and corpus of suprarostral cartilage with deeper notches;

297	the chondrocranium, hyobranchial apparatus, and the suprarostral body joined
298	syndesmotically as found by Vera and Haas (2007) in microphagous tadpoles of S.
299	nasicus and S. boulengeri. Dendropsophus labialis like Dendropsophus nanus shows a
300	suprarrostral cartilage with corpus and alae forming a continuous structure which is,
301	evidently, associated with a deviation of the macrophophagous mechanisms described
302	by Alcalde and Rosset (2003).
303	The lateral development of the crista parotica is more prominent in S. ruber than in D.
304	labialis. It is possible that some of the variation in the anatomical structures of the otic
305	capsule are functionally related to perception of vocalizations (i.e. same species
306	recognition) in adult stages, but experiments must be conducted to check the
307	relationship of these anatomical structures with hearing physiological functions
308	(Ruggero and Temchin 2002; Boistel et al. 2013).
309	The chondrification of skull in S. ruber is faint when viewed laterally, and foramina are
310	not clearly visualized. By contrast, in <i>D. labialis</i> , much more blue coloration was
311	observed. This could be due to the abundant chondrification of these parts or to the
312	early developmental stages of this anatomical area in which it is allowed differentiation
313	of craniopalatine carotid foramina.
314	Although the sample size for the <i>Dendropsophus labialis</i> is very small in comparison
315	with S. ruber, Dendropsophus labialis exhibited more ossified elements with stronger
316	chondrification and less intraspecific variation, while S. ruber showed more intraspecific
317	variation and less overall chondrification in the samples (Fig. 1). D. labialis presented
318	uniformly stained (ossified) elements in all individuals (Table 3).
319	This variation between S. ruber and D. labialis could be caused by intrinsic factors that

320	determine the timing of development or extrinsic factors affecting osteogenesis (Vera
321	and Ponssa 2014). It may not be a coincidence that S. ruber is a generalist species and
322	D. labialis is an endemic one (Frost 2018).
323	Haas (1996) reported that the Ceratohyalia II-IV are fused in Scinax ruber and
324	Megophrys montana nasuta, characteristics that separate them from other species.
325	Herein, this state was confirmed in S. ruber but not in D. labialis. The ceratohyal in D.
326	labialis has a process on the articular condyle that is not present in S. ruber. Alcalde
327	and Rosset (2003) found this process in both S. granulatus and S. squalirostris.
328	Spicules I-III on the posterior margin of the hypobranchial plate are present in D. labialis
329	and S. ruber, but Spicule IV is not.
330	Copula II is present in both species; but Copula I is present in D. labialis as in S.
331	squalirostris, but absent in S. ruber as in S. granulatus, Boana raniceps (Alcalde and
332	Rosset 2003) and <i>Tlalocohyla smithii</i> (Vera and Haas 2004). Although the presence of
333	Copula I is extremely variable in hylids, and is shared by all non-hylid (Vera and Haas
334	2004), a relationship between this structure and the ecological function that it performs
335	(e.g. prey utilization) has not been identified.
336	Additional characteristics of the developmental morphology of these close species
337	them with other hylids that have been studies previously. For example, the urostyle of
338	D. labialis and S. ruber forms a bicondylar articulation with the sacral vertebra and the
339	condyles are widely separated. The shoulder girdle of both species present differences
340	in the shape of the omosternum and sternum at GS 45. Dendropsophus labialis and S.
341	ruber present suprascapular processes in tadpoles and adults similar to those in other
342	hylids: <i>Hypsiboas lanciformis</i> (De Sá 1988), <i>Boana pulchella</i> (Hoyos et al. 2012),

343	Pseudacris crucifer, Acris blanchardi (Havens 2010) and A. crepitans (Maglia et al.
344	2007) but is absent in Scinax catharinae Clade (Faivovich et al. 2005).
345	Variations of larval characters between Scinax and Dendropsophus have been
346	included in several phylogenetic studies (Fabrezi and Vera 1997; Haas 1996; 1999;
347	2003; Alcalde and Rosset 2003; Vera 2007). In our study, the skeleton shows significant
348	differences between the species Scinax ruber and Dendropsophus labialis, beginning
349	with fact that elements ossified in S. ruber exhibit more intraspecific variability than in D.
350	labialis (see Table 3).
351	Regarding ossification sequence, the first bones ossified in the cranium were the
352	exoccipital, the frontoparietal and the parasphenoid by GS 36. Haas (1999) found that in
353	S. ruber this occurre one stage later by GS37. Similar to those that Haas (1999)
354	described for other hylids, the ossification of the vertebrae begins from the centra of the
355	presacral vertebrae and continues ventrally along the notochord, forming osseous rings
356	around the notochord in both species. We found that the ossification of the centra in
357	both species we studied begins ventrally and proceeds dorsally. Haas (1999) recorded
358	the ossification transverse processes of Presacral Vertebrae IIIII as the first to ossify,
359	while we found that the timing of ossification of Neural Arches goes from I to IX in D.
360	labialis (GS37) and from I to III in S. ruber (GS36) (Fig 4).
361	The detection of more intraspecific variability in Scinax ruber than in Dendropsophus
362	labialis could also be due to the presence of more intra-generic diversity in the clade
363	Scinax ruber. Alcalde and Rosset (2003) associated the type of feeding with the
364	development of the lateral anterohial process of the ceratohial, in species with
365	macrophage larvae (Dendropsophus nanus), and scraping microphages (Boana

pulchellus, Julianus acuminatus and S. nasicus). This may indicate that morphological
characteristics of the jaw may be involved in the type of feeding that the tadpoles have
and therefore these traits would help toidentify the species (Appendix 1).
Differences between the ossification sequences of these two species are also evident
when examining the ossification ranks and number of ossified bones; in particular, D.
labialis has more ranks in the sequence and more elements that begin ossification prior
to metamorphosis. With respect to the postcranium, the number of elements ossified
appears earlier in <i>D. labialis</i> than in <i>S. ruber</i> . Because Gosner stages are based on
external characteristics that rely on underlying skeletal change, it is only a relative
measure of timing and should not be used as a way to compare between species.
Instead, we compared the relative timing of events in the ossification sequence, by
examining the order of onset of ossification of each element. Nunn and Smith (1998:86)
considered "ontogeny may be ordered by age, size, or stage; none of these measures
are useful for comparing ontogeny across significantly divergent taxa".
Table 4 outlines the ossification sequences of different species of the family Hylidae
among these species, the number of ranks that include elements of the skull and
postcranium vary from one to five. The number of ranks increase when postcranial
elements are included. Weisbecker and Mitgutsch (2010), Harrington et al. (2013), and
Sheil et al. (2014) used similar ranked ossification sequence data to reconstruct
phylogenetic trees of amphibians in the families of Leptodactylidae, Ranidae and
Bufonidae. These researchers suggested to use cranium and post-cranium data,
relating them to the type of development, and to include sequences of fossils-too, as far
as possible.

389 Although the morphology and systematics of amphibians have been extensively 390 studied (Cannatella and Trueb 1988; de Sá and Hillis 1990; Baez and Pugener 2003; 391 Roelants and Bossuyt 2005; Faivovich et al. 2005, Frost et al. 2006; Pyron and Wiens 392 2011; Duellman et al. 2016), additional comprehensive descriptions of skeletal 393 development and ossification sequences truly understand patterns of heterochrony in 394 the group (Appendix 1). 395 Some of the biological implications of heterochrony, which are well known in 396 amphibians (Alberch 1985; Reilly et al. 1991) include changes in structures, and 397 changes in the rate of growth of entire organisms (Raff 1996; Smith 2001; 2002; 2003). 398 Some scholars have recognized that heterochrony may work as modules of 399 developmental events with evolutionary implications that can promote or restrict the 400 development of individual morphologies (Wagner 1996). 401 Studies that have used statistical methods (e.g. Parsimov) to analyze ossification 402 sequences have revealed heterochrony in the timing of onset ossification in some 403 cranial elements such as parasphenoid and prootic in S. ruber vs H. pulchellus (Hoyos 404 et al. 2012), or the frontoparietal, dentary and maxilla in *D. labialis* vs. *Pseudis platensis* 405 (Fabrezi and Goldberg 2009). In our study, we found that the parasphenoid was the first 406 element to ossify in both D. labialis and S. ruber and the exoccipital; frontoparietal and 407 prootic were the second elements to ossify in both species. 408 It is possible that the difference in cartilage formation between the two species 409 examined herein is due to paracrine factors induced in cells that express mesodermal 410 transcription factors involved in the activation of genes specific to cartilage (Gilbert 411 2000; Kozhemyakina et al. 2015); however, we did not account for these factors.

412 Additionally, the intraspecific variation in the ossified elements between these species could be linked to specific genes (Raff 1996). 413 Conclusions 414 415 The contribution of ontogenetic data (development and ossification sequences of skeletal structures) herein provides further information to help understand the 416 417 interactions between ontogeny and phylogeny in morphological and ecological diversity 418 of frog. Ossification sequence data combined with evolutionary hypotheses may shed 419 light on patterns of development to be used in future phylogenetic hypotheses. As 420 Larson et al. (2003) suggested: "variation in chondrocranial morphology in larval 421 anurans can be phylogenetically informative, even among closely related taxa". 422 Acknowledgements 423 We want to thank Timothy Sosa for help with the English translation. We appreciate the contributions of the anonymous reviewers. 424 425 References 426 Alberch P (1985) Problems with the interpretation of developmental sequences. Syst. 427 Zool. 34:46-58. 428 Alcalde L, Rosset SD (2003) Descripción y comparación del condrocráneo en larvas de 429 Hyla raniceps (Cope. 1862), Scinax granulatus (Peters, 1863) y Scinax squalirostris 430 (Lutz, 1925) (Anura: Hylidae). Cuad. Herpet. 17:33–49. 431 Alcalde L, Vera Candioti MF, Kolenc F, Borteiro C, Baldo D (2011) Cranial anatomy of 432 tadpoles of five species of Scinax (Hylidae, Hylinae). Zootaxa 2787:19–36.

- 433 Avilán P, Hoyos JM (2006) Osteology of *Eleutherodactylus bogotensis* (Amphibia,
- 434 Anura, Leptodactylidae) from the Parque Nacional Natural Chingaza (Cundinamarca,
- 435 Colombia). *Caldasia 28*: 89-109.
- 436 Báez AM, Pugener LA (2003) Ontogeny of a new Palaeogene pipid frog from southern
- South American and xenopodinomorph evolution. Zool J Linn Soc 139:439–476.
- 438 Banbury B, Maglia AM (2006) Skeletal development of the Mexican spade foot, *Spea*
- 439 *multiplicata* (Anura: Pelobatidae). J Morphol. 267:803–821.
- Boistel R, Aubin T, Cloetens P, Peyrin F, Scotti T, Herzog P, Gerlach J, Pollet N, Aubry
- JF (2013) How minute sooglossid frogs hear without a middle ear. PNAS 2:15360–
- 442 15364.
- Bowatte G, Meegaskumbura M (2011) Morphology and ecology of tadpoles of
- 444 Ramanella obscura (Anura: Microhylidae). Ceylon J Sci 40: 109-120.
- 445 Cannatella DC (1999) Architecture: Cranial and axial musculoskeleton. In R. W.
- McDiarmid, and R. Altig (Eds.), *Tadpoles: The biology of anuran larvae* (pp. 52–91).
- 447 United States of America: University of Chicago Press.
- 448 Cannatella DC, Trueb L (1988) Evolution of pipoid frogs: Intergeneric relationships of
- the aquatic frog family Pipidae (Anura). Zool J Linn Soc 94:1–38.
- 450 de Sá RO (1988) Chondrocranium and ossification sequence of *Hyla lanciformis*. J
- 451 Morphol 195:345–355.

452	de Sa RO, Hillis Divi (1990) Phylogenetic relationships of the pipid frogs Xenopus and
453	Silurana: an integration of ribosomal DNA and morphology. Molecular Biology and
454	Evolution 7:365–376.
455	Dingerkus G, Uhler LD (1977) Enzyme clearing of Alcian blue stained whole small
456	vertebrates for demonstration of cartilage. Stain Technol 52:229–232.
457	Duellman WE, Trueb L (1986) Biology of amphibians. New York: McGraw-Hill Inc.
458	Duellman WE, Marion AB, Hedges SB (2016) Phylogenetics, classification, and
459	biogeography of the tree frogs (Amphibia: Anura: Arboranae). Zootaxa 4104:1-109.
460	Fabrezi M, Goldberg J (2009) Heterochrony during skeletal development of <i>Pseudis</i>
461	platensis (Anura, Hylidae) and the early offset of skeleton development and growth. J
462	Morphol 270:205–220.
463	Fabrezi M, Lavilla EO (1992) Estructura del condrocráneo y esqueleto hiobranquial en
464	larvas de algunos hílidos neotropicales (Anura: Hylidae). Acta Zool Lilloana 41:
465	155–164.
466	Fabrezi M, Vera R (1997) Caracterización morfológica de larvas de anuros del Noroeste
467	argentino. Cuad Herpetol 11:37-49.
468	Faivovich JC (2002) A cladistics analysis of <i>Scinax</i> (Anura: Hylidae). Cladistics 18:367–
469	393.

470	Faivovich JC, Haddad CFB, García P, Frost DR, Campbell JA, Wheeler WC (2005)			
471	Systematic review of the frog family Hylidae, with special reference to Hylinae:			
472	phylogenetic analysis and taxonomic revision. Bull Am Mus Nat Hist 294:1–240.			
473	Frost DR (2018) Amphibian Species of the World: an Online Reference. New York,			
474	USA: American Museum of Natural History New York, USA. Available from:			
475	Electronic Database accessible Version 6.0 at			
476	http://research.amnh.org/herpetology/amphibia/index.html.			
477	Frost DR, Grant T, Faivovich JC, Haddad CFB, Wheeler WC (2006) The amphibian tree			
478	of life. Bull Am Mus Nat Hist 297:1-370.			
479	Gilbert SF (2000) The anatomical tradition: Evolutionary Embryology: Embryonic			
480	homologies. Chapter 1 Developmental Biology. Sunderland (MA): Sinauer			
481	Associates, Inc.			
482	Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes			
483	on identification. Herpetologica 16:183–190.			
484	Haas A (1995) Cranial features of dendrobatid larvae (amphibia: Anura:			
485	Dendrobatidae). J Morphol 224: 241-264. doi:10.1002/jmor.1052240302			
106	Hans A (1006) Doe largely graphy you Controlly as incharged as inch			
486	Haas A (1996) Das larvale cranium von <i>Gastrotheca riobambae</i> und seine			
487	metamorphose (Amphibia, Anura, Hylidae). Verh Nat Ver Hamburg 36:33–162.			

488	Haas A (1997) The larval hyobranchial apparatus of discoglossoid frogs: Its structure
489	and bearing on the systematics of the Anura (Amphibia: Anura). J Zoolog Syst Evol
490	Res 35: 179-197. doi:10.1111/j.1439-0469.1997.tb00422.x
491	Haas A (1999) Larval and metamorphic skeletal development in the fast-developing frog
492	Pyxicephalus adspersus (Anura, Ranidae). Zoomorphology 119:23-35.
493	Haas A (2003) Phylogeny of frogs as inferred from primarily larval characters
494	(Amphibia: Anura). Cladistics 19:23–89.
495	Hall JA, Larsen JH (1998) Postembryonic ontogeny of the spadefoot toad, <i>Scaphiopus</i>
496	intermontanus (Anura: Pelobatidae): Skeletal morphology. J Morphol 238: 179–244.
497	Harrington SM, Harrison LB, Sheil CA (2013) Ossification sequence heterochrony
498	among amphibians. Evol Dev 15:344–364.
499	Havens SB (2010) The role of skeletal development in body size evolution of two North
500	American frogs. Master thesis, Missouri University of science and technology.
501	Higgins GM (1921) The nasal organ in amphibia. Illinois Biol Monogr 6: 3–90.
502	Hoyos JM, Sánchez-Villagra MR, Carlini AA, Mitgutsch C (2012) Skeletal development
503	and adult osteology of <i>Hypsiboas pulchellus</i> (Anura: Hylidae). Acta Herpetologica
504	7:119–138.
505	ICVAN, International committee on veterinary anatomical nomenclature (1973) Nomina
506	anatomica veterinaria. 2nd edition. Vienna, Austria: International Committee on

307	veterinary Anatomical Nomenciature under the illiancial responsibility of the world	
508	Association of Veterinary Anatomists.	
509	Jolie M (1962) Chordata Morphology. New York: Reinhold Publ. Co.	
510	Jungfer KH (2017) On Warszewicz's trail: the identity of <i>Hyla molitor</i> O. Schmidt, 1857.	
511	Salamandra 53:18–24.	
512	Kozhemyakina E, Lassar AB, Zelzer E (2015) A pathway to bone: Signaling molecules	
513	and transcription factors involved in chondrocyte development and maturation.	
514	Develop 142:817–831.	
515	Larson, P. M.; de Sá, R. O.; Arrieta, D. (2003) Chondrocranial, hyobranchial and	
516	internal oral morphology in larvae of the basal bufonid genus Melanophryniscus	
517	(Amphibia: Anura). Acta Zool Stockholm 84(2): 145–154.	
518	https://doi.org/10.1046/j.1463-6395.2003.00140.x	
519	Maglia AM, Púgener LA (1998) Skeletal development and adult osteology of <i>Bombina</i>	
520	orientalis (Anura: Bombinatoridae). Herpetol 54: 344-363.	
521	Maglia AM, Púgener LA, Mueller JM (2007) Skeletal morphology and postmetamorphic	
522	ontogeny of Acris crepitans (Anura: Hylidae): a case of miniaturization in frogs. J	
523	Morphol 268:194–223.	
524	Nunn CL, Smith KK (1998) Statistical analyses of developmental sequences: the	
525	craniofacial region in marsupial and placental mammals. Amer Nat 152:82–101.	

320	Ofton GL (1955) The systematics of vertebrate larvae. Syst 200(2.05–75.		
527	Parker WK (1876) On the structure and development of the skull in the Batrachia. Part		
528	II. Phil Trans R Soc 166:648–699.		
529	Púgener LA, Maglia AM (2007) Skeletal morphology and development of the olfactory		
530	region of <i>Spea</i> (Anura: Scaphiopodidae). J Anat 211:754–768.		
531	Pyron A, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2800		
532	species, and a revised classification of extant frogs, salamanders, and caeciliar		
533	Mol Phylogenet Evol 61:543–583.		
534	Raff RA (1996) The shape of life: genes, development and the evolution of animal form.		
535	Chicago: University of Chicago Press.		
536	Reilly SM, Wiley EO, Meinhardt DJ (1991) An integrative approach to heterochrony: the		
537	distinction between interspecific and intraspecific phenomena. Biol J Linnean Soc		
538	60:119–43.		
539	Roček Z. (1981) Cranial anatomy of frogs of the family Pelobatidae Stannius, 1856, with		
540	outlines of their phylogeny and systematics. Acta Univ Carol Biol 1980: 1–164.		
541	Rodrigues GDV, do Nascimento FAC, de Almeida JPFA, Mott T (2017) The tadpole of		
542	Scinax skuki (Anura: Hylidae) from the type locality, with a description of its larval		
543	skeleton. Stud Neotrop Fauna E 52(3):		

https://doi.org/10.1080/01650521.2017.1342485

545	Roelants K, Bossuyt F (2005) Archaeobatrachian paraphyly and pangaean		
546	diversification of crown-group frogs. Syst Biol 54:111-26.		
547	Ruggero MA, Temchin AN (2002) The roles of the external, middle, and inner ears in		
548	determining the bandwidth of hearing. PNAS 99:13206–13210.		
549	Shearman RM, Maglia AM (2014) Osteological development of Cope's gray treefrog,		
550	Hyla chrysoscelis. Acta Zool (Stockholm) 96(2): 181–198.		
551	https://doi.org/10.1111/azo.120662		
552	Sheil CA, Jorgensen M, Tulenko F, Harrington S (2014) Variation in timing of		
553	ossification affects inferred heterochrony of cranial bones in Lissamphibia. Evol		
554	Develop 16:292–305. https://doi.org/10.1111/ede.1209		
555	Sheil CA, Alamillo H (2005) Osteology and skeletal development of <i>Phyllomedusa</i>		
556	vaillantii (Anura: Hylidae: Phyllomedusinae) and a comparison of this arboreal		
557	species with a terrestrial member of the genus. J Morphol 265(3): 343–368.		
558	https://doi.org/10.1002/jmor.10362		
559	Smith KK (2001) Heterochrony revisited: the evolution of developmental sequences.		
560	Biol J Linnean Soc 73:169–86.		
561	Smith KK (2002) Sequence heterochrony and the evolution of development. J Morpho		
562	252:82–97.		
563	Smith KK (2003) Time's arrow: heterochrony and the evolution of development. Inter-c		
564	Develop Biol 47:613–21.		
565	Starrett PH (1973) Evolutionary patterns in larval morphology. In J. L. Vial, editor,		

566	Evolutionary Biology of the Anurans: Contemporary Research on Major Problems.		
567	Columbia: University of Missouri Press. p 251–271.		
568	Vera Candioti MF (2007) Anatomy of anuran tadpoles from lentic water bodies:		
569	Systematic relevance and correlation with feeding habits. Zootaxa 1600:1175–5326.		
570	Vera Candioti MF, Haas A (2004) Hyobranchial Apparatus of <i>Hyla nana</i> . Cuad herpetol		
571	18:3–15. Vera Candioti F, Lavilla EO, Echeverría DD (2004) Feeding mechanisms in		
572	two treefrogs, Hyla nana and Scinax nasicus (Anura: Hylidae) J Morphol 261(2): 206-		
573	24. https://doi.org/10.1002/jmor.10239		
574	Vera MC, Ponssa ML. (2014) Skeletogenesis in anurans: cranial and postcranial		
575	development in metamorphic and postmetamorphic stages of Leptodactylus bufonius		
576	(Anura: Leptodactylidae). Acta Zoologica 95:44-62.		
577	Wagner GP (1996) Homologues, natural kinds and the evolution of modularity. Amer		
578	Zool 36:36–43.		
579	Wassersug RJ (1980) Internal oral features of larvae from eight families: Functional,		
580	systematic, evolutionary and ecological considerations. Misc publ Univ Kans Mus Nat		
581	Hist 68:1-146.		
582	Wassersug RJ. and Heyer, W. R (1988) A survey of internal oral features of		
583	leptodactyloid larvae (Amphibia: Anura). Smithson Contr Zool 457:1-99.		
584	Weisbecker V, Mitgutsch C (2010) A large-scale survey of heterochrony in anuran		
585	cranial ossification patterns. J Zool Syst Evol Res 48:332–347.		

PeerJ

586	Wiens JJ, Kuczynski CA, Hua X, Moen DS (2010) An expanded phylogeny of tree frogs
587	(Hylidae) based on nuclear and mitochondrial sequence data. Mol Phylogenet Evol
588	55:871–82.
500	Vildirum F. Kaya II (2014) Comparative ekoletogoposis of the eriental tree from Hule
589	Yıldırım E, Kaya U (2014) Comparative skeletogenesis of the oriental tree frog <i>Hyla</i>
590	orientalis (Anura: Hylidae). Zool Anz 253:361-71.

Table 1(on next page)

Ossification sequence of cranial and postcranial elements in *Dendropsophus labialis* (Peters, 1863)

	Development	nent Elements ossified	
Rank	stage (Number of specimens Gosner, 1960)	Cranium	Postcranium
I	26(3), 27(3), 28(2), 29(2), 31(3), 32(1), 33(1), 34(1)		Transverse process I V
	35 (1)	Dana da a a'd	Transverse process I–V
III	36 (2)	Parasphenoid Frontoparietal, exoccipital	Transverse process VI–VIII Neural arches I–VIII
IV V	38 (1) 41 (3)		Hypochord Femur, tibiofibula, humerus, ilium, radioulna, clavicle, pubis,
VI	42 (3)		metatarsal III–V, coracoids Metacarpal IV, urostyle
VII	45 (1)	Mentomeckelian, premaxilla, maxilla, angulosplenial, dentary	Manus IV proximal phalange, Metacarpal III and V, scapula, pedal digit IV proximal phalange, Metacarpal I and II, metatarsal I, prepollex
VIII	46 (1)	Neopalatine, nasal, pterygoid, vomer, septomaxilla, squamosal	

Table 2(on next page)

Ossification sequence of the cranial and postcranial elements in *Scinax ruber* (Laurenti, 1758).

	Development	Elei	ments ossified					
Rank	stage (Number of							
Nalik	specimens	Cranium	Postcranium					
	Gosner, 1960)							
	•							
	26(3), 29(8), 30(7),							
ı	31(9), 32(8),							
	33(9),34(9), 35(14)							
	36 (10)	Parasphenoid	Transverse process I–VII					
II	37 (11)		Neural arch I–III					
III	38 (4)	Frontoparietal,	Transverse process VIII,					
""	38 (4)	exoccipital	neural arch IV-VIII					
			Femur, tibiofibula, humerus,					
IV	39–40 (3)		ilium, radioulna, scapula,					
IV			hypochord					
	41(4), 42(5)							
V	43 (3)		Ischium					
•	44(4), 45(2)							
		Mentomeckelian,						
		premaxilla,						
		maxilla,						
		angulosplenial,						
VI	46 (1)	dentary,						
		neopalatine,						
		pterygoid, vomer,						
		septomaxilla,						
		squamosal						

Table 3(on next page)

Onset of ossification of cranial and poscranial elements of *Dendropsophus labialis* and *Scinax ruber*

	S	pecies		I	Dena	Irops	oph	us la	biali	S					Sci	nax	rube	r			
		Stage ecimens	35 (1)	36 (2)	37 (3)	38 (1)	41 (3)	42 (3)	43 (1)	45 (1)	46 (1)	36 (6)							46 (1)		
	vith elements essified)																				
l	Par	aesfenoids		1	1	1	3	3	1	1	1	3	5	2	3	3	3	3	3	1	1
<u>in</u>	Exc	occipital		1	1	1	3	3	1	1	1			3	3	3	4	3	3	1	1
Cran	Cranium Fro	ntoparienta			1		2	3	1	1	1			2	2	2	1	3	3	1	1
		I			1							6	9	3	3	3	4	3	3	1	1
		II	1	1	1	1	3	3	1	1	1	5	6	3	3	3	4	3	3	1	1
	SSe	III	1	1	1	1	3	3	1	1	1	5	6	3	3	3	4	3	3	1	1
	Proces	IV	1	1	1	1	3	3	1	1	1	5	6	3	3	3	4	3	3	1	1
		V	1	1	1	1	3	3	1	1	1	3	6	3	3	3	4	3	3	1	1
	Se	VI	1	1	1	1	3	3	1	1	1	3	6	3	3	3	4	3	2	1	1
	Š	VII	1	1	1	1	3	3	1	1	1	1	4	2	3	3	3	3	2	1	1
	Transverse	VIII		1	1	1	3	3	1	1	1	1	2	2	3	3	2	3	1		
	Ţ	IX			1									1	3	1	1	3			
		I		1	1	1	3	3	1	1			3	3	3	3	4	3	3	1	1
		II			1	1	3	3	1	1			3	3	3	3	3	3	3	1	1
		III			1								2	3	3	3	3	3	3	1	1
		IV			1									3	3	3	3	3	2	1	1
	_	V			1									2	3	3	3	3	2		
	arch	VI			1									2	3	3	1	3			
Ε	<u> </u>	VII			1									1	3	2		3			
⊫iu	Neural	VIII			1									1	3	1		3			
rar		IX																			
Poscranium	Man	Metacarpal I			1					1											

	Metacarpal			1					1										
	Metacarpal			1					2	1									
	Metacarpal IV			1			1		2	1									T
	Metacarpal V			1					2	1									
	Metatarsal distal tarsal IV			1					2	1									
	Metatarsal distal tarsal IV			1					1										T
	Prepollex			1					1										T
	Metatarsal			1					1										T
	Metatarsal			1			1		1	1									T
	Metatarsal III			1		1	2		1	1									Ī
	Metatarsal IV			1		1	2		1	1									Ī
Pes	Metatarsal V			1		1	2		1	1									
Atla	as	1	1	1	1	3	3	1	1	1		3	3	3	4	3	3	1	
Fer	nur			1		2	3	1	1	1			3	1		3	1		T
Fib	Fibula			1		2	3	1	1	1									T
Tib	ia			1		2	3	1	1	1									T
Tib	iofibula			1		2	3	1	1	1			3	1	1	3	1	1	Ť
Sca	pula			1		2	2		1	1			3	1		3			\dagger
	rascapula			1		2	2		1	1						<u> </u>			†

Manuscript to be reviewed

PeerJ

Clavicle		1	2	2		1	1		3	1	3	1	
Coracoids		1	2	2		1	1						
Humerus		1	2	3	1	1	1		1	1	3		
Ulna		1											
Radioulna		1	2	3	1	1	1		3	3	3		

Table 4(on next page)

Ossification sequences of different species of the family Hylidae including postcranial elements.

Subfamily	Specie	Element	No. ranks	Ossification sequence	References			
	Acris	С	9	ps [ex, fp, po] [pm, sm]ma, ns, vo [an, de][me, pt, qj, qu, sq] sp				
	blanchardi	C, P	11	ps, ve [ex, fe, fp, po][fi, hu, mt, pf, ra, sc, ul, tf, ti][cl, co, ct, il, mc, ph][is, pm, sm]ma, ns, vo, [an, de][me, pt, qj, qu, sq] sp				
Acridinae	Hyliola regilla	С	6	ps, fp [ex, po] pv [ma, ns, pm, sm, sq] [ag, de, pt][cm, me, pa, qj, sp]	Gaudin, 1973			
Acridinae	Pseudacris	С	8	ps [ex, fp] [pf, po] [ma, pm, sm] ns [an, vo] [me, pt, qj, qu, sq]sp				
	crucifer	C, P	13	ps ,ve, fe [hu, il, ra, su, ul] [ct, ex, fp, fr, sc, tf, tl] [cl, co, mt, pf, po] [mc, ph] is [ma, pm, sm] ns [an, vo] [me, pt, qj, qu, sq] sp	Havens, 2010			
	Pseudacris triseriata	С	4	[ex, fp, pm] [de, ma, ns, pt, qj, sq, vo][m, po][cm, ha, pa, ps, sp]	Stokely & List 1954			
	Dondronsonhus	С	3	ps [ex, fp, po] [an, de, ma, me, np, pm, sm, sq, vo]				
Dendropsophinae	Dendropsophus labialis	C, P	8	[ve] [ps] [ex, fp, po] [cl, co, fe, hu, il, mt, ru, tf] [mc, sc][an, de, ma, me, np, pm, sm, sq, vo]	This study			
	Doors	С	8	fp, ps, ex, po [pm, sm] [ns, ma][an, de, sq][sp, me, qj, vo, pa, pt]				
Cophomantinae	Boana Ianciformis	C, P	9	fp [ps, ve] ex [fr, cl, co, ct, fe, hu, mc, mt, po, sc, tf, tl] pf [pm, sm] [ns, ma][an, de, is, sq][ap, me, pa, ph, pt, qj, sp, vo]	De Sá, 1988			
'		С	2	[ex, fp, ps] [an, de, ma, pm, po, sq]				
	Boana pulchella	C, P	4	[ex, fp, ps, ve][fe, hu, il, ru, sc, tf][cl, co, ct, hy, mc, mt, pf, ph][an, de, ma, pm, po, sq]	Hoyos <i>et al.,</i> 2012			
Hylinae	Dryophytes chrysoscelis	С	8	ps [ex][fe][fp][sm, pm, po][ma][de, ns, an, sq][vo]	Sherman and Maglia, 2014			

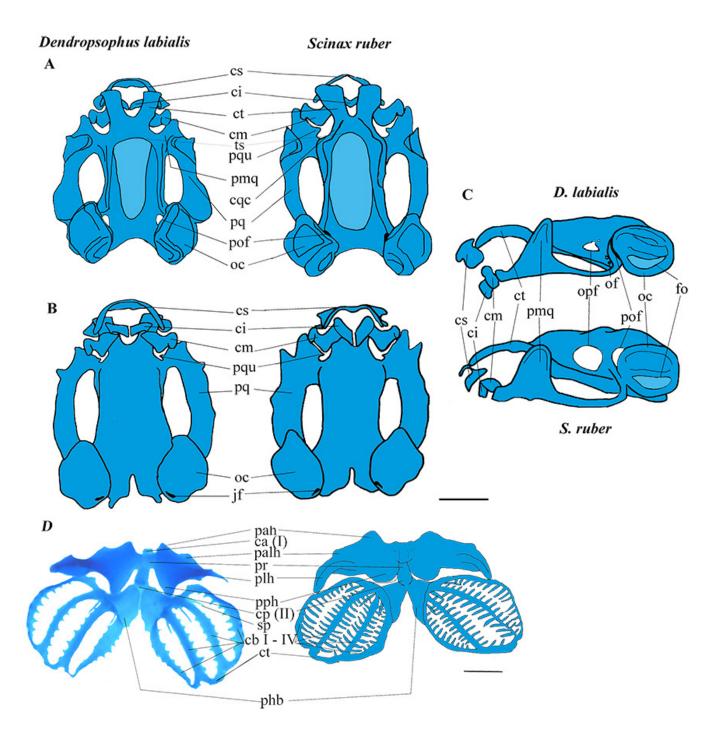
		C, P	10	ps [ex, na, cn][fe][sc, cl, co, hu, ra, ul, il, ti, fi, tb,mc, mt][ph, pf][fp][sm, pm, po][ma, is][de, ns, an, sq][vo]	
	Descendentes	С	6	ps [ex, fp] [ma, pm, po] [an, de, sq] [pa, pt, qj]	Chail at al
	Dryophytes versicolor	C, P	7	ps [cl, co, fe, fi, fr, hu, il, na, ra, sc, ti, tl, ul] [ex, fp, mc, ph, pf, ve] [ma, pm, po] [an, de, sq] [ns, me] [pa, pt, qj]	Sheil <i>et al.,</i> 2014
		С	5	ps [ex, po] fp [ns, sm] [an, de, ma, pm, pt, sq, vo]	Yıldırım and
	Hyla orientalis	C, P	6	ps [ex, hu, na, po, ve][ct, fe, fr, il, mc, tf, tl, ru][fp, cl, co, mt, pf, ph][ns, sm][an, de, is, ma, pm, pt, sq, pu, vo] qj	Kaya, 2014
	Smilisca	С	7	fp [ex, ps, sm] [ag, de, ma, pm, sq] [ns, pt, qj] [me, pa, pv][cm, sp] po	Trueb, 1966
	baudinii	<u> </u>		[ex, fp, ps, sm][ma, pm, sq][ns, pt][pa, qj, vo][cm, et] so, po	Gaudin, 1973
	Triprion petasatus	С	6	fp, ns [an, de, ex, ma, me, pa, pm, ps, pt, qj, sm, sq][cm, pv] sp, po	Trueb, 1970
			3	fp, sm [ag, cm, de, et, ex, ma, me, ns, pa, pm, po, ps, pt, qj, sq, vo]	Trueb, 1966
		С	7	fp, sm [an, de, ex, ma, ns, pm, ps, pt, pv, sq] pa, qj [me, po, sp] cm	Trueb, 1970
Lophyohylinae	Osteopilus septentrionalis		5	[fp, sm][ag, de, ex, ns, ma, pm, ps, pt, pv, sq] pa, qj [po, sp]	Gaudin, 1973
		C, P	13	ps, ve, fe [hu, il, ra, su, ul] [ct, ex, fp, fr, sc, tf, tl] [cl, co, mt, pf, po] [mc, ph] is [ma, pm, sm] ns [an, vo] [me, pt, qj, qu, sq] sp	Sheil et al., 2014
Pseudinae	Pseudis platensis	С	5	[fp, ps] [ex, po] [ns, pm, sq] ma [de, pt, vo]	Fabrezi and Goldberg, 2009
		С	3	ps, [fp, po] [an, de, ma, me, np, pc, pm, sm, sq, vo]	
Scinaxinae	Scinax ruber	C, P	7	ps, ve [ex, fp, po][fe, hu, il, ru, sc, tf, tl] is [an, de, ma, me, pm, pc] [np, sm, sq, vo]	This study

C, cranium; P, poscranium

ag, angular; an, angulosplenial; ap, plectral apparatus; cl, clavicle; cu, columella; co, coracoid; ct, cleithrum; de, dentary;

et, ethmoid; ex, exoccipital; fe, femur; fi, fibula; fp, frontoparietalis; fr, fibulare; ha, hyoid apparatus; hu, humerus; hy,

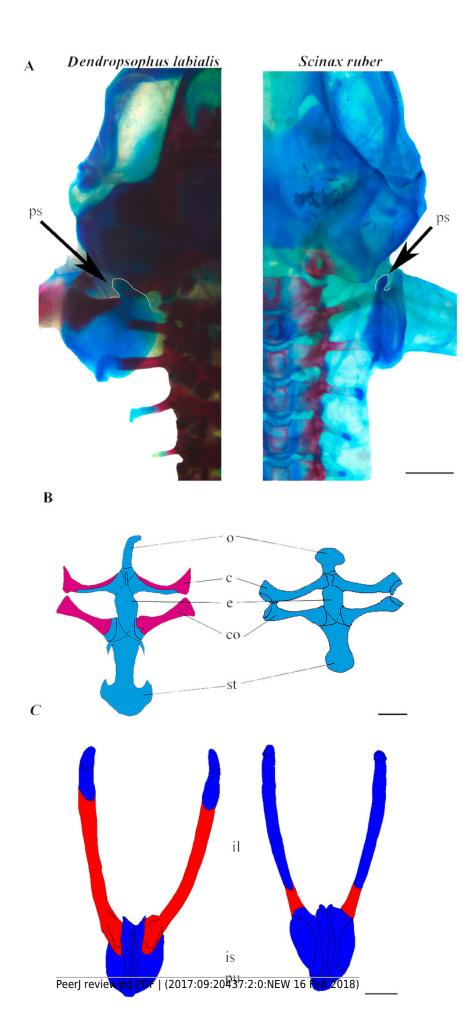
- 4 hypochord; il, ilium; is, ischium; ma, maxilla; mc, metacarpals; me, mentomeckelian; mt, metatarsals; na, neural arches;
- 5 nc, neural center; np, neopalatine; ns, nasal; pa, palatine; pc, coronoid process; pr, presacral vertebrae; pf, phalanges of
- 6 feet; ph, phalanges of manus; pm, premaxilla; po, prootic; ps, parasphenoid; pt, pterygoid; pv, pre vomer; qj,
- quadratojugal; qu, quadrate; ra, radius; ru, radioulna; sc, scapula; sm, septomaxilla; sp, sphenethmoid; sq, squamosal; su,
- 8 suprascapula; ti, tibia; tf, tibiofibula; tl, tibiale; tp, transverse process; ul, ulna; ve, vertebra (including na, nc, pr, tp); vo,
- 9 vomer.
- 10 C = Cranial elements; P = Postcranial elements.
- 11 [Rank = absolute time of ossification of various structures simultaneously]



Larval chondrocranium of *Dendropsophus labialis* (GS 34 - MUJ 9250) and *Scinax ruber* (GS 34 - MUJ 6178)

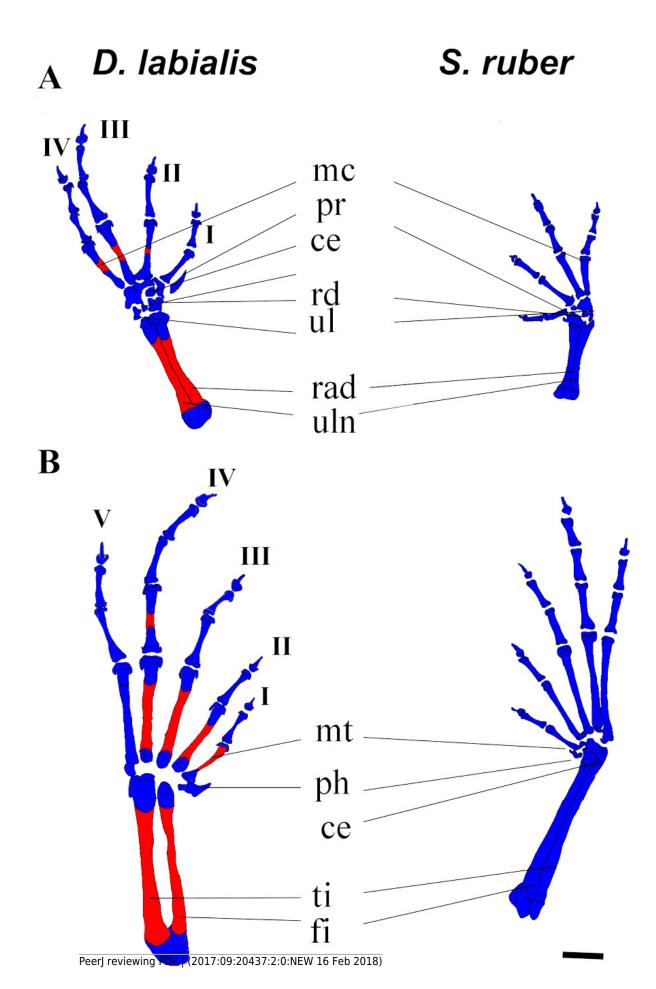
A. Dorsal view, B. Ventral view, C. Lateral view, D. Ventral views of hyobranchial apparatus in *Dendropsophus labialis* (GS36 - MUJ 9250) and *Scinax ruber* (GS36 - MUJ 3727).

Scale 1 mm. Chondrocranium: a, alae suprarostralis; ci, cartilago infrarostralis; cm, cartilago Meckeli; cqc, commissura quadratocranialis; cs, suprarostral cartilage; ct, cornu trabeculae; fo, fenestra ovalis; jf, jugular foramen; pal, processus anterolateralis; pmq, processus muscularis quadrati; pof, prootic foramen; pq, palatoquadrate; oc, otic capsule; of, oculomotor foramen; opf, optic foramen, ts, tectum sinoticum. Hyobranchial apparatus: ca (I), copula anterioris; cb I–IV; ceratobranchialis I–IV; cp (II), copula posterioris; ct; commisura terminalis; pah, processus anterioris hyalis; palh, processus anteriolateralis hyalis; phb, planum hypobranchiale; plh, processus lateralis hyalis; pph, processus posterioris hyalis; pr, pars reuniens; sp, spicula. Blue: cartilage, light blue: fontanella.

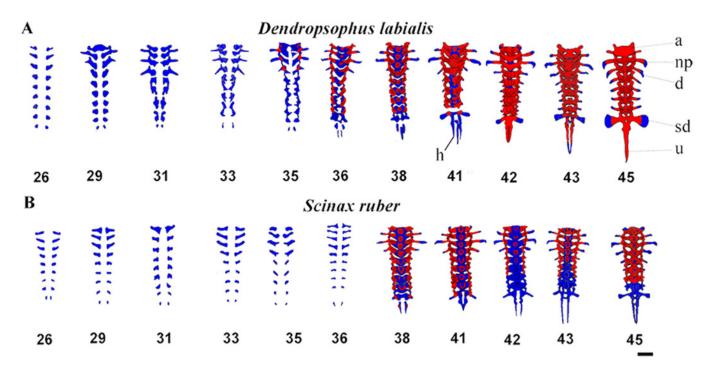


Appendicular skeleton of *Dendropsophus labialis* (GS45 – MUJ497) and *Scinax ruber* (GS45 – MUJ6018).

A. Scapula, B. Pectoral girdle, C. Ventral view pelvic girdle. Scale 1 mm. c, clavicle; co, coracoid; e, epicoracoid; ps, processus suprascapularis; o, omosternum; st, sternum; il, ilium; is, ischium; pu, pubis Red, ossified; blue, condrificated.


PeerJ

Dorsal view of manus and pes of *Dendropsophus labialis* (GS45 – MUJ497) and *Scinax ruber* (GS45 – MUJ6018).


A. Manus, B. Pes. Scale 1 mm. ce, centrale; fi, fibulare; mc, metacarpal, mt, metatarsus; ph, prehallux; pr, prepollex; rd; radiale; rad, radioulna; ul, ulnare and intermedium; ti, tibiale. I–V, phalanges. Red, ossified; blue, condrificated.

Ventral view of ossification development in vertebral column of *Dendropsophus labialis* and *Scinax ruber* at GS 26-45.

Scale 1 mm. h, hypochord; a, Atlas; np, neural process; d, diapophysis; sd, sacral diapophysis; u, urostyle Red, ossified; blue, condrificated.

