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ABSTRACT
Mutation rate is usually found to covary with many life history traits of animals such
as body mass, which has been readily explained by the higher number of mutation
opportunities per unit time. Although the precise reason for the pattern is not yet clear,
to determine the universality of this pattern, we tested whether life history traits impact
another form of genetic mutation, the motif mismatches in microsatellites. Employing
published genome sequences from 65 avian species, we explored the motif mismatches
patterns of microsatellites in birds on a genomic level and assessed the relationship
between motif mismatches and body mass in a phylogenetic context. We found that
small-bodied species have a higher average mismatches and we suggested that higher
heterozygosity in imperfectmicrosatellites lead to the increase ofmotifmismatches.Our
results obtained from this study imply that a negative body mass trend in mutation rate
may be a general pattern of avian molecular evolution.

Subjects Evolutionary Studies, Genetics, Genomics, Zoology
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INTRODUCTION
It has long been recognized that the molecular evolutionary rates always covary with many
life history traits of animals. Numerous studies have documented a negative relationship
between the rate of molecular evolution and body mass (Nabholz, Glémin & Galtier, 2008;
Bromham, 2011; Amos & Filipe, 2014), where genes in small-bodied species are likely to
evolve faster than those in large-bodied species. This has been readily explained by higher
number of mutation opportunities per unit time (generation length hypothesis, Li et al.,
1996) or highermutation probability in a round ofDNA replication due to highermetabolic
rate (metabolic rate hypothesis,Mindell et al., 1996) in small-bodied species. Although the
precise reason for the pattern is not clear at present, to determine the universality of this
pattern, we need to study additional form of genetic mutation besides mitochondrial
DNA or nuclear ‘genes’ which are most frequently used. The first to consider is the fastest
evolving components of the genome such as microsatellites.

Microsatellites, also known as simple sequence repeats (SSRs), are tandem repeats
of simple nucleotide motifs, which have wide coverage in eukaryotic and prokaryotic
genomes (Tóth, Gáspári & Jurka, 2000; Ellegren, 2004; Adams et al., 2016). One feature of
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microsatellites is that they have a high mutation rate (10−7 to 10−3 mutations per locus per
generation), leading to high heterozygosity and extensive length polymorphisms (Kruglyak
et al., 2000). It has long been assumed that the major cause of variation of microsatellite
repeats is replication slippage (Kornberg et al., 1964; Bhargava & Fuentes, 2010), which will
increase or decrease repeat copy numbers in microsatellites. Specifically, when it creates a
loop in one of strands, a slippage error occurs. If the loop is formed in the replicating strand,
it will introduce an insertion. If the loop is in the template strand, a deletion will emerge.
Several mathematical models of microsatellite evolution have been proposed to represent
the mutation processes of microsatellites, such as stepwise mutation model (SMM) ofOhta
& Kimura (1973), which suggests that mutation in microsatellite loci occurs by one repeat
unit at a time.

Many studies on microsatellites have explored the frequencies, abundance and
polymorphism of microsatellites in the genomes (Wang et al., 2014; Qi et al., 2015; Adams
et al., 2016). Few, if any, have correlated these microsatellite characters to the life history
traits of a species. Specifically,microsatellites are hypothesized to experience a life cycle: start
short (birth) and expand predictably due to mutation bias (expansion) until they become
unstable and either collapse or degrade through internal point mutations (contraction
and death) (Chambers & MacAvoy, 2000; Buschiazzo & Gemmell, 2006). Life history traits
of species are expected to have an influence on the life cycle —‘birth’, expansion, and
‘death’—of microsatellites in the genome (Amos & Filipe, 2014). For example, in smaller
species, higher mutation rate allows the ‘birth’ and expansion of microsatellites faster, due
to higher mutation rate and slippage rate. Since the death rate is lower than the birth rate,
microsatellites tend to accumulate in the genome (Buschiazzo & Gemmell, 2006). In that,
the smaller species harbour a higher frequency of microsatellites across the genome, which
has been proved in mammals (Amos & Filipe, 2014).

It is well known that except for repeat copy number variation, a microsatellite
(e.g., ATATATATAT) also suffers from nucleotide substitutions and insertion/deletion
mutations, hence becoming imperfect (e.g., ATATATCATAT: AT repeat with an insertion
of C). Perfect and imperfect microsatellites are thus defined. It has been found that
genomes possess a relatively small but significant number of imperfect microsatellites
(Brinkmann et al., 1998). Mismatch variation of imperfect microsatellites is critical for their
maintenance in the genome and imperfect microsatellites are more stable compared to
perfect microsatellites since the former is less prone to slippagemutation (Sturzeneker et al.,
1998). Several previous studies have already revealed the genome-wide motif imperfection
pattern among species (e.g., Behura & Severson, 2015). Nevertheless, our understanding of
motif mismatches in imperfect microsatellites is still very limited and their correlation with
life history traits remains to be revealed and explained.

In this study, we used 65 avian genome sequences, employing SciRoKo (Kofler, Schlötterer
& Lelley, 2007) to search SSRs in the whole genome. We chose avian genomes for this study
because microsatellites have been widely used in population genetics of bird species, yet
the pattern of microsatellites mismatches in birds is still not well understood, mostly
owing to the lack of avian genomic information. With the advance of whole genome
sequencing, evolution of microsatellites is attracting attention from researchers. With the
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genome-wide microsatellites data in hand, we presented the first detailed comparative
study of microsatellites, aiming to reveal the patterns of motif mismatches across different
bird species and to help understand the relationship with life history traits.

MATERIALS & METHODS
Genome sequences and body mass
We downloaded FASTA files of the 65 avian genomes from NCBI and GigaDB
(http://dx.doi.org/10.5524/101000). These avian species represent nearly all of the major
clades of living birds. We compiled data from the original and secondary references and
the world-wide web about the mean body mass of adult males and females (Table S1).
If a mean value was not provided for a species, we took the median of the range. Where
separate body masses were given for males and females, the average value of the masses
was calculated.

Identification of microsatellites
We searchedmicrosatellites in each genome sequences using SciRoKo 3.4, a simple sequence
repeats (SSRs) identification program (Kofler, Schlötterer & Lelley, 2007), with the default
parameters (minimum score= 15 andmismatch penalty= 5) in themismatchedmodes. In
addition, we used different parameters to search SSRs (minimum score= 15 andmismatch
penalty = 3, minimum score = 10 and mismatch penalty = 5) considering changing in
parameters would affect the results of this study. Specially, the motif mismatches refer to
the number of base mismatches of an imperfect microsatellite compared with its idealized
perfect counterpart. For example, the string TACTACTAGTACTAC, is a trinucleotide
repeatwith five repeats and, by comparisonwith its idealized perfect counterpart (consensus
repeat), it has a mismatch of 1. The number of mismatches of each microsatellites as well as
their length for each genome was used for different comparative analyses across the species.

Statistical analyses
In this study, we used phylogenetic generalized least-squares regression (PGLS) (Freckleton,
Harvey & Pagel, 2002) implemented in the package ‘ape’ (Paradis, Claude & Strimmer,
2004) to control shared ancestry (for the script used, see Fig. S1). We used the evolutionary
tree of the 48 bird species estimated by Jarvis et al. (2014) as a backbone topology, and used
the phylogenetic information provided by Jetz et al. (2012) to add the remaining 17 species
(for the resulting phylogeny, see Fig. S2). In order to achieve the statistical requirements
for linearity and normality, adult average mass were log10-transformed prior to analysis.
Average mismatches was reciprocal transformed. GC content was arcsine square root
transformed.

Firstly, we computed some basic statistics on characteristics of microsatellite loci in
65 bird genomes (Tables S2–S5). Secondly, to better understand the occurrence of motif
mismatches in bird genomes, we determined the frequency of microsatellites of 20 bp that
either lacks mismatches or harbours one mismatch for each species (Table S6). 20 bp was
used because that the average length of perfect microsatellites of 65 birds is 20 bp. Then we
computed the ratio of imperfect (mismatch = 1) repeats frequency to perfect (mismatch
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= 0) ones. Then, we employed a PGLS, treating the ratio of imperfect (mismatch = 1) to
perfect (mismatch = 0) repeats as a dependent variable and body mass as an explanatory
variable. Thirdly, we explored whether or not the extent of motif mismatches is related
to genomic abundance of imperfect microsatellites. We first calculated the probability
of per-site mismatches (the total number of mismatches divided by total lengths of all
loci) in each genomes. Then the expected number of mismatches was determined based
on the length and compared with the observed number of mismatches in each imperfect
microsatellite (Table S7). The first paired sample t -test was conducted between the numbers
of microsatellites harbouring more mismatches than expected and that of carrying fewer
mismatches than expected. The second paired sample t -test was performed between
imperfect repeats that have a length of at least 30 bp and have either <3 or ≥3 mismatches
(Table S8). Finally, to test whether differences of mismatches in imperfect microsatellites
link with body mass, we fitted a PGLS analysis with average mismatches of imperfect SSRs
as dependent variable and body mass as a predictor. The average mismatches of imperfect
SSRs in individual genomes was estimated as the sum ofmismatches divided by the number
of imperfect microsatellites (Table S1). Average mismatches was used because it indicates
the mismatches in an ‘average’ imperfect SSR. For controlling the probability that GC
content will have a potential influence on microsatellite mismatches, we added it to the
models as a predictor variable. Taking di-, tri-, tetra-, penta- and hexamers as the five
classes of repeats, we repeated the PGLS analysis in each repeat type. Since the mutations
in the mononucleotide repeats tend to cause the emergence of a new motif of other repeat
type, we excluded it from our analysis. All statistical analyses were conducted with R 3.1.2
(R Core Team, 2014).

RESULTS
Characteristic of microsatellite loci in 65 avian species
In total, 11803896 SSR loci with a minimum length of 15 bp were identified from
65 avian genome assemblies, and were classified into mono-, di-, tri-, tetra-, penta-
and hexanucleotide SSRs according to the motif length (Table S2). Among these,
mononucleotide SSRs are the most abundant (42.3%) type, followed distantly by tetra-
(18.8 %) and pentanucleotide SSRs (17.1%) (Table S2; Fig. S3). The SSR abundance
composition and SSR density of the birds varies greatly among species, with the maximum
value in Anas platyrhynchos (416,040 counts; 376.49 counts/Mb) and the minimum
value in Melopsittacus undulatus (81,643 counts; 73.07 counts/Mb). Additionally, the SSR
abundance composition are predicted by genome size (β±SE = 1.56±0.64, t = 2.44,
P = 0.017, R2

= 0.09).

Frequency of imperfect microsatellites in bird genomes
The number of imperfect microsatellites varies among the birds species and the imperfect
repeats account for 15–27% of all microsatellites searched from the genome assemblies of
the 65 bird species as shown in Table S3. The imperfect repeats represented less than 0.2%
of the genome sequence in most of these birds except four species (Anas platyrhynchos,
Calypte anna, Columba livia, Picoides pubescens) (Fig. S4). The data in Table S3 and Fig. S4
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shows that the frequency of imperfect microsatellites in bird genomes appears substantial
variation among these species. It was observed that Anas platyrhynchos has a higher
percentage of imperfect microsatellites than other bird species. Moreover, the proportion
of imperfect repeats varies differentially among species, to some extent, depending on the
motif size of microsatellites. Specifically, the paired sample t -test results indicated the di-,
tri- and hexanucleotide SSRs have an increased rate of motif mismatches compared with
all other types of motif size (Table S4). Furthermore, it seems that this pattern is conserved
among different avian species.

The occurrence of motif mismatches
Imperfect microsatellites are longer than perfect microsatellites in each species (37 vs 20 bp;
t = 33.334, df = 64, P < 0.001; Table S5). The PGLS analysis revealed that the small-bodied
species has a higher ratio of imperfect (mismatch= 1) to perfect (mismatch= 0) repeats of
20bp than large-bodied species (β±SE =−0.006±0.002, t = 2.86, P = 0.006, R2

= 0.12).

The accumulation of mismatches in imperfect microsatellites and
genomic abundance
The paired sample t -test revealed that the microsatellites harboring mismatches higher
than expected has significantly lower abundance than that carrying mismatches lower
than expected (13,381 versus 25,138 counts; t = 22.651, df = 64, P < 0.001; Table S7),
implying that the imperfect microsatellites which containing more mismatches have
lower abundance in the genome. We also found that loci with three or more number of
mismatches are less common than that have less than three mismatches (7,364 vs 18,361
counts; t = 11.316, df = 64, P < 0.001; Table S8).

Correlation between body mass and average motif mismatches
We found that on a whole genome scale, the average body mass accounts for 28.2% of the
variation in average mismatches of imperfect SSRs (Table 1, Fig. 1). Body mass also has
a significantly negative correlation with microsatellites mismatches in five motif length
classes (Table 1, Fig. 2). This negative correlation remains significant when adding GC
content to the regression models. Inclusion of GC content only enhances the model’s
explanatory power slightly except in tetra- and pentanucleotide SSRs. When we used
different parameters includingminimum score 15 andmismatch penalty 3 and aminimum
score of 10 and mismatch penalty 5 to search microsatellites in the genomes, the results of
repeated analyses were highly consistent (Table S9). This confirmed that our observations
were not influenced by the search parameters of microsatellites.

DISCUSSION
In the present study, we did a genome-wide search of microsatellites using SciRoKo with
the same parameters to ensure that the program can search all possible microsatellites
with the same probability for every genome. Microsatellites search results showed that
the frequency of microsatellites varies extensively among species. We have also found a
positive relationship between microsatellites abundance and genome size among 65 bird
species, which is consistent with earlier studies (e.g., Hancock, 1996). After providing a
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Table 1 Result for the relationship between average mismatches and bodymass fitted in PGLS analy-
ses.

Coefficients

Bodymass GC content

Type Model R2 β±SE t P β±SE t P

All BM 0.282 0.015± 0.003 4.974 <0.001
BM+ GC 0.340 0.015± 0.003 5.102 <0.001 −2.533± 1.090 2.324 0.023

Di BM 0.279 0.022± 0.005 4.932 <0.001
BM+ GC 0.332 0.022± 0.004 5.033 <0.001 −2.940± 1.255 2.342 0.022

Tri BM 0.257 0.015± 0.003 4.664 <0.001
BM+ GC 0.293 0.015± 0.003 4.711 <0.001 −2.044± 1.149 1.778 0.080

Tetra BM 0.290 0.019± 0.004 5.072 <0.001
BM+ GC 0.393 0.019± 0.003 5.382 <0.001 −4.074± 1.257 3.241 0.002

Penta BM 0.123 0.011± 0.004 2.972 0.004
BM+ GC 0.205 0.011± 0.004 3.050 0.003 −3.272± 1.296 2.525 0.014

Hexa BM 0.254 0.013± 0.003 4.634 <0.001
BM+ GC 0.268 0.013± 0.003 4.620 <0.001 −1.129± 1.049 1.076 0.286

Notes.
Key to symbols: All, all imperfect microsatellites; Di, Tri, Tetra, Penta, Hexa, means imperfect microsatellites with different
repeat type; BM, Body mass; GC, GC content.

general description of the basic characteristics of microsatellites, we particularly focused
on comparing the motif mismatches of imperfect microsatellites to body mass across bird
species in a phylogenetic context.

We found a negative relationship between body mass and the ratio of frequency
of imperfect repeats (mismatch = 1) to perfect (mismatch = 0) ones with the same
length 20bp among the species. Moreover, it is known that mutations in microsatellites
shorter than a critical length are generally gain or loss of single repeat units which cannot
disturb the repeat tract (Buschiazzo & Gemmell, 2006). Whereas when it reached a critical
length, mismatch was introduced, a perfect microsatellite became imperfect. Here, our
result implied that the introduction of motif mismatches in imperfect microsatellites is
significantly associatedwith the nature of pointmutation inmicrosatellites. In small-bodied
species, since more perfect microsatellites suffer from the introduction of mismatches due
to the higher mutation rate, a larger number of imperfect microsatellites relative perfect
ones can be observed.

We observed that the microsatellites harbouring mismatches higher than expected have
lower abundance than that carrying mismatches lower than expected. Consistent with
this result, we also found that the microsatellites ≥30 bp and <3 mismatches have lower
abundance than that≥30 bp and>3 mismatches, indicating that mismatches of motifs is a
key determinant leading to a paucity of long imperfectmicrosatellites in the genome. That is
to say,mismatches would stabilize the repeat array and impede the further expansion.When
the extent of mismatches reached saturation point, the repetition pattern is interrupted,
leading the microsatellites to degeneration and death. (Taylor, Durkin & Breden, 1999;
Harr & Schlotterer, 2000; Yamada et al., 2002; Vowles & Amos, 2006). Although the exact
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Figure 1 Regression scatterplot of the inverse of the average mismatches of imperfect SSRs on the log
of body mass in whole genome scale.

Full-size DOI: 10.7717/peerj.4495/fig-1
 
 
 

 

 

 

 

 

 

 

 

1
/a

v
er

ag
e 

m
is

m
at

ch
es

 

 

Log Body mass (g) 

 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0 1 2 3 4 5 

Di Tri Tetra Penta Hexa 

Figure 2 Regression scatterplot of the inverse of the average mismatches of imperfect SSRs in five
classes of repeat type on the log of body mass.
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details of death is still poorly understood, the relative number of older mismatches in an
‘average’ microsatellite is likely to reflect the mutability during its lifetime. It can be further
confirmed by the finding that the average mismatches of imperfect SSRs decreases with
increasing body mass.

Our results that higher average mismatches of imperfect SSRs in small-bodied species
support a correlation between mutation rate and life history traits. The pattern is usually
explained by a generation length model, where smaller species evolve faster due to
higher number of mutation opportunities per unit time (Li et al., 1996). In addition,
body mass might affect the mutation rate through a link with metabolic rate and/or
body temperature, which can directly change the mutation probability in a round of
DNA replication (Mindell et al., 1996). Apart from these two key hypotheses, a rising
hypothesis which proposes mutation rates are influenced by heterozygosity (Amos, 2010)
can better explain the intrinsic correlation of motif mismatches with body mass. Smaller
species have larger number of imperfect microsatellites which has been demonstrated
by our data (β± SE =−0.008±0.002, t = 4.008, P < 0.001; R2

= 0.203). Meanwhile,
more heterozygous sites at these imperfect microsatellites can be expected. Recognition
and ‘repair’ of heterozygous sites during synapsis will cause additional rounds of DNA
replication which in turn provide more opportunities for mutations (Amos, 2011) and
introduce more motif mismatches at imperfect microsatellite sites. Therefore, a negative
relationship between body mass and motif mismatches can be observed. We suggest that
heterozygote instability hypothesis, which is supported by increasing evidence (Drake,
2007;Masters et al., 2011; Amos, 2013; Amos, 2016), could provide a potential link between
body mass and motif mismatches. However, further studies are needed in order to examine
carefully whether homologous imperfect microsatellites are generally more prone to
introduce mismatches in smaller species with a detail comparison between sister species.

CONCLUSIONS
In conclusion, the present study is the first effort to explore the motif mismatch patterns of
microsatellites in birds on a genomic level. The results we obtained from this study provide
support for the long-standing correlation between mutation rate and life history traits and
suggest that a negative body mass trend in mutation rate may be a general pattern of avian
molecular evolution.
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