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ABSTRACT
Background. Previous studies have shown that the mammalian thalamus is a key
structure for anesthesia-induced unconsciousness and anesthesia-awakening regula-
tion. However, both the dynamic characteristics and probable lateralization of thalamic
functioning during anesthesia-awakening regulation are not fully understood, and little
is known of the evolutionary basis of the role of the thalamus in anesthesia-awakening
regulation.
Methods. An amphibian species, the South African clawed frog (Xenopus laevis) was
used in the present study. The frogs were immersed in triciane methanesulfonate
(MS-222) for general anesthesia. Electroencephalogram (EEG) signals were recorded
continuously from both sides of the telencephalon, diencephalon (thalamus) and
mesencephalon during the pre-anesthesia stage, administration stage, recovery stage
and post-anesthesia stage. EEG data was analyzed including calculation of approximate
entropy (ApEn) and permutation entropy (PE).
Results. Both ApEn and PE values differed significantly between anesthesia stages,
with the highest values occurring during the awakening period and the lowest values
during the anesthesia period. There was a significant correlation between the stage
durations and ApEn or PE values during anesthesia-awakening cycle primarily for the
right diencephalon (right thalamus). ApEn and PE values for females were significantly
higher than those for males.
Discussion. ApEn and PEmeasurements are suitable for estimating depth of anesthesia
and complexity of amphibian brain activity. The right thalamus appears physiologically
positioned to play an important role in anesthesia-awakening regulation in frogs
indicating an early evolutionary origin of the role of the thalamus in arousal and
consciousness in land vertebrates. Sex differences exist in the neural regulation of
general anesthesia in frogs.

Subjects Neuroscience, Zoology
Keywords General anesthesia, Thalamus, Xenopus laevis, Approximate entropy (ApEn),
Lateralization, Permutation entropy (PE)

How to cite this article Fan et al. (2018), The right thalamus may play an important role in anesthesia-awakening regulation in frogs.
PeerJ 6:e4516; DOI 10.7717/peerj.4516

https://peerj.com
mailto:fanggz@cib.ac.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.4516
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.4516


INTRODUCTION
General anesthesia (GA) is a drug-induced depression of the central nervous system (CNS)
that permits long-term operations and experimental studies requiring invasive procedures
(Antognini, Barter & Carstens, 2005; Goddard & Smith, 2013), which is characterized by
unawareness or unconsciousness, analgesia and immobilization (Brown, Lydic & Schiff,
2010; Franks, 2008; Pocock & Richards, 1993). Previous studies have shown that specific
brain regions, including themidbrain reticular formation, thalamus and some brain regions
located within the parietal and frontal association cortex, are more sensitive to anesthesia
than others (Heinke & Koelsch, 2005). Furthermore functional-brain-imaging data in
humans reveal suppression of activity in specific brain areas including thalamic nuclei and
the midbrain reticular formation during general anesthesia (Alkire, Haier & Fallon, 2000).
Anesthetics can suppress cortico-thalamo-cortical activity and produce unconsciousness
by reducing membrane excitability in the thalamo-cortical loop, which has been proposed
to play a crucial role in the anesthesia-awakening cycle (Ries & Puil, 1999). In particular,
many neurons within the thalamus exhibit anatomical and physiological specializations
which support large-scale cerebral dynamics related to consciousness (Domino, 1968). Thus
the thalamus, as an information hub, seems well positioned to function as a key region
for regulation of anesthesia-induced unconsciousness by gating sensory information
processing (Franks, 2008; Ries & Puil, 1999). Nevertheless, the dynamic properties of the
thalamus during the anesthesia-awakening cycle remain unclear.

Lateralization or asymmetry of cerebral function, has been described in many vertebrate
and invertebrate taxa (Lippolis et al., 2002; Rogers, 2014; Rogers et al., 2013; Rogers &
Vallortigara, 2015; Rogers & Vallortigara, 2017; Rosa-Salva et al., 2012; Roussigné, Blader
& Wilson, 2012; Vallortigara et al., 1998), and appears to be a fundamental aspect of
nervous system organization. Brain lateralization may enable simultaneous channeling
of different types of information into lateralized brain circuits thereby enabling separate
and parallel processing in the two hemispheres (Dadda et al., 2009; Fang et al., 2014; Rogers
& Vallortigara, 2015; Rogers, Vallortigara & Andrew, 2013; Vallortigara & Rogers, 2005).
Relatively few neurophysiological studies have focused on whether regulation of general
anesthesia is also asymmetric. The purpose of this paper is to investigate the neural
mechanisms of general anesthesia in an amphibian species, the South African clawed
frog (Xenopus laevis), an important animal model for developmental and genetic studies
(Schultz & Dawson, 2003), which has been frequently used for basic vertebrate nervous
system functioning (Guénette, Giroux & Vachon, 2013), to test the theory that lateralized
thalamic general anesthesia regulation is an evolutionarily conserved feature of land
vertebrates.

The electroencephalogram (EEG) reflects the summedpost-synaptic potentials generated
by pyramidal cells of the cerebral cortex and can be recorded on the surface of the scalp
(Muthuswamy, Roy & Sharma, 1996). Though the EEG allows assessing brain activity
during different anesthesia stages, results of traditional linear analysis based on raw EEG
data are difficult to interpret precisely (Billard et al., 1997; Bruhn et al., 2006; Katoh, Suzuki
& Ikeda, 1998; Mahon et al., 2008). This is because neuronal ensembles exhibit important
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nonlinear behaviors whose characteristics can only be adequately described using nonlinear
parameters (Bruhn, Röpcke & Hoeft, 2000; Burioka et al., 2005). Among these methods,
both approximate entropy (ApEn) and permutation entropy (PE) are statistical parameters
that can quantify randomness and the predictability of a time series and can be used to
depict the complexity of EEG signals and the effects of anesthetic drugs on the CNS (Bruhn,
Röpcke & Hoeft, 2000; Fan et al., 2011; Li, Cui & Voss, 2008; Liang et al., 2015; Ouyang et
al., 2010; Pincus, 1991).

The amphibian brain exhibits the same segmental architecture as birds, reptiles and
mammals including humans and is composed of the telencephalon, diencephalon,
mesencephalon, metencephalon and myelencephalon (Wilczynski & Endepols, 2007).
The diencephalon consists of two main cellular aggregates, the thalamus dorsally and
the hypothalamus ventrally, which exhibit the same general patterns of connectivity as
amniotes (Butler, 1995; Laberge et al., 2008). Anatomically the diencephalon is caudal to
the telencephalon and rostral to the mesencephalon and located below the skull at a
point where the cerebrum is disappearing. Thus, it is possible to implant electrodes in
the diencephalon and to obtain high signal-to-noise ratio EEG activity originating in the
thalamus.

Triciane methane sulfonate (MS-222), which can block motor activity and nociception
through relatively long term blockade of action potential initiation via voltage gated sodium
channels in the brain and muscles (Ramlochansingh et al., 2014), is widely used to induce
anesthesia for amphibians (Downes, 1995; Lalonde-Robert, Beaudry & Vachon, 2012). In
addition, a previous EEG study demonstrated that MS-222 can lead to profound CNS
depression and is capable of causing unconsciousness in X. laevis (Lalonde-Robert et al.,
2012). For example, X. laevis can be anesthetized effectively with concentrations ranging
from 1 to 5g/L MS-222 solution (Torreilles, McClure & Green, 2009).

This study was conducted on X. laevis frogs with implanted electrodes in the
telencephalon, diencephalon and mesencephalon, respectively. The animals were general
anesthetized by immersion inMS-222. EEG signalswere obtained during the pre-anesthesia,
administration, recovery and post-anesthesia stages and were recorded continuously. The
ApEn and PE for each stage were calculated in order to explore the relationships between
neural activities recorded in each brain area across the anesthesia-awakening cycle including
possible functional lateralization for general anesthesia regulation.

MATERIAL AND METHODS
Animal
Fourteen South African clawed frogs of both sexes (seven males and seven females) bred in
the lab were used in the present study. The subjects were separated by sex and raised in two
aquaria (120× 50 cm and 60 cm deep) with water depth approximately 20 cm. The animals
were fed every three days and the water was replaced once a week. The aquaria were placed
in a room in which the temperature was maintained at 20 ± 1 ◦C with a 12/12 light-dark
cycle (lights on at 08:00 h). The subjects measured 8.1 ± 1.1 cm (mean ± SD) in body
length and 67.1 ± 22.2 g in body mass at the time of surgery. All surgery was performed
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under MS-222 anesthetic, and all efforts were made to minimize discomfort. All animal
procedures were carried out in accordance with the Animal Care and Use Committee of
Chengdu Institute of Biology, Chinese Academy of Sciences (Approval number: 2016005).

Surgery
All experiments were conducted during April to May (this species breeds between April
and September in our lab), 2016. The animals were deeply anesthetized via water bath using
500 ml of MS-222 solution (3.5 g/L) and buffered by adding sodium bicarbonate to achieve
a neutral pH (7.0–7.4). The optimum depth of anesthesia for surgery was determined to be
when the withdrawal reflex to toe pinching (i.e., the toe pinch response by grasping a digit
with the tweezers) is lost, i.e., responsiveness to pinch limb test is used as a proxy for testing
consciousness status. MS-222 solution was wiped to the animal’s skin using a cotton swab
when it was necessary during surgery. The animals were wrapped with wet cotton gauze.
Seven cortical EEG electrodes, composed of miniature stainless steel screws (ϕ 0.8 mm),
were inserted in the skull by turning 3.5 rotations to implant at a depth of about 1.1 mm:
the left and right sides of the telencephalon, diencephalon and mesencephalon (LT, RT,
LD, RD, LM and RM) and referenced to the electrode above the cerebellum (P) (Fig. 1).
Ten seconds of typical EEG waves are presented along with the corresponding electrode
pairs in Fig. 1. The electrodes above LT and RT were implanted bilaterally 6.4 mm anterior
to the lambda (i.e., the vertex where the skull sutures intersect) and 1.0 mm lateral to
the midline respectively, and the electrodes above LD and RD were implanted bilaterally
3.4 mm anterior to the lambda and 1.0 mm lateral to the midline respectively, while the
electrodes above LM and RM were implanted bilaterally 1.4 mm anterior to the lambda
and 1.0 mm lateral to the midline, respectively. P was implanted 1.0 mm posterior to the
lambda at the midline (Fig. 1). One end of all electrode leads, formvar-insulated nichrome
wires, was twined tightly on the screws and fixed on the skull of the frog with dental
acrylic, while the other end was soldered to the pins of the light connector. Finally, the
skin edges and muscles surrounding the wound were treated with the ointment with triple
antibiotic and pain relief (CVS pharmacy, Woonsocket, RI, USA) to prevent infection and
discomfort.

Each frog was housed individually for one day for recovery before the following
experiments were performed. After the end of all experiments, the subjects were euthanized
by immersion inMS-222 solution for a prolonged period of time and the electrode locations
were confirmed by injecting hematoxylin dye through the skull holes inwhich the electrodes
had previously been installed (Fig. S1).

Data acquisition
The experiments were performed in a soundproof and electromagnetically shielded
chamber in which the background noise was 24.3 ± 0.7 dB (mean ± SD) within a
transparent plastic box with a floor area of 18 × 11 cm2, an upper cover area of 20 ×
13 cm2 and 12 cm in height. A sponge (17 ×10× 1 cm) which had absorbed about 200
ml of water was placed at the bottom of the box. Lights and temperature in the chamber
were maintained as in the housing room. A video camera with an infrared light source
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Figure 1 Electrode placements and 10 s of typical artifact-free EEG tracings for each channel during
Stage I. The intersection of the three dashed lines in the head of X. laevis denotes the lambda (i.e., the ver-
tex where the skull sutures intersect). Abbreviations: LT and RT, the left and right telencephalon; LD and
RD, the left and right diencephalon; LM and RM, the left and right mesencephalon.

Full-size DOI: 10.7717/peerj.4516/fig-1

and motion detector was appended centrally approximately 40 cm above the box for
monitoring the subject’s behavior from outside the chamber.

Before the experiments began the subject was connected to the signal acquisition system
(RM6280C; Chengyi, Sichuan, China). Both EEG and behavioral data were recorded during
four stages: (1) During Stage I, the awake animal was placed in the experimental box and
free to move for 30 min before anesthesia; in fact the subject usually kept immobility with
its head towards one corner of the box; (2) during Stage II, the subject was transferred
to another box (of the same size within the experimental chamber) containing a 200 ml
MS-222 solution (3.5 g/L) with a depth about 1 cm, in which the subject was immersed
for about 5 min until the toe pinch response (grasping one of the four frog’s digits selected
randomly every 30 s) disappeared, and then subsequently removed quickly from the
MS-222 solution; (3) Stage III was defined as the time period between returning the subject
to the experimental box and the moment locomotor activity first reappeared while one of
the digits was selected randomly to touch every 30 s by a cotton swab; (4) during Stage
IV the recovered animal was allowed to produce voluntary movements for 30 min after
anesthesia.

Approximate entropy (ApEn)
ApEn is a measure of irregularity or complexity of a dynamical system as proposed
by Pincus (Pincus, 1991), which is particularly effective for analyzing short and noisy
time-series data and which can categorize a wide variety of systems ranging from multi
periodic, stochastic to mixed systems (Pincus, 1995a; Pincus, 1995b). Since ApEn is a
basically model-independent regularity statistic unrelated to signal magnitude and can
be applied to relatively noisy and non-stationary physiological time series of short length
(Pincus, 1991; Pincus, 1995a; Pincus, 1995b), it is one of the most widely used nonlinear
methods in the field of anesthesia and EEG (Bruhn, Bouillon & Shafer, 2001; Bruhn, Röpcke
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& Hoeft, 2000; Bruhn et al., 2000; Fan et al., 2011; Hudetz, 2002; Hudetz, Wood & Kampine,
2003; Koskinen et al., 2006; Kreuzer et al., 2010; Noh et al., 2006; Sleigh et al., 2004). The
procedure for estimating ApEn is described as follows.

For a given time series u(i),i= 1,...,N from measurements equally in time, form a
sequence of vectors that are defined by

X(i)= [u(i),u(i+1),...,u(i+m−1)],i= 1,...,N −m+1 (1)

where m is the embedding dimension of phase space. The distance between vectors X(i)
and X(j) can be defined as

d[X(i),X(j)] = max
k=1,2,...,m

∣∣u(i+k−1)−u(j+k−1)∣∣. (2)

For a given i≤ N −m+ 1, Nm(i) is the number of j in dimension m such that
d
[
X (i),X

(
j
)]
≤ r , then Cm

i (r) is defined as

Cm
i (r)= (N −m+1)−1Nm(i) (3)

where r is the tolerance (i.e., previous setting of minimal distance between vectors X(i) and
X(j)). Next step is to compute the natural logarithm of each Cm

i (r) and average it over i

∅m(r)= (N −m+1)−1
N−m+1∑

i=1

lnCm
i (r). (4)

Then increase the embedding dimension, i.e., from m to m+1. Repeat steps (3)–(4) to
obtain Cm+1

i (r) and φm+1(r).
Finally, ApEn can be calculated as

ApEn(m,r,N )=φm(r)−φm+1(r). (5)

Mathematically, ApEn measures the likelihood that runs of patterns which are close for
m observations will remain close on the following incremental comparisons (Jaušovec &
Jaušovec, 2010). Thus, ApEn is a non-negative number calculated from a time series using
the above protocols. Smaller values of ApEn imply a stronger regularity or persistence in
the time series while larger values indicate greater fluctuation or irregularity. Usually the
parameterm is set to 1 or 2 (m= 2 recommended) while r can range from 0.1 to 0.25 times
the SD of the original data sequence (Pincus, 1991).

Permutation entropy (PE)
Bandt and Pompe recently proposed a new permutation method to map a continuous
time series onto a symbolic sequence, where the statistics of the symbolic sequences are
called permutation entropy (PE) (Bandt & Pompe, 2002). PE is an appropriate complexity
measure for chaotic time series, in particular in the presence of dynamical and observational
noise. The advantages of PE are its simplicity, extremely fast calculation, its robustness and
invariancewith respect to non-linearmonotonous transformations (Bandt & Pompe, 2002).

Given a time series xt , (t = 1,2,3...), an embedding procedure forms vectors
Xt [xt ,xt+τ ,...xt+mτ ] with the embedding dimension m and the lag τ . The vector Xt
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can be arranged in an increasing order. For different m, there will be m! possible order
patterns, which are also called permutations. Considering each permutation as a symbol,
the vectors Xt can be represented by a symbol sequence; the distinct number of symbols
(J) should be less than or equal to m!, namely J ≤m! For the time series xt , the probability
distributions of the distinct symbols are defined as p1,p2,...pj ; the PE of this time series is
defined by

Hp(m)=−
J∑

j=1

pj lnpj . (6)

The corresponding normalized entropy can be defined as follows:

Hp=Hp(m)/ln(m!). (7)

The largest value of Hp is one, meaning the time series is completely random; while
the smallest value of Hp is zero, meaning the time series is very regular. In short, the
permutation entropy refers to the local order structure of the time series, which can give a
quantitative complexity measure for a dynamical time series.

PE calculation depends on the selection of time interval N and embedding dimension
m. When m is too small (less than 3), the scheme will not work well since there are
only a few distinct states for EEG recordings. For practical purposes, m= 3, . . . , 7
is recommended (Bandt & Pompe, 2002), and that for a long EEG recording, a large
value of m is better (Li, Cui & Voss, 2008). On the other hand, the length of the EEG
recording should be larger than m! in order to achieve a proper differentiation between
deterministic and stochastic dynamics (Li et al., 2014; Ouyang et al., 2010). In addition, to
allow every possible order pattern of dimension m to occur in a time series of length N,
the condition m! ≤N − (m−1)τ must hold. Moreover, N �m!+ (m−1)τ is required
to avoid undersampling (Amigó, Zambrano & Sanjuán, 2007). For this reason, given
m dimensions, we need to choose N � (m+1)!. Since this study concentrates on the
detection of dynamical changes in the EEG recording, too large a value of m or N would
be inappropriate. Therefore m= 5 and N = 1,000 were used for calculating PE in the light
of previous studies (Li, Cui & Voss, 2008; Liang et al., 2015; Ouyang et al., 2010).

Data processing
In order to evaluate the appropriate parameters for ApEn, five minutes of EEG data during
Stage I were selected randomly. After band-pass filtering (0.5–45 Hz) and downsampling
at 256 Hz, r and N were determined by calculating ApEn (m, r, N ) with increasing r
from 0.1 to 0.4 SD in steps of 0.05 and N from 100 to 2,000 in steps of 100 for a few
randomly selected EEG segments while m= 2. ApEn reached its maximum on a plateau
whenN = 500 and this plateau was stable only when r = 0.15 SD. Therefore, in the present
study, ApEn for EEG data was computed using a slide window of N = 512 (2 s of the
EEG signal) overlapping N /2 for each step while r = 0.15 SD, to yield an ApEn vector.
Furthermore, in accordance with previous studies (Li, Cui & Voss, 2008; Liang et al., 2015;
Ouyang et al., 2010), each epoch with N = 1,000 (i.e., 10 s of the EEG signal) overlapping
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N/2 was used after band-pass filtering (0.5–45 Hz) and downsampling at 100 Hz for
calculating PE.

Any epoch with an amplitude extremum beyond±100 µv was discarded as artifact. The
designation of artifact in one channel resulted in removal of data in all other channels in
order to ensure that datasets derived from all channels were derived from the same time
periods. ApEn or PE was then averaged for each stage, each channel and each subject based
on artifact-free epochs.

Statistical analyses
The normality of the distribution and homogeneity of variance for ApEn and PE values were
estimated with the Shapiro–WilkW test and Levene’s test, respectively. ApEn and PE values
were statistically analyzed using a three-way repeated measured ANOVA with the variables
of ‘‘sex’’ (male/female), ‘‘stage’’ (Stages I, III and IV, Stage II was not included because of
too many artifacts), and ‘‘brain area’’ (LT, RT, LD, RD, LM and RM). Both main effects
and interactions were examined. For significant ANOVAs, data were further analyzed for
multiple comparisons using the least-significant difference (LSD) test. Greenhouse-Geisser
epsilon (ε) values were employed when the Greenhouse-Geisser correction was necessary.
Estimations of the effect size for ANOVAswere determinedwith partial η2 (partial η2= 0.20
is a small effect size, 0.50 is a medium effect size and 0.80 is a large effect size). Furthermore,
Spearman’s correlation test was used to calculate the correlation between ApEn or PE values
and stage durations. In addition, the Mann–Whitney U-test was used to compare stage
durations between sexes for Stages II and III, respectively. SPSS software (release 21) was
utilized for the statistical analysis. A significance level of p< 0.05 and a high significance
level of p< 0.001 were used for all comparisons.

RESULTS
ApEn and PE values in different anesthesia-awakening stages
For ApEn values, ANOVA analysis (Table 1) revealed significant main effects for the
factors ‘‘stage’’ (F2,24 = 25.127; p= 0.000; partial η2 = 0.677) and ‘‘sex’’ (F1,12 = 5.033;
p= 0.045; partial η2= 0.295) but marginally non-significant effect for the factor ‘‘brain
area’’ (F5,60= 2.373; p= 0.050; partial η2= 0.165), but no significant interaction between
factors was observed. ApEn values in Stage III (the recovery stage) were significantly lower
than those in both Stages I (the awake stage) and IV (post-anesthesia stage) (p< 0.05),
however there was no significant difference between Stages I and IV (Table 1 and Fig. 2).
In addition, ApEn values for females were significantly higher than the values for males
(Table 1).

For PE values, ANOVA analysis (Table 2) showed significant main effects for the factors
‘‘stage’’ (F2,24 = 10.489; p= 0.001; partial η2 = 0.466), ‘‘sex’’ (F1,12 = 7.895; p= 0.016;
partial η2= 0.397) and ‘‘brain area’’ (F5,60= 10.584; p= 0.000; partial η2= 0.469). Similar
to ApEn, PE values in Stage III (the recovery stage) were significantly lower than those in
both in Stages I (the awake stage) and IV (post-anesthesia stage) (p< 0.05), however there
was no significant difference between Stages I and IV (Table 2 and Fig. 2). Similarly, PE
values for females were significantly higher than PE values for males (Table 2). In addition,
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Table 1 Results of ANOVA for ApEn as a function of the factors ‘‘stage’’, ‘‘sex’’ and ‘‘brain area’’.

Factors F ε p partial η2 LSD

Stage F2,24= 25.127 NA 0.000** 0.677 I, IV> III
Sex F1,12= 5.033 NA 0.045* 0.295 Female>Male
Brain area F5,60= 2.373 NA 0.050 0.165 NA
Stage * Sex F2,24= 2.315 NA 0.120 0.162 NA
Brain area * Sex F5,60= 0.903 NA 0.485 0.070 NA
Stage * Brain area F10,120= 2.554 0.364 0.057 0.175 NA
Stage * Sex * Brain area F10,120= 1.396 NA 0.190 0.104 NA

Notes.
The symbols ‘>’ denote that approximate entropy (ApEn) values for the given condition on the left side of ‘>’ are significantly
larger than those on the right side, and no significant difference exists among the corresponding conditions on the same side of
‘>’ for each case.
Abbreviations: F , the F value from ANOVA; ε, the values of epsilon of the Greenhouse-Geisser correction; partial η2, effect
size for ANOVA; LSD, least-significant difference test; I, Stage I; II, Stage II; III, Stage III; NA, not applicable.
*p< 0.05.
**p< 0.001.
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Figure 2 The dynamic variations of approximate entropy (ApEn) values (A) and permutation en-
tropy (PE) values (B) for the six brain regions for a randomly selected individual.Note that epochs with
artifact were not included. Since the time windows for ApEn (2 s) and PE (10 s) were different, the du-
ration of a given artifact free epoch for the former was shorter than for the latter; thus, the durations of
each stage for the former are longer than for the latter. Abbreviations: LT and RT, the left and right telen-
cephalon; LD and RD, the left and right diencephalon; LM and RM, the left and right mesencephalon; I,
Stage I (pre-anesthesia stage); II, Stage II (administration stage); III, Stage III (recovery stage); IV, Stage IV
(post-anesthesia stage).

Full-size DOI: 10.7717/peerj.4516/fig-2

PE values for the right mesencephalon were significantly higher than those for other brain
areas, while PE values for both sides of the diencephalon and the left mesencephalon were
significantly higher than those for the left telencephalon, and that PE values for the right
diencephalon were significantly higher than those for the right telencephalon (Table 2).

Unlike ApEn, the interaction between the factors ‘‘stage’’ and ‘‘brain area’’ was significant
for PE (F10,120 = 6.665; p= 0.000; partial η2 = 0.357; Table 2). Simple effects analysis
showed that PE values for the right mesencephalon during a given stage were significantly
higher than those for other brain areas (F5,65 = 6.583, ε = 0.480, p= 0.003, partial
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Table 2 Results of ANOVA for PE as a function of the factors ‘‘stage’’, ‘‘sex’’ and ‘‘brain area’’.

Factors F ε p partial η2 LSD

Stage F2,24= 10.489 NA 0.001* 0.466 I, IV> III
Sex F1,12= 7.895 NA 0.016* 0.397 Female>Male
Brain area F5,60= 10.584 NA 0.000** 0.469 RM> LT, RT, LD, RD, LM

LD, RD, LM> LT
RD> RT

Stage * Sex F2,24= 0.961 NA 0.397 0.074 NA
Brain area * Sex F5,60= 0.512 NA 0.766 0.041 NA

Stage * Brain
area

F10,120= 6.665 NA 0.000** 0.357 See Table 3

Stage * Sex *
Brain area

F10,120= 1.331 NA 0.222 0.100 NA

Notes.
The symbols ‘>’ denote that permutation entropy (PE) values for the given condition on the left side of ‘>’ are significantly
larger than those on the right side, and no significant difference exists among the corresponding conditions on the same side of
‘>’ for each case.
Abbreviations: F , the F value from ANOVA; Partial η2, effect size for ANOVA; ε, the values of epsilon of the Greenhouse-
Geisser correction; LSD, least-significant difference test; I, Stage I; III, Stage III; IV, Stage IV; LT, left telencephalon; RT,
right telencephalon; LD, left diencephalon; RD, right diencephalon; LM, left mesencephalon; RM, right mesencephalon;
NA, not applicable.
*p< 0.05.
**p< 0.001.

η2= 0.336 in Stage I; F5,65= 8.642, p= 0.000, partial η2= 0.399 in Stage III; F5,65= 13.395,
p= 0.000, partial η2 = 0.507 in Stage IV; Table 3) although the difference between the
left and right mesencephalon did not reach statistical significance. In addition, PE values
for the right diencephalon during Stage III (the recovery stage) were significantly higher
than those for both sides of the telencephalon while PE values for the left diencephalon
during stages I and IV were significantly higher than values for the left telencephalon. For
each brain area, PE values for Stages I and IV were significantly higher than that in Stage
III (F2,26= 13.942, p= 0.000, partial η2= 0.517 for the left telencephalon; F2,26= 12.234,
p= 0.000, partial η2= 0.485 for the right telencephalon; F2,26= 10.603, p= 0.000, partial
η2= 0.449 for the left diencephalon; F2,26= 5.926, p= 0.008, partial η2= 0.313 for the
right diencephalon; F2,26= 9.289, p= 0.001, partial η2= 0.417 for the left mesencephalon;
F2,26= 6.507, p= 0.005, partial η2= 0.334 for the right mesencephalon; Table 3), although
the difference between Stages III and IV did not reach statistical significance for the right
diencephalon. Moreover, PE values for Stage I was higher than that in Stage III for both
sides of the telencephalon and the left diencephalon.

Stage durations vs. ApEn or PE values
Correlation analysis was used to determine whether the durations of the anesthesia stages
(Stages II and III) were associated with ApEn or PE values for each brain area and each
stage. For ApEn measurement, significant correlations between stage durations and ApEn
values were found exclusively for the right hemisphere, especially for the right thalamus
(Table 4 and Fig. 3). ApEn values in Stage I were positively correlated with the duration
of Stage II for the right diencephalon, i.e., the right thalamus (r = 0.534, p= 0.049;
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Table 3 Results of simple effects analysis for PE as a function of the factors ‘‘stage’’ and ‘‘brain area’’.

Factors F ε p partial η2 LSD

Stage
I F5,65= 6.583 0.480 0.003* 0.336 RM>LT, RT, LD, RD, LM

LD >LT
III F5,65= 8.642 NA 0.000** 0.399 RM>LT, RT, LD, RD, LM

RD >LT, RT
IV F5,65= 13.395 NA 0.000** 0.507 RM>LT, RT, LD, RD

LM>LT, RT, LD
LD>LT

Brain area
LT F2,26= 13.942 NA 0.000** 0.517 I>IV>III
RT F2,26= 12.234 NA 0.000** 0.485 I>IV>III
LD F2,26= 10.603 NA 0.000** 0.449 I>IV>III
RD F2,26= 5.926 NA 0.008* 0.313 I>III
LM F2,26= 9.289 NA 0.001* 0.417 I, IV>III
RM F2,26= 6.507 NA 0.005* 0.334 I, IV> III

Notes.
The symbols ‘>’ denote that permutation entropy (PE) values for the given condition on the left side of ‘>’ are significantly
larger than those on the right side, and no significant difference exists among the corresponding conditions on the same side of
‘>’ for each case.
Abbreviations: F , the F value from ANOVA; Partial η2, effect size for ANOVA; ε, the values of epsilon of the Greenhouse-
Geisser correction; LSD, least-significant difference test; I, Stage I; III, Stage III; IV, Stage IV; LT, left telencephalon; RT,
right telencephalon; LD, left diencephalon; RD, right diencephalon; LM, left mesencephalon; RM, right mesencephalon;
NA, not applicable.
*p< 0.05.
**p< 0.001.

Table 4 and Figs. 3A–3C), while ApEn values in Stage III were negatively correlated with
the duration of Stage III for the right hemisphere (r =−0.591, p= 0.026 for the right
telencephalon; r =−0.600, p= 0.023 for the right thalamus; r =−0.552, p= 0.041 for the
right mesencephalon; Table 4 and Figs. 3D–3F). Moreover, ApEn values in Stage IV were
negatively correlated with the duration of Stage III for the right thalamus (r =−0.609,
p= 0.021; Table 4 and Fig. 3H). Similar to ApEn, significant correlations between stage
durations and PE values were found exclusively for right brain areas (Table 5 and Fig. 4).
PE values in Stage II were negatively correlated with the duration of Stage III for the right
thalamus and the right mesencephalon (r =−0.670, p= 0.009 for the former; r =−0.543,
p= 0.045 for the latter; Table 5 and Figs. 4B–4C), while PE values in Stage III were negatively
correlated with the duration of Stage III for the right hemisphere (r =−0.578, p= 0.030
for the right telencephalon; r =−0.543, p= 0.045 for the right thalamus; r =−0.675,
p= 0.008 for the right mesencephalon; Table 5 and Figs. 4D–4F). In addition, the duration
of the administration stage for females was significantly longer than that for males (U = 7,
p= 0.025; Table 6), while the duration of the recovery stage for female was shorter than
that for males (U = 13, p= 0.142; Table 6).
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Table 4 Results of the correlation analysis between ApEn and the duration of a given stage.

LT RT LD RD LM RM

r p r p r p r p r p r p

Duration (II) vs. ApEn (I) 0.446 0.110 0.525 0.054 0.424 0.131 0.534 0.049* 0.433 0.122 0.481 0.081
Duration (II) vs. ApEn (II) −0.068 0.817 0.196 0.503 −0.002 0.994 0.305 0.288 0.231 0.427 0.284 0.326
Duration (II) vs. ApEn (III) 0.253 0.383 −0.051 0.864 0.182 0.533 −0.042 0.887 0.323 0.260 −0.042 0.887
Duration (II) vs. ApEn (IV) −0.042 0.887 −0.046 0.876 −0.222 0.446 −0.305 0.288 0.112 0.703 0.029 0.923
Duration (III) vs. ApEn (I) −0.077 0.794 −0.165 0.573 −0.112 0.703 −0.231 0.427 0.002 0.994 −0.191 0.513
Duration (III) vs. ApEn (II) −0.248 0.392 −0.204 0.483 −0.499 0.069 −0.266 0.358 −0.433 0.122 −0.310 0.281
Duration (III) vs. ApEn (III) −0.380 0.180 −0.591 0.026* −0.407 0.149 −0.600 0.023* −0.442 0.114 −0.552 0.041*

Duration (III) vs. ApEn (IV) −0.090 0.759 −0.495 0.072 −0.051 0.864 −0.609 0.021* −0.051 0.864 −0.323 0.260

Notes.
Abbreviations: r , correlation coefficient; LT, left telencephalon; RT, right telencephalon; LD, left diencephalon; RD, right diencephalon; LM, left mesencephalon; RM,
right mesencephalon; I, Stage I; II, Stage II; III, Stage III; IV, Stage IV.
*p< 0.05.
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Figure 3 Correlation analysis between ApEn and the duration of a given stage for the right
hemisphere. The correlation between the duration of Stage II and the approximate entropy (ApEn)
values of brain structures during Stage I for the right hemisphere (A–C), the correlation between duration
of Stage III and the ApEn values of Stage III for the right hemisphere (D–F), and the correlation between
the duration of Stage III and the ApEn values of Stage IV for the right hemisphere (G–I).

Full-size DOI: 10.7717/peerj.4516/fig-3
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Table 5 Results of the correlation analysis between PE and the duration of a given stage.

LT RT LD RD LM RM

r p r p r p r p r p r p

Duration (II) vs. PE (I) 0.451 0.106 0.354 0.215 0.358 0.208 0.130 0.659 0.130 0.659 −0.160 0.584
Duration (II) vs. PE (II) 0.248 0.392 0.477 0.085 0.130 0.659 0.446 0.110 0.371 0.191 0.248 0.392
Duration (II) vs. PE (III) 0.349 0.221 −0.015 0.958 0.024 0.935 −0.275 0.342 0.182 0.533 −0.147 0.615
Duration (II) vs. PE (IV) 0.081 0.782 0.138 0.637 0.200 0.493 −0.011 0.970 0.130 0.659 −0.191 0.513
Duration (III) vs. PE (I) 0.046 0.876 0.086 0.771 0.218 0.455 0.046 0.876 0.134 0.648 −0.007 0.982
Duration (III) vs. PE (II) −0.187 0.523 −0.530 0.051 −0.380 0.180 −0.670 0.009* −0.455 0.102 −0.543 0.045*

Duration (III) vs. PE (III) −0.521 0.056 −0.578 0.030* −0.490 0.075 −0.543 0.045* −0.495 0.072 −0.675 0.008*

Duration (III) vs. PE (IV) −0.231 0.427 −0.468 0.091 −0.130 0.659 −0.407 0.149 −0.143 0.626 −0.477 0.085

Notes.
Abbreviations: r , correlation coefficient; LT, left telencephalon; RT, right telencephalon; LD, left diencephalon; RD, right diencephalon; LM, left mesencephalon; RM,
right mesencephalon; I, Stage I; II, Stage II; III, Stage III; IV, Stage IV.
*p< 0.05.
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Figure 4 Correlation analysis between PE and the duration of a given stage for the right hemisphere.
The correlation between the duration of Stage III and the Permutation entropy (PE) values of brain struc-
tures during Stage II for the right hemisphere (A–C), and the correlation between duration of Stage III
and the PE values of Stage III for the right hemisphere (D–F).

Full-size DOI: 10.7717/peerj.4516/fig-4

DISCUSSION
Anesthesia-awakening cycle in ApEn or PE variation
During the awake period (Stage I) animals remain vigilant. Consistent with this the highest
ApEn or PE values reflect the demands placed on the brain for processing internal and
external stimuli accurately. During the administration stage (Stage II), the animals gradually
became motionless and ApEn or PE values decreased sharply (Fig. 2). At the point that
ApEn or PE decreased to the lowest level the animals became apparently unconscious
insofar as they exhibited no response to the limb pinching stimulus. During the recovery
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Table 6 Means and standard deviations of the durations of Stages II and III for females andmales.

Stages Female (min) Male (min) p

II 6.25± 1.14 4.78± 1.03 0.025*

III 99.47± 59.14 139.33± 53.95 0.142

Notes.
This table does not include Stages I and IV because the durations of these two stages were constant, i.e., 30 min.
Abbreviations: II, the administration stage; III, the recovery stage.
*p< 0.05.

stage (Stage III) ApEn and PE values increased gradually and the toe pinch response
reappeared.

ApEn and PE typically reflects the complexity and regularity of brain activity (Burioka et
al., 2005; Liang et al., 2015). High ApEn or PE values indicate high complexity, random and
unpredictable changes, whereas low ApEn or PE values indicate low complexity, regularity
and predictability of EEG signals (Burioka et al., 2005). In this study, we analyzed changes
in the ApEn and PE of EEG signals during the ‘‘pre-anesthesia, administration, recovery,
and post-anesthesia stages’’ cycle in X. laevis frogs, and found that there were significant
differences in ApEn or PE among these stages. ApEn and PE values were the highest when
awake (pre-anesthesia and post-anesthesia stages) and lowest during the administration
stage (Tables 1 and 2; Fig. 2).

The occurrence of the highest ApEn or PE values during the stages the frogs were awake
is consistent with the idea that at this time complex tasks (such as accurate perception
and the processing of internal and external stimuli) can be carried out by the brain
(Heinke & Koelsch, 2005). EEG ApEn and PE show a sharp decrease around the point of
loss-of-responsiveness during the administration stage, consistent with previous studies in
humans reporting that the transition into anesthetic unconsciousness is associated with
dramatic and abrupt changes in the population-average membrane voltage in cortical
neurons (Heinke & Koelsch, 2005). The present results indicate that both ApEn and PE
values reflect changes in the complexity of amphibian brain activities similar to those
found in human patients (Bruhn, Röpcke & Hoeft, 2000) across different stages in the
anesthesia-awakening cycle.

Right thalamus may play an important role in anesthesia-awakening
regulation
Both ApEn and PE can track EEG changes associated with different anesthesia states
although PE performs best; ApEn performs best in detecting neuron burst suppression
(Liang et al., 2015). Consistent with this, the main effects of the present results were similar
for ApEn and PE. In the present study, different anesthesia states manifested as behavioral
changes that would be expected to be closely related to neuron burst suppression, a
phenomenon that would physiologically reflect possible functional lateralization for
general anesthesia regulation. For this reason, the following discussion is mainly based on
the ApEn results.
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During Stage I (the pre-anesthesia stage), ApEn values in the right thalamus were
positively correlated with the duration of Stage II (the administration stage). This means
that as the complexity of right thalamic neural network activity increases during the pre-
anesthesia stage, induction time for general anesthesia increases. Since the complexity of
the EEG represents the activity level of specific brain regions, this correlation shows that the
right thalamus exhibits significant EEG pattern changes during the anesthesia-awakening
cycle. The results also show an inverse correlation between right thalamic ApEn values
in Stage IV and the duration of Stage III. This means that increased inhibition of right
hemispheric neural information processing activity results in longer recovery times and
that correspondingly, longer recovery times are associated with more inhibited thalamic
activity in the post-anesthesia stage. In addition, there was an inverse correlation between
right hemispheric ApEn values in Stage III and the duration of this stage, suggesting that
maintenance of higher activities in the right hemisphere (including the right thalamus)
during the recovery stage increases the likelihood that the subject will easily awaken. It
is therefore notable that the significant correlations between EEG ApEn and PE values
during the anesthesia-awakening cycle appeared primarily for the right diencephalon in
the present study (Tables 4 and 5; Figs. 3 and 4). Thus, it seems reasonable to hypothesize
that the right thalamus plays a key regulatory role in the anesthesia-awakening cycle.

The above described right-lateralized effects could not have resulted from the fact that
the habenular nuclei in amphibians are markedly asymmetrical in size insofar as the left
habenular complex consists of two distinct nuclei whereas the right habenular nucleus
consists of only one cell group (Schmidt, 1976). The habenular nucleus is a small bilateral
structure, located in the anterior dorsal diencephalon (i.e., the epithalamus), behind the
pineal gland, on either side of the third ventricle (Kemali & Braitenberg, 1969). In the
present study, the two diencephalic electrodes were situated immediately above the dorsal
thalamus which is the main source of subcortical inputs to the cerebral cortex (Harris,
Guglielmotti & Bentivoglio, 1996). In other words, asymmetric habenular nuclei could not
be responsible for the right-lateralized effects observed in the present results, consistent with
the idea that the right thalamus is of key importance in anesthesia-awakening regulation
in frogs.

The vertebrate CNS consists of anatomically and functionally distinct regions which
also differ in sensitivity to anesthetics (Heinke & Koelsch, 2005). Several sites in the brain
including the cerebral cortex, thalamus, limbic system and reticular formation have been
proposed to play key roles in the regulation of consciousness with the thalamo-cortical
circuitry as critically important for controlling consciousness and attention (Heinke &
Koelsch, 2005; Heinke & Schwarzbauer, 2002). The thalamus serves as a relay or a gate for
much of the sensory information projected to the telencephalon including the cortico-
thalamo-cortical pathway (Béhuret et al., 2013; Sherman & Guillery, 2002). Thus, as a
center of the brain, the thalamus has been characterized as a compact ‘miniature map’ of
the rest of the brain (Ward, 2011). Consistent with this idea, thalamic lesions can result
in profound cognitive disorders including delirium, aphasias, confusion, unconsciousness
and even death (Llinas et al., 1998; Ward, 2013). Recent studies using PET and fMRI
support the idea that the thalamus functions as a macroscopic locus (target) in which
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general anesthetics bring about the unconscious state in patients (Heinke & Koelsch, 2005)
and which is normally involved in regulating cortical arousal and the activities of cortical
networks (McCormick & Bal, 1997; Schiff, 2008; Steriade, 1996). Moreover, anesthetic-
induced unconsciousness is consistently associated with a reduction in metabolism or
blood flow in the thalamus, which indicates that the thalamus can act as a consciousness
switch (Alkire et al., 1997; Fiset et al., 1999). Our results suggest that the thalamus is the
crucial region for anesthesia-induced unconsciousness in frogs and regulates the amphibian
anesthesia-awakening cycle, similar to the condition in humans (Xie et al., 2011).

Although the role of the thalamus in conveying sensory input to the telencephalon is
firmly established in reptiles (Pritz, 2016), the cortico-thalamo-cortical loop remains to be
identified. However, human studies have shown that the loop modulates unconsciousness
under general anesthetics (Fiset et al., 1999) because arousal is elicited by the brainstem-
thalamus-cortex activating system (Steriade, 1996). As a central node of these brain
networks, the thalamus plays an important role in supporting consciousness in two ways.
First, specific thalamic nuclei relay sensory and motor messages that may become part of
the content of consciousness. Second, nonspecific thalamic nuclei are likely involved in
the control of cortical arousal originating from the brainstem reticular formation (Zhou
et al., 2011).

The present results show that the right thalamus is physiologically positioned to play a
regulatory role in anesthesia-awakening cycle. This is consistent with the idea that both the
structural and functional lateralization of nervous system function is conserved throughout
vertebrates including humans (Rogers & Vallortigara, 2015; Samara & Tsangaris, 2011;
Vallortigara & Versace, 2017) and is manifest in many invertebrates. Examples include
preferential use of the right or left hemispheres during various information processing
tasks and behaviors in humans, primates, birds, reptiles, amphibians, fish, bees, fruit flies
and nematodes (Fang et al., 2015; Frasnelli, Vallortigara & Rogers, 2012; Lippolis et al., 2002;
Robins & Rogers, 2006; Rogers, 2014; Rogers et al., 2013; Rosa-Salva et al., 2012; Roussigné,
Blader & Wilson, 2012; Vallortigara et al., 1998; Vallortigara & Versace, 2017; Xue et al.,
2015). For example, the right hemisphere is usually dominant for spatial attention in
humans, while the left preferentially processes language and formal reasoning (Geschwind
& Miller, 2001). Brain asymmetry is thought to be a conserved and fundamental feature
which enhances the efficiency of information processing, so that functional specialization
of one hemisphere frees the contralateral hemisphere to perform other tasks (Rogers &
Vallortigara, 2015; Vallortigara & Rogers, 2005).

Brain anatomical asymmetries are the basis of functional lateralization (Samara &
Tsangaris, 2011). The right thalamus is larger than the left in humans (Péran et al., 2009;
Sullivan et al., 2004). Moreover, lesions of the left and right thalamus typically do not
result in the same language deficits (Ojemann, 1977). Thus,it seems reasonable to speculate
that the right thalamus would be less likely to be suppressed by general anesthetics. This
speculation is consistent with our current results showing that both ApEn and PE values
in the right thalamus were higher than the left counterpart during the awakening period
and anesthesia period, although these differences did not reach statistical significance. In
other words, the dynamic neural activity changes in the right thalamus would be expected
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to be smaller than those in the left during anesthesia, consistent with its possible regulation
function in the anesthesia-awakening cycle. However, it remains for future research to
explicate the causal basis of the right thalamic regulation function including the anatomical
and neurophysiological characteristics underlying its apparently important role.

Sex differences in general anesthesia
The current results show that both ApEn and PE values for females are higher than those
for males, the duration of the administration stage for females is significantly longer than
males, while the duration of the recovery stage for females is shorter than males. These
results indicate that female frogs are less sensitive to the hypnotic effect of anesthetics
than males, consistent with clinical studies in humans which have shown that women
exhibit higher bispectral index values (Buchanan, Myles & Cicuttini, 2011) than men under
the same anesthetic dosage and usually show faster recovery after the administration of
anesthetics comparedwithmen (Buchanan, Myles & Cicuttini, 2011;Buchanan et al., 2006).

Sexually dimorphic behaviors in mammals typically reflect sex differences in the nature
of reciprocal influences among genes, gonadal functions, hormones and environmental
factors (Kelly, Ostrowski & Wilson, 1999). Some sex hormones are neurosteroids with
anesthetic properties. For instance estradiol and progesterone are involved in general
anesthesia regulation and post-anesthesia recovery (Buchanan et al., 2006). High doses of
progesterone can anesthetize animals and humans (Bitran, Purdy & Kellog, 1993;Merryman
et al., 1954). Previous research suggests that progesterone and estradiol affect anesthesia
maintenance and recovery by influencing the excitability of neurons in the brain and
brainstem (Woolley & Schwartzkroin, 1998). Thus, the general anesthesia state depends on
the interactions of anesthetics with different receptors in the brain, and sex differences in
general anesthesia and post-anesthesia recovery in many animal species may be related to
the levels of sex hormones and their distribution (Buchanan, Myles & Cicuttini, 2011). It
thus seems reasonable to speculate that these phenomena include amphibians as well.

On the other hand, previous studies in fishes and amphibians have found that larger
subjects need longer MS-222 induction times and exhibit shorter recovery times (Cecala &
Price, 2007; Paduano et al., 2013; Zahl et al., 2009; Zahl et al., 2011). In the present study,
the body mass of females on average was twice that of males, suggesting that the observed
sex differences may have resulted from body mass differences. Future research is required
to determine whether the combined actions of sex hormones and body mass differences
bring about the sex differences in general anesthesia observed here.

In summary, both ApEn and PEmeasurements are suitable for estimating the complexity
of amphibian brain activity, the right thalamus appears well positioned physiologically to
play an important role in anesthesia-awakening regulation in frogs, and sex differences
exist in the neural regulation of general anesthesia in frogs.
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