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Tufted Puffin (Fratercula cirrhata) populations have experienced dramatic declines since
the mid-19™ century along the southern portion of the species range, leading citizen
groups to petition the United States Fish and Wildlife Service (USFWS) to list the species as
endangered in the contiguous U.S. While there remains no consensus on the mechanisms
driving these trends, decreases in the California Current Large Marine Ecosystem suggest
climate-related factors, and in particular the indirect influence of sea-surface temperature
on puffin prey. Here, we use three species distribution models (SDMs) to evaluate
projected shifts in habitat suitable for Tufted Puffin nesting for the year 2050 under two
future Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Ensemble
model results indicate warming marine and terrestrial temperatures play a key role in the
loss of suitable Tufted Puffin nesting conditions in the California Current under both
business-as-usual (RCP 8.5) and moderated (RCP 4.5) carbon emission scenarios. Under
both emission scenarios, ensemble model results suggest that more than 93% of currently
suitable nesting habitat in the California Current is likely to become unsuitable. Moreover,
the models suggest a net loss of greater than 18% of suitable nesting sites throughout the
entire North American range of the Tufted Puffin, regardless of emission-reduction
strategies. These model results highlight continued Tufted Puffin declines — particularly
among southern breeding colonies — and indicate a significant risk of near-term
extirpation in the California Current.
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Abstract
Tufted Puffin (Fratercula cirrhata) populations have experienced dramatic declines since the
mid-19™ century along the southern portion of the species range, leading citizen groups to
petition the United States Fish and Wildlife Service (USFWS) to list the species as endangered in
the contiguous U.S. While there remains no consensus on the mechanisms driving these trends,
decreases in the California Current Large Marine Ecosystem suggest climate-related factors, and
in particular the indirect influence of sea-surface temperature on puffin prey. Here, we use three
species distribution models (SDMs) to evaluate projected shifts in habitat suitable for Tufted
Puffin nesting for the year 2050 under two future Intergovernmental Panel on Climate Change
(IPCC) emission scenarios. Ensemble model results indicate warming marine and terrestrial
temperatures play a key role in the loss of suitable Tufted Puffin nesting conditions in the
California Current under both business-as-usual (RCP 8.5) and moderated (RCP 4.5) carbon
emission scenarios. Under both emission scenarios, ensemble model results suggest that more
than 93% of currently suitable nesting habitat in the California Current is likely to become
unsuitable. Moreover, the models suggest a net loss of greater than 18% of suitable nesting sites
throughout the entire North American range of the Tufted Puffin, regardless of emission-
reduction strategies. These model results highlight continued Tufted Puffin declines —
particularly among southern breeding colonies — and indicate a significant risk of near-term

extirpation in the California Current.
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Introduction

Worldwide, species are facing increasing challenges associated with rising sea and air
surface temperatures (Thomas et al., 2004). Warming climates have resulted in species range
shifts (Parmesan & Yohe, 2003), ecological responses (Walther et al., 2002) and changes in
habitat quality (Hickling et al., 2006). Foden et al. (2013) found that 83% of birds, 66% of
amphibians and 70% of corals that were identified as highly vulnerable to the impacts of climate
change are not currently considered threatened with extinction on the [IUCN Red List of
Threatened Species, indicating that species’ vulnerabilities are likely to be much greater than

conservation status alone would suggest.

In recent years in the United States, the USFWS and the National Marine Fisheries
Service (NMFS) have received several petitions to list species under the Endangered Species Act
based on the impacts of climate change (Siegel, K., Cummings, B. 2005; Wolf, S., Cummings,
B., Siegel, K., 2008). However, the link between climate change and risk to a species can be
difficult to assess. One approach to examining these linkages is to model the interaction between
climate and suitable habitat for a given species, given what is already known about the
relationship between the species and its habitat. This approach has become an integral
component of conservation planning in a world of changing environments (Hagen & Hodges,
2006; Richardson & Whittaker, 2010). Ultimately, understanding these linkages can help inform
conservation assessments and species and ecosystem management strategies (Carnaval & Moritz,
2008; Ponce-Reyes et al., 2017), for example, by estimating the likelihood of losing (or gaining)

particular suitable habitats of interest under future climate conditions.

Tufted Puffins as a Pertinent Example
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The Tufted Puffin (Fratercula cirrhata) is an iconic species that is experiencing dramatic
population declines across the southern portion of its geographic range (Piatt & Kitaysky, 2002).
While Tufted Puffin populations in the Alaska Current have remained relatively stable (but see
Goyert et al., 2017), populations in the California Current large marine ecosystem (area of the
eastern Pacific Ocean spanning nearly 3,000 km from southern British Columbia, Canada to Baja
California, Mexico) have declined by approximately 90% relative to early 20™ century estimates,
and are currently declining 9% annually (Hanson & Wiles, 2015). The number of occupied
breeding colony sites in Washington State has declined by 60% relative to the 1886-1977
average, and 45% relative to the 1978-1984 average (Hanson & Wiles, 2015). Range
contractions at the southern edge of the Tufted Puffin’s habitat in both the eastern and western
Pacific Ocean have led to preliminary conservation actions by state agencies such as the
Washington Department of Fish and Wildlife and Japan Ministry of the Environment (MOE,

2011; Hanson & Wiles, 2015; WAC 232-12-014, 2016).

Tufted Puffin Biology and Ecology

Tufted Puffins are seabirds belonging to the family A/cidae and nest in colonies located
on both sides of the North Pacific, ranging in North America from the Channel Islands in
southern California (34° N) to coastal northern Alaska (68° N) (Piatt & Kitaysky, 2002) and in
Asia from Hokkaido, Japan (43° N) through the Kamchatka Peninsula (63° N) (WDFW, 2015).
They are central-place foragers during the nesting season, when they dig burrows or use crevices
for nesting on nearshore rocks, islands and sea stacks (Piatt & Kitaysky, 2002). During the
nesting season, puffins exhibit large foraging radii around their colonies (up to 40 km, e.g.,

Menza et al. (2016) Figure 12) and are able to carry more than twenty fish at a time while flying
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back to the colony to feed their chicks (Piatt & Kitaysky, 2002; Hanson & Wiles, 2015). While
little is known about the wintering distribution and ecology of Tufted Puffins, summer (May-
September) breeding colonies are well documented and provide the most useful biological data
for conservation management (Piatt & Kitaysky, 2002). Extensive breeding colony surveys
dating back to the early 20™ century allow us to examine any potential link between climate and

species range extent.

Tufted Puffins are subject to multiple well-documented ecological stressors—such as
increasing eagle predation, habitat degradation, declining prey availability, and fishing net
entanglement (Baird, 1991; Degange, et al., 1991; Ricca, et al., 2008)—but several mechanisms
associated with temperature stress may be important in driving puffin declines along their
southern range boundary. Gjerdrum et al. (2003) found dramatically reduced growth rates and
fledgling success in years with high Sea Surface Temperature (SST) anomalies. Other
researchers cite the nutritional demands of puffin chicks and the prey availability and preferences
correlating with fledgling success (Hipfner et al., 2007), suggesting a mechanism for the negative
effects of high sea surface temperature on puffin chicks. These and other studies point to a link
between temperature and demographic trends in the Tufted Puffin and help identify this species
as a candidate for distribution modeling. Modeling outputs may help expose proposed
interactions between high ocean temperatures, prey distribution in the water column and puffin

breeding success.

As a result of these potential threats and documented population declines, the USFWS
was petitioned to list the California Current population of the Tufted Puffin (Fratercula cirrhata)

as endangered under the Endangered Species Act (Sewell, 2014). In order to respond to this
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petition, the USFWS is currently examining Tufted Puffin status and trends, evaluating threats to
its survival, the adequacy of existing regulatory mechanisms to conserve the species, the loss of
its habitat, and other relevant factors. Given that climate—specifically, increasing sea-surface
temperatures—may be a particularly important factor influencing puffin population dynamics
and ultimately reducing puffin breeding range, and given the vast geographic extent of puffin
nesting sites (34° of latitude and roughly 70° of longitude in North America) and historical data
on the occupancy of these sites, the Tufted Puffin is an excellent candidate for species

distribution modeling.

Species Distribution Models in Conservation Planning

Species distribution models (SDMs) are a powerful way to examine how climate
variables relate to species geographic distribution and the distribution of suitable habitat (Guisan
& Zimmermann, 2000; Guisan & Thullier, 2005). By associating species occurrence with
climate variables, these models can 1) test for associations in space and time between putative
environmental drivers and changes in species range and 2) project changes in suitable habitat
under future climate change scenarios (Bellard et al., 2012). SDMs use a variety of underlying
statistical models to capture the relationship between habitat and climate and create detailed
outputs highly useful for wildlife management (Carvalho et al., 2011; Guisan et al., 2013).
Recent Endangered Species Act listing decisions and management plans have drawn on SDM
results to provide critical spatial and temporal conservation information. For example, climate
envelope models were used to develop spatially explicit conservation strategies that account for
climate change, notably in the case of the North America Wolverine (Gulo gulo), where the

models were the basis of ag ESA listing (81 FR 71670, 2016).
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Here we use 50 years of species nesting habitat distribution information—ranging from
the Bering Sea to California—to map Tufted Puffin nesting habitat. We use this colony
occupancy data to model the relationship between nesting habitat and current environmental
conditions to project future suitable breeding sites in the same geographic range. We present
these results as an example of how this information can be used in a regulatory context (e.g.,

Endangered Species Act listing decisions) and in a conservation planning context.

Materials and Methods

Environmental Data

Environmental data for the current period, which we define here as the years 1950-2000,
were downloaded from WorldClim, a set of global climate layers derived from interpolation of
monthly climate observations (Hijmans et al., 2005, last accessed January 2017). After removing
WorldClim bioclimatic variables displaying high collinearity and considering factors relevant to
Tufted Puffin breeding phenology, we selected six environmental variables for analysis: annual
temperature range (ATR), mean diurnal temperature range (MDR), mean temperature of the
warmest quarter (MTWQ), annual precipitation (AP), precipitation of the warmest quarter
(PWQ) and distance-to-distance(DIST), a variable we created to help models discern suitable
nesting habitat as occurring only in rocky, coastal habitats within meters of the sea, a biological
requirement of puffins (Piatt & Kitaysky, 2002); (see Table 1 for measurements and units). Each
variable for the current period was scaled to a 5 arcmin grid cell size (ca 10 km x 10 km). After

scaling, all environmental variables within the relevant geographic range were cropped to only
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include locations within 200 kilometers of the ocean, given the Tufted Puffin’s obligate

nearshore nesting habitat.

The same 6 environmental variables above were averaged over the period of 1910-1950
to construct a ‘past’ climate regime used to project past Tufted Puffin range. Past climate
variables were selected using gridded climate data obtained from monthly observations from the
Climate Research Unit CRU TS v. 4.01 dataset (Harris et al., 2014 (crudata.uea.ac.uk), last
accessed March 2017). Past environmental data were similarly scaled down to the same 5 arcmin

grid cell size as the current data.

Future Climate

We selected emissions scenarios Radiative Concentration Pathways (RCP) 4.5 and 8.5 as
defined by the IPCC 5™ Assessment Report (IPCC, 2014) as future environmental projections
against which to forecast changes in Tufted Puffin breeding distribution. Downscaled model
output for environmental variables for both future RCP scenarios were averaged across the
following general circulation models: Hadley Centre’s HadGEM2-ES (Collins et al., 2011),
NOAA’s GDFL-CM3 (Griffies et al., 2011) and NASA’s GISS-E2-R (Nazarenko et al., 2015)
for the year 2050 (average of 2041-2060) (Hijmans et al., 2005, last accessed January 2017).
Utilizing the average of multiple prominent U.S. climate model outputs helps incorporate
variance in potential future climate projections within our model. The 2050 timeframe and these
emissions scenarios (roughly speaking, a moderate-reduction scenario and business-as-usual
scenario with no emission reductions) were selected as the most relevant to the conservation

decisions presently surrounding the Tufted Puffin (IPCC, 2014).
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Species Data

Species distribution data were obtained courtesy of USFWS, Washington Department of
Fish and Wildlife and Environment Canada, and were derived from expansive U.S. and Canada
breeding colony surveys conducted by groups including USFWS, Washington Department of
Fish and Wildlife, Alaska Department of Fish and Game, Environment Canada, California
Department of Fish and Wildlife, and others (Speich & Wall, 1989; Hodum et al., unpubl.;
World Seabird Union (https://seabirds.net, last accessed March 2017); BCMCA (http://bcmca.ca,
2017, last accessed May 2017), see supplemental online materials). Count data consisted of
estimates of numbers of breeding individuals present at known nesting colonies and the spatial
coordinates of those observations. Biological data for the ‘current’ period of climate data (Table
2) represents the most recent survey data of known nesting sites from 1950-2009. While the
climatological data runs until the year 2000, biological data from up to 2009 were included to
incorporate recent detailed state-wide surveys in both Oregon and Washington, information
critical to examining trends across the puffin’s southern range. We converted count data to
presence/absence values, given the nature of our analysis, which asked whether breeding habitat
was likely to be suitable (>1 nesting birds) or not (0) under future conditions. Some observations
were adjusted geographically up to one grid cell (ca 10 km) to fall within gridded terrestrial
environmental variables. Observations further than 15km from terrestrial grids (e.g., remote
islands) were removed from the analysis. The environmental variables described above were
selected to model potential interactions between climate conditions and puffin range during the

breeding season.

Given the low proportion of absence-to-presence observations for Tufted puffin surveys

and potential bias in survey locations, we added pseudo-absence (PA) observations (i.e.,
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generated absence observations existing within the range of the SDM) to all models. SDMs using
both presence and absence have been shown to perform more accurately than models relying on
presence-only observations (Elith et al., 2006, Barbet-Massin et al., 2012). PA generation
methodology is also important in both model predictive accuracy and avoiding model over-
fitting (Barbet-Massin, Thuiller, & Jiguet, 2010, Barbet-Massin et al., 2012). Adapting these
recommendations in Barbet-Massin et al. (2012), 1000 PAs were randomly generated twice

across the SDM a minimum of 30km from any presence or true absence point.

Model Parameterization

Because Tufted Puffins rely heavily on both terrestrial and marine environments for
reproduction, we initially tested the correlation between sea-surface temperature and air-
temperature data across puffin colony observations. Sea surface temperature (SST) data for this
comparison comprised an average of mean monthly temperature for June, July and August,
months aligning with Tufted Puffin breeding season obtained from the Hadley Centre, UK
(Rayner et al., 2003 (metoffice.gov.uk/hadobs) last accessed March 2017) and the corresponding
air temperature readings (MTWQ) (Hijmans et al., 2005). Both sets of environmental variables
were scaled to a 5 arcmin grid cell size and represented means from the years 1950-2000. A high
correlation coefficient (r = 0.96) allowed us to use air temperature—which is available in higher
spatial resolution—than SST in the final analysis. This strong relationship between air- and sea-
surface temperature has also been documented across several other marine and aquatic species
distribution studies (Stefan & Preud’homme, 1993; Domisch et al., 2013). Additionally, within R
software (R Core Team, 2013), a principal component analysis (PCA) (Pearson, 1901) was
performed to compare variance in environmental variables between areas where colonies

collapsed in recent years to those that persist. This technique has been shown to help identify
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differences in environmental niches of species occurrence data (eg. Broennimann et al., 2012;
Pefia-Gomez et al., 2014); here, we use it to create an index of environmental variables to
identify likely drivers of Tufted Puffin declines after accounting for the covariances among

variables.

Species Distribution Modeling

Model Algorithms

SDMs were constructed with the R package BIOMOD2 (BIOdiversity MODelling)
(Thuiller et al., 2009; R Core Team, 2013). All SDMs were constructed for a spatial range larger
than the current estimated U.S. Tufted Puffin distribution (180°W to 120°W longitude and 33°N
to 69°N). Using a larger extent both increases the range of environmental gradients available for
model construction and introduces novel climates useful for projecting potential migration
(Thuiller et al., 2004; Fitzpatrick & Hargrove, 2009; Domisch et al., 2013). Models were also
constructed using a subset of all biological and environmental data from 126°W to 120°W and
33°N to 48.5°N. This measure is intended to account for the spatial variance of puffin
distribution and examine the temperature-habitat relationship in the California Current large
marine ecosystem exclusively —the portion of the range that has experienced the greatest

decline and has been petitioned for listing under the US Endangered Species Act.

To help acknowledge and estimate uncertainty, 3 different models using different
statistical approaches were selected from the BIOMOD framework; generalized linear models
(GLM) (McCullagh & Nelder 1989), generalized boosting models (GBM, also referred to as
boosted regression trees) (Ridgeway 1999) and random forests (RF) (Breiman, 2001). The GLM

models used a logit link between the response variable mean and combination of explanatory
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variables (Guisan, Edwards, & Hastie, 2002) (i.e., logistic regression). GBMs incorporate
regression and machine-learning techniques through boosting many decision-tree models to
increase model performance (Elith et al., 2008). Decision models recursively partition sets of
explanitory and outcome variables in a stagewise manner until subsets of data are explained by
trees of bifurcating decisions (Elith et al., 2008). Boosting then sequentially fits decision trees to
training data, selecting the trees that best fit the data (Elith et al., 2008). Finally, RF represents a
machine-learning technique creating classification trees similar to those in GBMs, but instead
uses random bootstrap samples of data and explanatory variables upon the construction of each

tree (Breiman, 2001).

The significant differences in statistical and machine learning approaches across GLM,
GBM and RF algorithms provides variance across which to test sensitivity between models as
well as estimations of model uncertainty (Marmion et al., 2009; Rodriguez-Castafieda et al.,
2012). Additionally, using models with relatively more ensemble (GBM and RF) and
parsimonious (GLM) approaches to habitat selection as well as utilizing both parametric (GLM)
and non-parametric (RF) techniques provides robust analysis of environmental drivers of range

change (Marmion et al., 2009) and led to the selection of these three model algorithms.

Model Calibration

Having generated two variants of the dataset by generating distinct pseudo-absences, we
then constructed twenty models for each algorithm (GLM, GBM, RF), for each dataset variant,
for a total of 120 models. All models then utilized past environmental data as well as both future

emission scenarios to project both past and future puffin range changes. Each model run
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performed a random 70:30 split of the biological data using 70% for model calibration and 30%
for model evaluation. This technique addresses spatial autocorrelation and is frequently utilized
when faced with dependent biological sampling (surveying of species around only areas of
known occurrence) (Aragjo et al., 2005). Model selection and calibration parameters were kept
constant between past and current models to maintain consistency and repeatability. For all
models, the default modeling options of the BIOMOD package were utilized (Thuiller et al.,

2009).

Ensemble Modeling and Evaluation

The area under the receiver operating characteristic curve (AUC) and the True Skill
Statistic (TSS) were the two model metrics used to evaluate model performance. AUC maps
sensitivity rate (true positive) against (1-specificity) values (= false-positive rate) and is a
popular metric for species distribution model evaluations because it evaluates across all
thresholds of probability conversion to binary presence or absence (Fielding & Bell, 1997; Guo
et al., 2015). Higher AUC scores represent better model performance, with AUC scores between
0.7-0.8 classified as ‘fair’, 0.8-0.9 as ‘good’ and 0.9-1.0 as ‘excellent’(Guo et al., 2015). TSS
scores display (sensitivity + specificity — 1) with sensitivity quantifying omission errors and
specificity quantifying commission errors (Allouche et al., 2006; Guo et al., 2015; Shabani et al.,
2016). TSS scores of zero or less indicate model performance no better than random and scores
of 1.0 indicating perfect performance. Both scores were emphasized in this analysis to provide
strong measure of ordinal model performance and to predictien accuracy in threshold-dependent

conservation planning (Allouche et al., 2006; Shabani et al., 2016).

Ensemble models were created using weighted averages of TSS scores both within and

across algorithms. This technique captures uncertainty stemming from random sampling of the
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dataset as well as variance across modeling techniques (Gallardo & Aldridge, 2013), thereby
providing the user with a robust sense of model fit and sensitivity to particular parameters. TSS
scores below 0.7 were excluded from the ensemble to remove influence from poor predictive
models (Araujo et al., 2011). A proportional weight decay was used averaging model weights,
resulting in weights proportional to TSS evaluation scores. Additionally, binary conversions,
which maximized model TSS performance, were used in some range-change analyses. Range-
change analyses were performed allowing future migration to potential suitable future habitat as
well as with no potential migration. Ensemble binary thresholds and their impact on projections

are noted below.

Results

Model Performance

Models from all three algorithms, and especially the ensemble model, scored very high in
both model performance metrics (Table 3). GLM, GBM and RF algorithms displayed mean TSS
scores and standard deviations of 0.854 + 0.023, 0.904 £ 0.017 and 0.915 £ 0.014, respectively.
Similarly, GLM, GBM and RF mean AUC scores were very high, indicating good model
accuracy (Table 3). Techniques utilizing machine learning methods (RF & GBM) consistently
displayed the highest performance by both AUC and TSS scores (Table 3), perhaps due to these
machine-learning (GBM & RF) models relying on boosting and ensemble learning, respectively,
compared to a single regression model approach within GLM algorithms. Despite the different
statistical and learning approaches of the selected modeling approaches, TSS and AUC scores

were high across all techniques and displayed low variance (Table 3).
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Variable Contribution

Response Plots

After initial variable winnowing, both model response plots and PCA analysis indicate
that temperature variables ATR and MTWQ are strongly associated with Tufted Puffin breeding
habitat (Figure 1, 2). Importantly, MTWQ displayed a thermal maximum of suitable nesting
habitat (i.e., a threshold) around 15.5 °C, and the MTWQ variable also displayed the most
consensus across model members among all selected variables (Figure 1). This result highlights
consensus among GLM ensemble members surrounding the 15.5 °C threshold. ATR and MTWQ
are related to extreme summer temperatures and consensus among GLM ensemble members
across these variable response plots is consistent with the hypothesis that summer temperature

anomalies influence Tufted Puffin colonies.

Conversely, MDR and PWQ were not effective in predicting suitable habitat among all
models. In fact, the probability of Tufted Puffin occurrence remains high across the range of
MDR and PWQ values indicating that these variables are not helpful in predicting puffin
occupancy. Ensemble members do show a response to increased annual precipitation (AP)
values, but there remains a lack of consensus among model members around a particular

response cutoff.

Principal Component Analysis

Principal component analysis provided further support to the hypothesis identifying
summer temperature as a primary driver of variance in Tufted Puffin breeding habitat (Figure 2).
PCA components 1 (51%) and 2 (27%) together explained 78% of the variability in the data.

Component 2, with a strong loading of MTWQ of -0.730 and MDR loading of -0.491, indicates
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that MTWQ and MDR explain the difference between presence and absence points as evidenced
by the separation of the 95% confidence ellipse along this component (Figure 2). The other four
variables loaded more strongly onto principal component 1 which does not help separate
presence and absence points. This result combined with the MTWQ response curves (Figure 2)
indicate the importance of MTWQ in predicting what habitat is suitable for Tufted Puffins

(Figure 1, 2).

Range Forecasts

North American Projections - 2050

After binary transformation of the future probabilistic projection maps ensemble model
range change analysis projects Tufted Puffins to lose 18% of their occupied range under RCP 4.5
and 25% under RCP 8.5 by 2050 (Table 3). RF models projected the greatest percent habitat loss
across North America under both emission scenarios (Table 3). There was uniform agreement
across ensemble members in projecting habitat loss, with variability among algorithms as to the
magnitude of that loss (Table 3). Spatially, losses were uniformly projected along the California
Current up to southeastern Alaska (Figure 3), although ensemble projections suggested continued
suitability of the Aleutian Islands under both emission scenarios (Figure 3). Ensemble model
results also reflected agreement on the opportunity for northward range expansion (Figure 3).
Both the projected southern range contraction and northward range expansion are further

consistent with the hypothesized relationship between puffin habitat and temperature.

California Current - 2050

Analysis of the California Current region within the overall ensemble models shows near

complete loss of suitable habitat between emission scenarios with both RCP 4.5 and 8.5 (Figure
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4), although the individual component models showed variable amounts of habitat loss. GLM
models projected the most dramatic loss along the California Current with a predicted loss of
over 88% of suitable habitat (Table 3). GLM models also projected a negligible amount of
habitat as likely to become newly habitable in the California Current under either emission
scenario. Both GBM and RF models predicted less range change with GBM models projecting a
mean loss of about 30% and RF models projecting a mean loss of about 31%. Under both RCP
4.5 and 8.5, ensemble projections display complete loss of suitable habitat in Oregon and
virtually complete loss in California (Figure 4). GBM and RF models projected small portions of
northwestern Washington would become slightly more likely than not to become habitable by

2050 under both emission scenarios.

Discussion

Ensemble models uniformly support summer temperature as a predictor of Tufted Puffin
breeding habitat. High model evaluation metrics (Table 3) coupled with strong correlations
between temperature variables and Tufted Puffin range change (Figures 1, 2) provide confidence
that projected warmer summer temperatures are likely to be associated with the loss of greater
than 93% of Tufted Puffin breeding habitat in the California Current (Figure 4). North America-
wide, ensemble models project the overall loss of 18% and 25% of suitable habitat, respectively,
under moderate emission reductions and business as usual carbon emissions by 2050 (Table 3).
Figure 3 highlights that most nesting habitat will be lost along the southern portion of current

Tufted Puffin range as well as the opportunity for northward range expansion.
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Important to the interpretation of ensemble projections is the binary transformation of
model outputs into suitable and unsuitable categories. For range change analyses, projections of
unsuitable habitat represent a weighted average of <50% probability of suitability, a cutoff
defined by ensemble calibration. In some cases we observed a majority of ensemble members
projecting a particular cell as marginally suitable while a minority of members strongly project
that cell as unsuitable. The subsequent result is unsuitable habitat despite being marginally
suitable in some models. This process of binary transformation can then reflect an aggregate of
probabilistic scores instead of the average of a binary projection. Binary transformations are thus
a useful tool to discuss and represent how changes in climate may affect the likelihood of
suitable breeding conditions throughout Tufted Puftfin range, but are necessarily imprecise in that

they mask underlying variability.

Examining the variance among model results and the spatial variance in projections is
integral to the interpretation of model results ig a conservation perspective (Guisan et al., 2013;
Porfirio et al., 2014). Tufted Puffins are a relatively rare species in the southern portion of their
range, are hard to survey, and occupy small areas of land (Hanson & Wiles, 2015). These
biological factors contribute to the difficulty of surveying (and therefore modeling) puffins and
can increase variance among model algorithms, making ensemble models more valuable for
interpretation of results (Segurado & Araujo, 2004; Hernandez et al., 2006). However, here we
use colony occupancy information rather than counts. Preliminary occupancy analysis suggest
that colony occupancy can be assessed with a high probability with a single relatively rapid visit
by boat even to a very small colony with few birds (Pearson et al., unpublished). Thus, our
colony occupancy approach likely reflects actual changes in colony occupancy throughout the

range. In addition, trends were consistent across algorithms in depicting significant losses of
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suitability for habitat across the California Current, British Columbia and eastern Alaska (Figure
3). All algorithms also projected the opportunity for northward range expansion in the face of

accelerating northern latitude warming (Figure 3).

If suitable habitat expands as predicted by our ensemble models, biological and
ecological factors unrelated to climate such as eagle predation are predicted to continue and
likely to influence the probability of colonization (Hipfner et al., 2012; Hanson & Wiles, 2015).
Because colonization is uncertain, we depict in Figure 5 the loss of currently suitable habitat in
the California Current without the possibility of new colonization throughout the extent—a worst
case scenario. Variance among models as evidenced in Table 3 along the California Current
failed to result in more than a handful of consensus areas of suitability (Figure 4). While outlying
colonies such as the one in the Farallon Islands of California (where puffins remain at present) in
areas projected to be unsuitable are important to examine further, all models and especially
ensemble results support the trend of southern range contraction associated with warm summer
temperatures (Figures 1, 2, 3, 4). Additionally, while limitations on historical survey data make
interpretation of hindcasts difficult, preliminary hindcasting resulted in expansion across the
southern portion of current puffin habitat (see suppl. file). This result is further consistent with

the hypothesized relationship between high temperature and puffin success.

Our results are especially salient in light of the ongoing U.S. Fish and Wildlife Service’s
analysis of puffin status following Natural Resources Defense Council’s petition to list the
California Current population as endangered. When responding to the petition to list the puffin,
the Service can list the species throughout its range or can list a distinct population segment
(DPS) such as the breeding population south of the Canadian border or that in the California

Current. While determining which segments comprise a DPS as outlined by the ESA requires
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more analysis, our results provide the spatial information to inform the threat that both of these
breeding range segments or “populations” will likely face. Based on our modeling, all potential
distinct populations segments from British Columbia, south, face a significant chance of near
extirpation or very significant habitat loss under a wide range of climate projections by 2050.
Conservation planning for species can greatly benefit from defining the portion(s) of their
range representing habitat critical to their survival (Hagen & Hodges, 2006). This designation is
essential for conservation planning both under the ESA, in which it is required for listed species,
as well as for more localized conservation efforts (Taylor et al., 2005). Figure 3 highlights areas
where Tufted Puffins are currently at the highest risk of colony loss (low habitat suitability).
Many puffin nesting sites are already managed by the US Fish and Wildlife Service Refuge
system and many of these sites are also designated as “wilderness” (Sowles et al., 1980, Speich
and Wahl 1989, Naughton et al. 2007, US Fish and Wildlife Service 2017). Habitat projections
made for the year 2050 permits analysis of critical habitat in terms of species survival as well as
proposed conservation efficacy (Suckling & Taylor, 2006; Stein et al., 2013). Land acquisition
has proven to be an effective strategy for the management of endangered species and is a strategy
that has been utilized for the Tufted Puffin (Lawler et al., 2003; WDFW, 2016) and could be
used in the future. With limited resources to conserve species at the federal level, ranking the
conservation priorities and temporally analyzing threats can allow for prudent investment in
conservation lands (Lawler et al., 2003). Nesting colony sites throughout the Gulf of Alaska are
projected to remain suitable and results indicate the Aleutian Islands are the most likely habitat
to both continue to support large populations of Tufted Puffins as well as potentially becoming
suitable as new breeding sites (Figure 3). As these results suggest, we can use this information to

predict areas of future Tufted Puffin habitat to help outline areas for long-term conservation
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action while also mapping areas where long-term conservation efforts may prove ineffective.
Such proactive conservation steps often result in greater conservation outcomes and are critical

for species struggling to adapt to changing climates (Morrison et al., 2011).

Mechanisms Driving Decline

Using the results reflected in Figure 3, wildlife managers can continue to explore the
causal mechanisms driving the discussed Tufted Puffin population declines and range
contraction. Currently numerous pathways are proposed to help determine puffin breeding
success and adult survival such as prey availability, SST, predation and habitat degradation
(Morrison et al., 2011; Hanson & Wiles, 2015). While many prey species do not show significant
population trends (MacCall, 1996), our results can provide spatial details to explore a potential
mechanistic explanation, vertical prey distribution (Gjerdrum et al., 2003). Exact measurements
are unknown but based on body size, Tufted Puffins exhibit the deepest maximum forage depths
across alcids, at approximately 110 meters, but typically forage at 60 meters or less (Piatt &
Kitaysky 2002). Tufted Puffins also forage much further offshore than most other alcids and in
deeper waters along continental shelf breaks (Ostrand et al., 1998 & Menza et al., 2016).
Foraging in deeper waters may leave Tufted Puffins susceptible to downward movement of prey
species in the water column during high temperatures (Ostrand et al., 1998; Gjerdrum et al.,
2003). Further research around these biological and ecological factors can be combined with our
model results to further explore the mechanisms behind the temperature-range relationship for
Tufted Puffins (Ostrand et al., 1998; Piatt & Kitaysky, 2002).

In addition to uncovering causal mechanisms, current conservation efforts are beginning

to examine diverging population patterns among related birds, Rhinoceros Auklets (Cerorhinca
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monocerata), Cassin’s auklets (Ptychoramphus aleuticus) as well as Tufted Puffins along the
California Current (Grémillet & Boulinier, 2009; Morrison et al., 2011). While these three alcids
fill similar ecological roles, recent years have seen dramatic population swings varying among
species (e.g. EI-Nifio of 1997-98) (Morrison et al., 2011). Cassin’s auklets have displayed similar
ecological sensitivity to changing environmental conditions and have experienced recent large
scale mortality events as recently as 2015 (Syderman et al., 2006; Wolf et al., 2010; Hanson &
Wiles, 2015). Physiological and ecological differences between these related seabird species
such as forage radius, foraging depth, and diet composition may provide insights into the
mechanisms responsible for these differences in population trends among species (Syderman et
al., 2001; Wolf et al., 2009; Wolf et al., 2010; Morrison et al., 2011). For example, using SDMs
to model multiple species may provide insights into the relative influence of climate change on

populations trends (Johnson et al., 2017).

Conclusion

Our analysis shows a strong negative correlation between warm summer temperatures
and Tufted Puffin nesting range, particularly along the California Current. Construction of SDMs
utilizing two different emissions scenarios for the year 2050 show southern range contraction
and suggest a high risk of Tufted Puffin extirpation in the California Current large marine
ecosystem. Ensemble projections support preliminary analyses suggesting that temperature is
driving the current puffin population declines and colony loss. SDM model results can provide
valuable input for conservation decision processes. Specifically, our work provides the
foundation for evaluatieq the threat of climate change and increased summer temperatures on

Tufted Puffin breeding range.
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Table 1(on next page)

Environmental variables, measurements and units.

Environmental variables, measurements and units.
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Environmental Variable Measurement Unit

Annual Temperature Range Maximum temperature — minimum temperature °C
(ATR)

Mean diurnal range Mean of monthly (max temp-min temp) °C
(MDR)

Mean temperature of the warmest Mean temperature of warmest quarter °C

quarter (MTWQ)
Annual Precipitation Annual Precipitation cm
(AP)
Precipitation of the warmest Precipitation of warmest quarter cm
quarter (PWQ)

Distance to ocean Distance of grid cell to ocean km

(DIST)
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Table 2(on next page)

Time periods corresponding to model biological and environmental inputs.

Time periods corresponding to model biological and environmental inputs.
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Climate Data Biological Data
Past Period 1910-1950 Habitat projections
Current Period 1950-2000 1950-2009
Future 2050 IPCC Habitat projections

RCP 4.5, RCP 8.5
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Table 3(on next page)

Evaluation metrics and range change analysis.

Evaluation metrics and range change analysis for ensemble model and by model algorithm
(N=40). A) Model area under the receiver operating characteristic curve (AUC) and true skill
statistic (TSS) for ensemble model and by algorithm. AUC represents sensitivity rate (true
positive) against 1-specificity values (false positive) and TSS represents (sensitivity +
specificity - 1). Scores presented are mean plus or minus standard deviation B) Percent of
projected change in range by model algorithm. North America-wide and U.S. California
Current (32°N-48.5°N) independent analyses. Both RCP 4.5 (4.5 also shaded light grey) and
RCP 8.5 (8.5 also shaded darker grey) represented. Scores presented are mean plus or minus

standard deviation.
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Ensemble GLM GBM RF
A) Model Evaluation
AUC 995 .979 £ .006 .989 £+ .004 989 £.003
TSS 924 .854 £.023 904 +.017 915+£.014
B) % Range Change
4.5 Species-Wide -18.14 -16.32+17.59 | -15.45+£10.90 | -24.77 £20.00
California Current | -93.75 -88.55£26.60 | -30.15+£19.49 | -30.34 + 18.06
85 Species-Wide -24.57 -22.94 £21.38 | -16.56 £12.99 | -29.47 +22.82
California Current | -93.75 -88.61 £26.18 | -30.02 £ 18.94 | -31.36 £19.76
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Figure 1

GLM model algorithm variable response plots.

Response curves across GLM algorithms for all environmental variables. Each line represents
one GLM model run (N=40). Y-axis displays probability of occurrence. X-axis displays
environmental variable values, with each tick on X-axis representing value of one data point.

Results display distinct cutoffs between ATR, MTWQ and occurrence probability.
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Figure 2

Principal component analysis.

Principal component analysis loadings 1 and 2 (95% confidence ellipses) for occupied and

unoccupied nesting colonies.
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Figure 3

North-America-wide habitat projection maps.

Tufted Puffin breeding habitat range projection maps. Probabilistic maps, color bins display
percent probability of grid cell representing suitable habitat. A) Current projections. B) 2050
projections under RCP 4.5. C) 2050 projections under RCP 8.5. Map data © 2017 Google
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Figure 4

California Current habitat projection maps.

Tufted Puffin breeding habitat range projection maps exclusive to the California Current (
32°N-48.5°N). Probabilistic maps, color bins display percent probability of grid cell
representing suitable habitat. A) Current projections. B) 2050 projections under RCP 4.5. C)
2050 projections under RCP 8.5.
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Figure 5

Histogram of habitat loss in the California Current with no migration.

Histogram displaying the amount of current California Current Extent suitable habitat
projected to become unsuitable by 2050 under RCP 8.5 (N=120). Colors represent model

algorithms. In this analysis, there is an assumption of no migration or dispersal to potentially

suitable new habitat.
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