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ABSTRACT
Single-cell analysis has the potential to provide us with a host of new knowledge
about biological systems, but it comes with the challenge of correctly interpreting
the biological information. While emerging techniques have made it possible to
measure inter-cellular variability at the transcriptome level, no consensus yet exists
on the most appropriate method of data analysis of such single cell data. Methods
for analysis of transcriptional data at the population level are well established but
are not well suited to single cell analysis due to their dependence on population av-
erages. In order to address this question, we have systematically tested combinations
of methods for primary data analysis on single cell transcription data generated
from two types of primary immune cells, neutrophils and T lymphocytes. Cells
were obtained from healthy individuals, and single cell transcript expression data
was obtained by a combination of single cell sorting and nanoscale quantitative real
time PCR (qRT-PCR) for markers of cell type, intracellular signaling, and immune
functionality. Gene expression analysis was focused on hierarchical clustering to
determine the existence of cellular subgroups within the populations. Nine combi-
nations of criteria for data exclusion and normalization were tested and evaluated.
Bimodality in gene expression indicated the presence of cellular subgroups which
were also revealed by data clustering. We observed evidence for two clearly defined
cellular subtypes in the neutrophil populations and at least two in the T lymphocyte
populations. When normalizing the data by different methods, we observed varying
outcomes with corresponding interpretations of the biological characteristics of the
cell populations. Normalization of the data by linear standardization taking into
account technical effects such as plate effects, resulted in interpretations that most
closely matched biological expectations. Single cell transcription profiling provides
evidence of cellular subclasses in neutrophils and leukocytes that may be independent
of traditional classifications based on cell surface markers. The choice of primary data
analysis method had a substantial effect on the interpretation of the data. Adjustment
for technical effects is critical to prevent misinterpretation of single cell transcript
data.
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INTRODUCTION
A growing body of evidence indicates that cell populations, even those comprised of

genetically identical cells, can be highly phenotypically heterogeneous (Enver et al., 2009;

Niepel, Spencer & Sorger, 2009; Spencer et al., 2009; Spencer & Sorger, 2011), and that these

differences between individual cells can have functional consequences (Feinerman et al.,

2010). Such non-genetic heterogeneity has been indicated in immune cell functionality

(Feinerman et al., 2010; Shalek et al., 2013) and has also been suggested as a driving force

of stem cell development and cell fate decisions, such as lineage choice in hematopoietic

stem cells (Chambers et al., 2007; Chang et al., 2008; Dietrich & Hiiragi, 2007; Kalmar

et al., 2009; Kobayashi et al., 2009; Singh et al., 2007; Stockholm et al., 2007). Cellular

heterogeneity is also an underlying source of the development of phenotypically different

subpopulations due to individual cell responses to changes in microenvironment within

genetically identical populations (Neildez-Nguyen et al., 2008). Such functional subgroups

can also have substantial pharmacological consequences, notably with regards to cancer

treatment, where partial drug resistance in tumor cell populations poses a significant

problem (Cohen et al., 2008; Gascoigne & Taylor, 2008; Niepel, Spencer & Sorger, 2009; Orth

et al., 2008; Sharma et al., 2010; Shi, Orth & Mitchison, 2008). For example, non-genetic

variations in response to pro-apoptotic stimuli have been found across several cell lines and

stimuli, resulting in phenotypically different subgroups even within clonal cell populations

(Cohen et al., 2008; Gascoigne & Taylor, 2008; Geva-Zatorsky et al., 2006; Huang, Mitchison

& Shi, 2010; Orth et al., 2008; Sharma et al., 2010; Shi, Orth & Mitchison, 2008; Spencer et

al., 2009). In light of this evidence, it is apparent that single cell resolution is needed in

order to achieve systems level understanding of functionality.

It is becoming evident that established methods, whereby averaging population

data essentially assumes that all cells within a population are equivalent, are vastly

oversimplifying cell functionality and obscuring the presence of cellular subtypes (Sachs

et al., 2005); however, a more detailed analysis has been hindered by technical limitations.

Previously, transcription analysis has been constrained to population averages, due to the

inability to quantify single cell levels of mRNA with existing techniques, such as such

as northern blotting or classical qRT-PCR (Flatz et al., 2011; Kalisky & Quake, 2011;

Kurimoto et al., 2007; Shi et al., 2011; White et al., 2011). Major technical advances in

single cell measurement systems have now enabled the investigation of such cell-level

information (Huang et al., 2014; Janes et al., 2010; Morris, Singh & Eberwine, 2011; Rajan et

al., 2011; Wang & Janes, 2013; Zhang et al., 2011). These advances include high-throughput

nanoscale real time PCR, which allows for mapping of transcriptional profiles by highly

parallelized assays enabled by microfluidics.

Standard methods for processing qRT-PCR data are well established; however these

methods are based on population averaged data and it cannot be taken for granted that the

same approaches are optimal for single cell data. Indeed, single cell gene transcripts have

been shown to follow log normal distribution curves (Bengtsson et al., 2005); thus, mean

population averages are heavily influenced by a few cells showing relatively high expression

levels. As single cell data is inherently noisy, this must be taken into account when choosing
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analysis methods. For example, housekeeping genes show considerable variability of

expression at the single cell level such that standard methods of data normalization

based on such genes should not be used (McDavid et al., 2013). In addition, single cell

measurements exhibit noise due to technical variability and this must ideally be accounted

for without losing variability due to biological functionality, which is often at comparable

levels (Brennecke et al., 2013). A particularly important consideration is whether the

complete absence of signal is due to lack of expression or to stochastic technical failure.

All analytical approaches make assumptions regarding this issue that could have a major

impact on the conclusions derived from different modes of analysis (McDavid et al., 2013).

The biological motivation for the current study was to assess gene expression variability

among single leukocytes, and whether the prevalence of functional sub-types (as defined

by gene expression) varies among individuals. Neutrophils and T lymphocytes were

selected as representatives of the innate and adaptive branches of the immune system,

respectively. Recent studies have revealed a close correlation of functional phenotype to

transcriptional profile (Dalerba et al., 2011; Hoshida et al., 2008; Mucida et al., 2013), and

we hypothesized that our results would yield immune cell subclasses separated not only

by the traditional surface markers, but also by intracellular signaling components, as well

as other functional markers. As bimodality in expression of individual transcripts can be

an indicator of functional heterogeneity (Shalek et al., 2013), we further asked whether

cellular subclasses were defined by shared bimodality of multiple transcripts between cells.

To that end, we performed gene expression pattern analysis and hierarchical clustering of

our cell populations. We found that genes exhibiting bimodal distribution patterns were

preferentially assigned to the same cell clusters in our data sets.

In overcoming the technical challenges of analyzing single cell data, we found that the

decisions made in data processing can have dramatic consequences for the interpretation

of cellular subpopulations. We systematically explore and recommend approaches that can

be used in order to consistently analyze multiple single cells from multiple donor individ-

uals across multiple genes. Nine alternate methods of data exclusion and normalization

are considered, and their effect on secondary data analyses, such as hierarchical clustering,

is assessed. Our results show that analysis and correct interpretation of single cell gene

expression data is dependent on the method chosen for primary data analysis, specifically

on the method chosen for data normalization.

MATERIALS & METHODS
A schematic diagram of the workflow for the experiment as well as the data analyses

described below is depicted in Fig. 1.

Primary cell extraction and single-cell sorting
Neutrophils and T lymphocytes were extracted from 5 ml whole blood from 6 healthy

donors and isolated based on phenotype by negative selection using magnetic beads

(EasySep neutrophil extraction kit, Stem Cell Technologies, or Dynabeads untouched

T cells, Life Technologies). One donor’s neutrophil count was too low for further

processing, therefore all results presented for neutrophils consist of n = 5. Negative
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Figure 1 Workflow of single cell transcriptional data acquisition. (A) Whole blood was collected from healthy donors, and negative selection used
to isolate T cell and neutrophil populations. Single cell sorting was then used to deposit one cell per well into 96-well plates, pre-loaded with lysis
buffer. Following this, cDNA conversion and pre-amplification was done in plate, and resulting cDNA samples randomly loaded onto microfluidic
arrays. qRT-PCR reactions were run simultaneously against 96 gene targets per cell. Raw data was obtained as Ct values. (B) For data processing,
three methods were tested for data inclusion in combination with three methods for data normalization. Following this, the resulting nine data
sets were analyzed for biological information by gene expression pattern analysis, detection of cellular subtypes by hierarchical clustering, and
comparison of individual donor subtype representation.

selection was chosen so as to avoid cellular activation due to receptor cross-linking. For

each purified cell type, flow cytometry sorting with a BD FACS Aria II gated by forward-

and side scatter was utilized to deposit single cells into a 96-well PCR plate preloaded with

5 µl of lysis buffer with 0.05U Superase RNase inhibitor (Life Technologies) per well. The

plates were centrifuged for 1 min at 4 ◦C and immediately frozen and stored at −80 ◦C.

All donors were individuals enrolled in The Center for Health Discovery and Well-Being at

Emory Midtown Hospital and provided written consent for participation in the study. The

protocol for blood collection was approved by the Georgia Tech Institutional Review Board

(approval #H09364).
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Single cell qRT-PCR
The cellular lysates were converted to cDNA and 96 target genes per cell type were pre-

amplified with a pool of 96 primer pairs targeting genes representing pattern recognition,

cell-type markers, intracellular signaling, transcription, and immune response. For each

donor, amplified cDNA samples from 48 cells of each type were then randomized and

re-plated across 5 Fluidigm 96 × 96 microfluidic arrays, in order to avoid any plate effects

confounding the analysis of single donors. Gene-specific quantitative real-time PCR

reactions were performed using the Fluidigm BioMark I nano-scale platform. Negative

controls (without cDNA) and samples of 10 and 100 cells were used as controls for

single-cell loading. The mean difference in Ct value between 1 and 10 cells and between

10 and 100 cells per sample was determined in independent assays, providing a measurable

control for single cell loading of each sample.

To enable reproducible comparison of gene expression between qRT-PCR samples, data

is usually normalized with respect to data obtained for an internal or endogenous reference

gene. Housekeeping genes such as β-actin and glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) are most often used because their expression levels are expected to remain con-

stant. Unfortunately, single cells exhibit large heterogeneity in housekeeping gene expres-

sion levels, and this method cannot be used as control for reproducible comparison of gene

expression between single cell samples (Liss et al., 2001; Suzuki, Higgins & Crawford, 2000).

Quality control and data exclusion
In order to control for single-cell sensitivity and consistency in sample loading, single

cell readings were compared to multi-cell controls. Mean expression levels from 10

randomly chosen single cell samples were calculated for each gene. The values obtained

were compared by regression to the mean expression levels for the corresponding genes

from the 10-cell samples, and R2 values above 0.65 were observed in all cases, indicating

good concordance between single cell and multicell measurements.

Raw data for gene expression were obtained as Ct values between 1 and 40, with lower

Ct value indicating higher abundance of gene-specific product. Missing data points were

coded as Ct values of 999; such values can either be due to null or very low expression of

the target gene in question or due to a failed reaction (truly missing data). Single missing

measures may indicate technical failures, but consistent absence of a similar set of lowly

expressed transcripts is more likely to imply coordinated loss of expression. Downstream

methods differ largely with respect to how the missing data is handled. Three different sets

of criteria were used for data exclusion for each of the two (neutrophil and T lymphocyte)

data sets.

(A) Supervised Data Exclusion. For the neutrophil data set, an empirical cutoff was set

to transcripts present in at least 70% of cells, and subsequently to cell samples expressing

at least 70% of these most uniformly expressed genes. We reasoned that the absence of

the same set of genes in a common set of cells would imply true absence of expression,

and used hierarchical clustering to provide a preliminary indication of such clusters of
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non-expressed genes. 23 such co-regulated low-abundance genes were identified, for which

missing values were re-assigned a Ct value of 40 (the maximum number of cycles). Subse-

quently, for 36 genes, sporadic missing data was assumed to represent technical error and

these values were reassigned to the average Ct for the gene in question in the data set. 34

genes and 18 cells were excluded in their entirety. Expression was evaluated for 59 genes in

202 cells. Because the T lymphocyte data set did not contain a natural cutoff for transcript

presence, this method of analysis was not implemented for the T lymphocyte data.

(B) Data exclusion based on median standard deviation cutoff. All missing data values

were initially set to Ct 40, and the mean Ct and number of missing data points were

calculated for all genes. The second and third highest expressed genes in the data set were

selected and their mean Ct and standard deviation calculated. (The highest expressed gene

in both the neutrophil and T lymphocyte data set were treated as outliers and ignored

for the purposes of calculating mean Ct, due to expression levels far higher than all other

genes). Any gene whose average expression was within a cutoff of three standard deviations

of the mean Ct value for the two chosen genes was included. All cells expressing less than

half of these genes were then excluded. A plot of the maximum Ct across all cells for

all 96 genes in the neutrophil data set showed a bimodal distribution of maximum Ct

values, with a second peak starting at Ct 37 that corresponds to cells deemed not to express

the target gene. The limit of detection (LOD) was thus set to Ct 37 for neutrophils, and

the LOD Ct was set to 38 for T lymphocytes by the same methodology. All data values

above LOD Ct, including Ct 999, were replaced with 37, and the LOD Ct value was then

subtracted from all other Ct values, according to the Log2EX method (Log2EX = LOD

Ct–Ct (Abdel-Rahman et al., 2008)). Consequently, the adjusted expression measure

for this method is inverted and ranges from 0 to LOD Ct, with more highly expressed

transcripts having higher values, more in line with intuition and with microarray or

RNA-Seq data analysis. For the T cell data set, Ct values above LOD were interpreted

and analyzed in two alternate ways; either as representing no expression of the target gene,

with Ct values set to 0 or, alternatively, as missing data points due to technical error, with

missing values replaced with average Ct for the gene (analogous to the Supervised data

analysis method for neutrophils). Subsequently, entire cells were excluded, if the two gene

targets with highest expression in our data set were more than three standard deviation

units lower than the median. Additionally, any genes that were not expressed in any cell

sample were excluded from the data set. For the T lymphocyte data set, 2 genes that were

only expressed in one cell were also excluded from analysis. This resulted in the exclusion

of 12 neutrophils and 31 genes in the neutrophil data set, and 7 T lymphocytes and 63

genes in the T lymphocyte data set. Expression was evaluated for 62 genes in 208 cells in the

neutrophil data set and just 29 genes in 244 cells in the T lymphocyte data set.

(C) Inclusion of all data points. All data points were initially included in analysis, with

the exception of genes not expressed in any of the control samples (cDNA, tRNA, 10-cell

samples). This excluded 12 genes from analysis in the neutrophil data set and 13 in the

lymphocyte data set. In addition, any transcripts missing from all samples in an array

were excluded. This excluded 3 genes in the neutrophil set, for a total of 15 excluded
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genes. No cells were excluded. LOD Ct was subtracted according to the Log2EX method as

described above. Expression was evaluated for 81 genes in 220 cells for the neutrophil data

set and 85 genes in 247 cells for the T lymphocyte data set.

Data normalization
Three different sets of criteria were used for data normalization for each of the data sets

generated from the three methods for data exclusion.

(1) Mean centering. The mean Ct value for each cell was calculated and subtracted from

each data point for the same cell. This approach removes the dependence of magnitudes,

allowing for easier visualization and comparison of relative differences in expression levels.

(2) Quantile normalization. Gene expression data for each cell was re-ordered by raw Ct

value, and mean Ct values for each cell were calculated. The original data was then replaced

by the average quantile, such that the highest value was replaced by the mean of the highest

values, the second highest value by the mean of the second highest values, and so on. This

method of rank-order analysis eliminates cell-to-cell differences in data density, by making

the data distributions identical.

(3) Standardization of the genes. Gene expression data were mean-centered for each

cell, and then the values for each gene were standardized (converted to z-scores) by

mean-centering and dividing by the standard deviation. Residuals from an ANOVA with

Plate as the main effect were extracted. This method adjusts the distribution only of targets

whose expression differs among plates. A further centering of residual expression values to

a mean of zero for each cell ensures that no cells have artificially low or high expression of

all genes.

Analysis of gene expression patterns
The single cell transcript abundance distribution for each gene was determined using

SAS JMP Pro 10 (Cary, NC). For each gene, several models, including Normal, Gamma,

Johnson Su, Johnson SI, Lognormal, and Weibull, were tested in order to find the

model best fitting the data. Modality was assessed for the two best fitting models by

Akaike information criteria (AIC) score and was further verified by calculating deltaAIC,

comparing scores of bimodality, trimodality and unimodality, as well as visual observation.

Genes exhibiting bimodality were tracked and cluster membership was determined in

the raw data set as well as after data exclusion and normalization methods deemed

most suitable, using the criteria above, namely exclusion by missing data cutoff and

normalization by standardization of the genes. In addition, the number of cells included

in each cluster was determined for each donor. Known gene product functionality was

obtained from three data bases: ToppFun (Chen et al., 2009), DAVID v6.7 (Huang da,

Sherman & Lempicki, 2009a; Huang da, Sherman & Lempicki, 2009b), and KEGG Pathway

(Nakao et al., 1999).

Analysis of donor-to-donor variability
For each donor, the cell count was determined for each of the cell clusters defined within

the population across all donors. Following this, the observed frequencies were compared
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to expected frequency by Chi-square test comparison of the number of cells of each class in

each of the five individuals relative to the expectation assuming equivalent proportions.

Comparison of primary analysis methods by concordance of cell
clusters
Combining the methods for data exclusion and normalization generated nine alternate

sets of processed data for each of the two cell types. Each data set was organized by

hierarchical clustering as well as k-means clustering by cell, resulting in cell clusters

based on shared gene expression patterns. Concordance, defined as the percentage of cells

ascribed to the same cluster, was compared between all combinations of analysis methods

for both methods of clustering. For hierarchical clustering, data was clustered using

Ward’s minimum variance method (Ward, 1963), which minimizes the total within-cluster

variance using the total within-cluster sum of squares, under the assumption that distances

between individual objects are proportional to Euclidean distance. The k-means method of

clustering aims to sort data into a pre-defined number of clusters, k, with each data point

belonging to the cluster with the nearest mean (MacQueen, 1967). K-means clustering was

performed on all data sets with k values of 2 or 3 for both neutrophils and T lymphocytes.

The k values were evaluated using Cubic Clustering Criteria (CCC) with external cluster

validation. All computations were performed in SAS JMP-Genomics v5.0 (Cary, NC).

RESULTS
Gene expression pattern analysis
Gene expression analysis of the raw neutrophil data revealed the existence of different

expression patterns for genes, such as unimodal distribution of expression (Fig. 2A),

bimodal distribution with or without the existence of low expressors (Ct35–Ct39) (Figs.

2B and 2C), and trimodal distribution (Fig. 2D). The existence of non-expressing cells

poses the problem of how to define these data points. One approach is to assign all such

values the maximum Ct of 40, but this assumes that these data represent true missing

expression; they could also result from technical errors due to failed PCR reactions. If the

latter is the case, apparent bimodality with on/off expression patterns would in reality

represent unimodal distribution with missing data points being technical artifacts instead

of biologically relevant information. An alternative approach for addressing this issue is

to look at patterns of missing data within the sets. If missing data points from the same

genes tend to correlate within the cells, the cause is likely to be biological, suggesting that

the populations contain cellular subgroups. In order to determine whether the existence

of genes with bimodal expression patterns signaled the existence of cellular subclasses,

the data was clustered based on shared gene expression patterns. Clustering showed that

for neutrophils, bimodal genes exhibiting on/off pattern tended to be off in the same

cells, although they clustered together with unimodal genes implying that the differential

expression between cell types is not restricted to bimodality (Fig. 3A). Another potential

cause for missing data points is low initial concentration of RNA in the sample, owing
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Figure 2 Gene expression analysis show multimodal expression patterns. Analysis of gene expression
revealed varying patterns in both the neutrophil and T lymphocyte data sets. Examples from the neu-
trophil data set show (A) unimodal distribution, (B) bimodal distribution with one peak consisting of
missing values i.e., Ct 40, (C) bimodal distribution with one peak consisting of both missing values and
low expression, and (D) trimodal distribution. A peak at Ct 40 indicates the existence of cells showing no
expression of the gene.
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Figure 3 Hierarchical clustering of neutrophil and T lymphocyte data showed distinct sub-
populations of cells characterized by shared patterns of gene expression. Hierarchical clustering of the
pre-processed (A) neutrophil and (B) T lymphocyte data prior to data exclusion and normalization show
bimodal genes preferentially clustering together. Bimodal genes are indicated by B-M (indicating that one
peak consists only of cells with missing values for the gene) or B-L (indicating that one peak consists both
of missing values and of cells with low expression). Unimodal genes are indicated by U, and trimodal
genes by T. Dendrograms for columns not shown.

to inefficient RNA extraction, leading to complete loss of signal for the lowest-abundance

genes that share the technical inefficiency. In order to address this, we controlled for overall

abundance of RNA by normalizing our data sets.

Similarly to the neutrophils, the T lymphocyte data set contained genes exhibiting

bimodal gene expression. As seen in neutrophils, T lymphocyte genes with bimodal on/off
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expression patterns also tended to be interspersed with unimodally expressed transcripts

(Fig. 3B).

Detection of neutrophil subtypes
Hierarchical clustering was applied to the datasets using Ward’s method, which has

been shown to discriminate clusters efficiently on gene expression datasets (Ferreira &

Hitchcock, 2009; Ma & Zhang, 2012). Figure 4 shows the results of hierarchical clustering

with nine different methods combining the three methods for data exclusion and three

methods for data normalization. The color coding (purple, green and orange) shows

the degree of concordance of clustering relative to the method based on supervised

data removal with mean centering (top left). Employing exclusion with any of the three

methods, followed by either mean centering or quantile normalization, three clusters of

neutrophils were observed consistently, with notable separation of the orange, and most

of the green, clusters from the purple one. Concordance, defined as the percentage of

cells assigned to the same cluster, ranged from 75% to 100%, prima facie supporting the

presence of three cell types in our samples.

However, when a Fluidigm array plate effect was fit to the standardized gene expression

z-scores, only two major clusters were observed regardless of the data exclusion method

(Fig. 4G), and concordance of the two-way classification of orange versus green/purple

cells was perfect. This analysis implies that a plate effect caused the splitting of the large

purple/green clusters observed with the mean-centering and quantile normalization

methods. That is to say, very low abundance gene expression led to loss of signal on one

of the plates, generating an artificial signature of co-regulation of some cells. However,

the orange cluster remains robustly detected by all methods. We conclude that there are

two main clusters of cell types in neutrophils. There is also a hint of a sub-type within the

orange cells defined by differential expression of a half-dozen genes, but a larger sample

will be required to validate this inference.

Hierarchical clustering verified the existence of cellular subgroups
Having compared methods for data exclusion and normalization, we opted to focus on the

analysis method using a two standard deviation cutoff for exclusion with normalization by

standardization of the genes (Fig. 4H). Hierarchical clustering revealed 2 major subclasses

in both neutrophils (Fig. 5A) and T lymphocytes (Fig. 5B). The more clear definition of

neutrophil subgroups, as compared to T lymphocytes, could be due to different levels of

bimodality in the gene sets, such that more bimodality in the neutrophil data set gives

rise to more distinct cellular subclasses. Alternatively, the two data sets could incorporate

the same level of overall bimodality but differ in the level of co-variation of bimodally

expressed genes. Since the expression of many genes on the T-cell array was too low to

detect consistently, the analysis is based on fewer genes which also reduces the power to

detect clusters.

More refined clustering of the T-cell data was also heavily impacted by the decision

as to how to handle missing data. Including genes in the analysis according to the
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Figure 4 Hierarchical clustering of neutrophil data after nine combinations of primary analysis. Data was processed by 3 alternate methods of
data exclusion (columns) and 3 methods of data normalization (rows). Following this, all resulting data sets were subjected to hierarchical clustering
by Ward’s minimum variance method. The results illustrate the effect of primary analysis method on data interpretation. Cells are colored by cluster
for data analyzed by exclusion based on the supervised method and normalization by mean centering (top left heatmap). Dendrograms for columns
are not shown.

Kippner et al. (2014), PeerJ, DOI 10.7717/peerj.452 12/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.452


Figure 5 Distribution of bimodal genes in hierarchical clusters after primary analysis. Hierarchical
clustering of processed (A) neutrophil and (B) T lymphocyte data after data exclusion by standard
deviation cutoff and normalization by standardization of genes resulted in cell clusters defined by shared
gene expression patterns. Genes that were multimodal before primary analysis are indicated. Bimodal
genes are indicated by B-M (indicating that one peak consists only of cells with missing values for the
gene) or B-L (indicating that one peak consists both of missing values and of cells with low expression).
Unimodal genes are indicated by U, and trimodal genes by T. Dendrograms for columns are not shown.

2 standard deviation cutoff, setting missing data to null expression resulted in 6 clusters

of cells irrespective of the data normalization procedure. In contrast, when missing

data was assumed to be due to technical error and thus assigned the mean value for that

transcript, the number of cellular subgroups observed after clustering differed: mean

centering resulted in 2 large and 6 small clusters, quantile normalization in 7 clusters, and

standardization of the genes in 6 clusters. The all inclusive method of data exclusion also

resulted in differing numbers of cell clusters depending on the normalization method, with

mean centering indicating 4 cellular subgroups, while quantile normalization showed five

groups, and standardization of the gene resulted in six groups after hierarchical clustering

by visual observation. Concordance of cell clustering across methods ranges between 70%

and 80%, arguing that there are multiple cell states despite the high degree of heterogeneity.

Concordance of the two-state clustering indicated in Fig. 5B was 95%.
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Table 1 Distribution of neutrophils between clusters shows donor to donor variability. Distribution
of cells is shown as observed number of cells per donor and cluster, as well as for the combined donor
population. (A) Neutrophils after supervised data exclusion. (B) Neutrophils after data exclusion by
median standard deviation cutoff. (C) T lymphocytes after data exclusion by median standard deviation
cutoff.

(A) Neutrophils with 2 clusters (Supervised STD)

Cell count Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 Total cell count per
cluster

Cluster A 4 10 2 17 6 39

Cluster B 40 31 38 21 33 163

Total cell count
per donor

44 41 40 38 39 202

(B) Neutrophils with 2 clusters (2G STD)

Cell count Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 Total cell count per
cluster

Cluster A 40 30 39 21 33 163

Cluster B 5 10 1 17 12 45

Total cell count
per donor

45 40 40 38 45 208

(C) T Lymphocytes with 2 clusters (2G missing STD)

Cell count Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 Donor 6 Total cell count per
cluster

Cluster A 17 33 44 34 28 42 198

Cluster B 9 10 1 2 20 4 46

Total cell count
per donor

26 43 45 36 48 46 244

Individual differences in donor representation in cellular sub-
groups
We next turned to analysis of differences in cellular abundance among donors, and asked

whether cells from all donors were equally distributed among the observed clusters. The

results show that the frequency of cells in each neutrophil cluster differed between donors

(Tables 1A and 1B) with donor 3 having a significantly lower than expected proportion of

cells in cluster A, whereas donor 4 has the inverse profile. Setting the number of clusters

to 2 in the analysis of the standardized data following supervised normalization, the χ2

value for differences in cell type abundance is 24.5 (p = 6 × 10−5, 4 degrees of freedom)

(Table 1A).

As the intrinsic variability of T cell populations is greater than that of neutrophil

populations, it is perhaps not surprising that we found donor-to-donor variability to be

larger for T cells than for neutrophils. Compared to neutrophils, T cells had considerable

variability in cell distribution between subgroups. The counts associated with the smallest

subgroup were not large enough to establish whether the donors differ, but they do

suggest divergence for the other clusters. Setting the number of clusters to 2 following data

normalization, the χ2 value for differences in cell type abundance is 36.8 (p = 7 × 10−7,
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5 degrees of freedom) (Table 1C). Sampling of more cells in more donors will be required

to establish whether these differences correlate with physiological and immunological

attributes of the individuals.

DISCUSSION
To determine whether variation in gene expression correlated with variation in cellular

phenotype, gene expression data for all genes were analyzed across all cells for expression

patterns, such as unimodality and bimodality. Patterns differing from the prevalent,

long-tailed, log-normal distribution may reflect active processes that contribute to cell–cell

variation and thus functional subclasses of cells (Dalerba et al., 2011). Bimodality, in

particular, can be expected in immune cell populations, due to the possibility that cells

within such a population may be in states of either pre- or post-activation, with the

changes in gene expression that this would entail. While bimodal behavior is a potentially

important feature of gene expression in a population and can reflect true differences

between subpopulations (Shalek et al., 2013), not all bimodal distributions are likely to

reflect biological reality in an unprocessed single-cell data set. The risk of excluding true

bimodality by setting the cutoff too low must be weighed against the risk of including

artificial bimodality by inclusion of all data points and thus more measurement-derived

noise. In addition, it is desirable to differentiate between bimodality due to high versus low

expression of a given gene and bimodality due to a gene being expressed or not expressed.

Finally, technical artifacts such as plate effects can also induce apparent bimodality if

expression of low-abundance transcripts drops out completely in one plate.

The occurrence of bimodality of gene expression in both neutrophils and T cells leads us

to conclude that the cell populations tested contain specific cellular sub-types. The results

show unambiguous evidence for two cellular subtypes in both the neutrophil and T-cell

populations, possibly with additional subtypes that will require larger datasets to validate.

The nature of the bimodal genes involved, however, hint at the functional nature of the

cellular subgroups. For example, the neutrophil cluster represented by low TLR4/8, high

PAK1, high ITGB2 (subunit of LFA-1) profiles would likely occur when extravasation and

cell motility is more essential than direct microbial phagocytosis.

Methods for analyzing population level data are well established; however these are

not optimal for single cell data due to the high variability of gene expression between

individual cells and the intrinsic noise in single cell data sets. Gene expression levels, even

of housekeeping genes, can differ 1000-fold between individual cells (Bengtsson et al.,

2005), and analysis of individual single-cell PCR calibration curves do not produce reliable

values (Liss et al., 2001). In order to overcome this issue, independent measurements by

alternative methods such as RNA FISH (Bajikar et al., 2014; Shalek et al., 2013; Wang,

Brugge & Janes, 2011), smFISH (Rahman & Zenklusen, 2013), or immunochemistry

(Dalerba et al., 2011) can be used to verify select targets; however, these do not allow for

easy verification across large target sets at the individual cell level. Comparison of the

outputs from the different methods of primary analysis tested illustrates the impact of

analysis method on subsequent interpretation of biologically relevant information such
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as cellular subtypes within a population. Our recommendation is to use standardization

methods that allow for fitting of technical effects, such as the plate effect that generated

two sub-types in the mean-centering and quantile normalization strategies. Data exclusion

should be aware of the possibility that missing data reflects technical failure, but for the

most part it seems to be due to very low and possibly missing expression. Replacement of

missing data with average expression did not unduly impact our clustering at the 2-cell

type level, and does not appear to be justified.

Cluster analysis is a natural choice for interpretation of qRT-PCR data. We employed

two hierarchical clustering methods in order to quantitatively assess the robustness of our

primary data processing methods. The results obtained by both methods of clustering

were then compared, and the concordance between clusters, as defined by shared cluster

assignment for cells, showed that k-means and hierarchical clustering approaches influence

the conclusions but to a lesser extent than the data normalization strategy. The two

approaches disagreed as more sub-types were added to the analysis, but were in good

agreement at k = 2 cell types for both neutrophils and T-cells.

An additional question we addressed was whether or not the type of cell would have

an effect on the concordance, in other words, whether different cell types would require

different methods of data exclusion and normalization for optimized analysis outcome. It

should be noted that although the trends are similar in both cell types, neutrophils show

an overall lower heterogeneity than T cells. The observed higher stability of concordance

of neutrophil clusters when compared to T cell clusters is likely affected by these inherent

properties of neutrophil and T cell populations. It is thus important to consider not only

cluster robustness when choosing analysis methods, particularly when data represents a

heterogeneous population, such as the T lymphocyte population investigated here.

CONCLUSION
Our study shows that using single cell analysis we can potentially detect functional

subclasses not previously appreciated within immune cell populations. Bimodal patterns

of gene expression within the cell populations suggested cellular subclasses, and this was

confirmed by hierarchical clustering of cells. Emerging techniques enabling the study of

single cell transcription levels have made clear the need for insight into the appropriate

methods of analyzing the data generated. Our systematic testing of different methods of

single cell data analysis clearly illustrates the differences in subsequent interpretation of

the processed data. Importantly, our results highlight the necessity of using a method that

adjusts for any defined technical effects, and that failure to do this will affect the inference

of biological properties.

List of abbreviations

AIC Akaike information criterion
Ct Cycle threshold
k cluster count
LOD Limit of Detection
qRT-PCR Quantitative Real-Time PCR
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