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ABSTRACT
We present new dispersion and hydrogen bond corrections to the PM6 method,
PM6-D3H+, and its implementation in the GAMESS program. The method com-
bines the DFT-D3 dispersion correction by Grimme et al. with a modified version
of the H+ hydrogen bond correction by Korth. Overall, the interaction energy of
PM6-D3H+ is very similar to PM6-DH2 and PM6-DH+, with RMSD and MAD
values within 0.02 kcal/mol of one another. The main difference is that the geometry
optimizations of 88 complexes result in 82, 6, 0, and 0 geometries with 0, 1, 2, and 3
or more imaginary frequencies using PM6-D3H+ implemented in GAMESS, while
the corresponding numbers for PM6-DH+ implemented in MOPAC are 54, 17, 15,
and 2. The PM6-D3H+ method as implemented in GAMESS offers an attractive
alternative to PM6-DH+ in MOPAC in cases where the LBFGS optimizer must be
used and a vibrational analysis is needed, e.g., when computing vibrational free
energies. While the GAMESS implementation is up to 10 times slower for geometry
optimizations of proteins in bulk solvent, compared to MOPAC, it is sufficiently fast
to make geometry optimizations of small proteins practically feasible.

Subjects Biochemistry, Computational Biology, Computational Science
Keywords Computational chemistry, Proteins, Biochemistry, Computational biochemistry,
Molecular modeling

INTRODUCTION
Dispersion and hydrogen bonded corrections to the PM6 method (Stewart, 2007) such as

PM6-DH2 (Korth et al., 2010), PM6-D3H4 (Řezáč & Hobza, 2012) and PM6-DH+ (Korth,

2010) yield interaction energies that in many cases rival in accuracy those computed with

Density Functional Theory (DFT) (Yilmazer & Korth, 2013; Korth & Thiel, 2011). The

computational efficiency of the underlying PM6 method allows for calculations that are

not practically possible with DFT or Hatree–Fock (HF), such as geometry optimizations

of proteins or vibrational analyses of large systems. For example, recent studies by

Gilson (Muddana & Gilson, 2012) and Grimme (2012) have used dispersion and hydrogen

bonded PM6 (PM6-DH+ and PM6-D3H respectively) to compute the vibrational free

energy contribution to the standard binding free energy for host–guest systems and have

demonstrated that the added contributions make a crucial contribution.
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However, computing this vibrational free energy contribution can be complicated by

the presence of one or more imaginary frequencies in the vibrational analysis (H Muddana

and MK Gilson, pers. comm., 2013). The source of these imaginary frequencies are usually

numerical errors amplified by a flat potential energy surface and the imaginary frequencies

often correspond to low lying frequencies that make a significant contribution to the

vibrational entropy. Thus, these numerical problems can introduce a significant error in

the binding free energy.

Preliminary calculations suggested that one of the sources of the imaginary frequencies

in PM6-DH+ calculations using MOPAC could be solved by using different geometry

optimization algorithms. To test this we implemented a new variant of PM6-DH+, called

PM6-D3H+, in the GAMESS program (Schmidt et al., 1993) to allow us to test the use of

the optimization algorithms implemented therein. PM6-D3H+ differs from PM6-DH+

in that the dispersion term is the third generation dispersion model developed by Grimme

et al. (2010) rather than the Jurecka-type model developed by Jurečka et al. (2007). In

that respect, PM6-D3H+ is identical to the PM6-D3H model developed by Grimme

(2012) which has not yet been incorporated into a quantum chemistry program. This

dispersion model was mainly chosen for convenience (as it was already implemented in

GAMESS) and has little effect on the average accuracy compared to PM6-DH+ (although

the maximum errors observed for the training set decrease). However, we show that

PM6-D3H+ implemented in GAMESS results in vibrational analyses with significantly

fewer imaginary frequencies than PM6-DH+ implemented in MOPAC (Stewart, 2012;

Maia et al., 2012), due mainly to differences in geometry optimization algorithms and

convergence criteria.

THEORY
The energy model PM6-D3H+ has three contributions

E(PM6-D3H+)= E(PM6)+ E(D3)+ E(H+). (1)

Here, each contribution is a standalone semi-empirical module in GAMESS. These are

discussed below.

PM6 implementation in GAMESS
E(PM6) is the molecular PM6 (Stewart, 2007) energy, which is taken as the gas phase

energy unless otherwise noted. As part of this work we implemented the PM6 method in

the GAMESS program for elements up to neon. The PM6 method also involves d-orbitals

for elements past neon but the associated integral code has not yet been implemented.

Physical constants in the semi-empirical part of the GAMESS source code were updated,

to match those in the current version of MOPAC. All semi-empirical methods in GAMESS

uses a finite difference scheme for gradient evaluation.

Dispersion correction E(D3)
E(D3) is the third generation dispersion correction developed by Grimme et al. (2010)

DFT-D3 and implemented in GAMESS by R Peverati. Unless otherwise noted E(D3) refers
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Table 1 The final parameters for the dispersion and hydrogen bond correction terms of PM6-D3H+.

H+ CN −0.110

CO −0.120

D3 α 14.000

s6 1.000

sr,6 1.560

s8 1.009

to the pair-wise additive dispersion correction as proposed in Grimme et al. (2010). Only

the zero-damping version was used, with dispersion order 6 and 8. The fitting parameters

are those obtained by Grimme (2012) for PM6. As described by Grimme, the parameter s6

is set to unity, α was set to its default value. s8 and the scaling parameter sr,6 of the atomic

cut-off radii used in the dispersion damping function are fitted parameters as in standard

DFT-D3 (see Table 1 for parameters). Thus only s8 and sr,6 are optimized by Grimme for

PM6-D3H, which is also used for PM6-D3H+. The gradient of the dispersion correction

is evaluated numerically, by using a centered finite difference scheme, for three-body

calculations, and analytically for two-body calculations.

Hydrogen bond correction E(H+)
E(H+) is a slightly modified version of the third-generation hydrogen bonding correction,

H+, by Korth (2010), which is given by:

E(H+)=


AB

CA + CB

2r2
AB

· fgeom · fbond · fdamp (2)

where the sum runs over all hydrogen bonds involving N and O atoms. rAB is the

donor–acceptor distance for the given hydrogen bond geometry, with A and B being the

two possible acceptor/donor electronegative atoms, either oxygen or nitrogen. CA and CB

are adjustable parameters and refer to either CN and CO. CN and CO are re-parametrized as

part of this work as described below.

The geometrical correction fgeom is defined as

fgeom = cos2θ · cos2φA · cos2ψA · cos2φB · cos2ψB (3)

where θ is the angle defined by atom A, atom B and the hydrogen (see Figs. 1 and 2). The

angle φ, and torsion angle ψ are both defined by the hydrogen bonding geometry. The

angles φ are calculated from the difference between the target angle φtarget and the present

bond angle in the complexΦX. The target angle φtarget is the optimum angle for hydrogen

bonds. Target angles are defined in a complicated heuristic fashion, please see the source

code posted on GitHub for more details (JensenGroup, 2014b). The torsion angles ψ are

defined similarly and calculated as the difference between target dihedral angle and the

structural angleΨ. WhereΨX is the dihedral angle between R1R2X ...H, which is used for
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Figure 1 Illustrating the angles of the H+ model when the hydrogen bond acceptor is sp3 hy-
bridized.Θ is the angle between atoms A and B.ΦX is the angle between the hydrogen and the R1 atom,
H...X-R1, where R1 is the atom closest to the H atom.ΨX is the dihedral angle between R1R2X ...H.

Figure 2 Illustrating the angles of the H+ model when the hydrogen bond acceptor is sp2 hy-
bridized.Θ is the angle between atoms A and B.ΦX is the angle between the hydrogen and the R1 atom,
H...X-R1, where R1 is the atom closest to the H atom.ΨX is the dihedral angle between R1R2X ...H.

both the donor and acceptor as seen in Figs. 1 and 2. Here R1 is defined as the Rx closest to

the hydrogen.

The bond damping function fbond is defined as:

fbond = 1 −
1

1 + exp[−60 · (rXH/1.2 − 1)]
(4)

where rXH is the distance between the hydrogen atom and the donor atom, which is defined

as the shorter one of the distances rAH and rBH. The damping function fdamp is defined as:

fdamp =


1

1 + exp[−100 · (rAB/2.4 − 1)]


1 −

1

1 + exp[−10 · (rAB/7.0 − 1)]


(5)

where rAB is the distance between the two electronegative atoms A and B.

The E(H+) implementation differs slightly from the one originally proposed by Korth

(2010). Changes were made to avoid problems with optimization of hydrogen bond

complexes involving particular configurations, including especially ketone (C=O) groups

interacting with amide-like (NR3) groups. In the original implementation, optimization

problems can originate from target angle calculation based on the torsion angle of the NR3

group. Target angles are the optimal (text-book) angles for a given H-bond arrangement.

H-bond energies are computed based on the deviation of all angular coordinates from

their respective target (optimal) angles, see Korth (2011) for a detailed explanation. The

target angle would switch during optimization steps as the definition of the torsion angle

would switch, and never find a minimum, as the torsion angle is defined as seen in Fig. 1.
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The model was updated with new target angles for tetragonal NR3 configuration case,

and the estimation of target angles for NR3 groups now based on the hydrogen bonding

configuration (with a double bond indicating a planar structure).

The analytical gradient is done using internal coordinates from the energy model

(angles and distances in Eq. (2)), and an algorithm for converting the gradient to the

Cartesian atomic coordinates.

Source code for the H+ module, including gradient code, is available on

GitHub (JensenGroup, 2014b). The PM6-D3H+ will be made available in the official

version of GAMESS as soon as possible.

METHOD
All PM6-D3H+ calculations were done with a locally modified version of GAMESS. To

benchmark and test our implementation, we performed various calculations on the

S22 (Jurečka et al., 2006) and S66 (Řezáč, Riley & Hobza, 2011) complexes from the

Benchmark Energy and Geometry Database (BEGDB) (Řezáč et al., 2008). The BEGDB

database contains structures and corresponding interaction energies calculated at the

MP2/cc-pVTZ and estimated CCSD(T)/CBS level of theory, respectively. We use double

displacement for the Hessian calculations (NVIB = 2 in $force group in the GAMESS

input file).

Geometry optimizations of the complexes in S22 and S66 were done with a variety of

convergence criteria which will be discussed in detail in section ‘Geometry optimization’.

Geometry optimizations of Chignolin (PDB: 1UAO) and the Tryptophan-cage (PDB:

1L2Y) using PM6-D3H+ were also carried out. We used the first structure available in each

of the downloaded structures. For comparison, we performed two-body Fragment Molec-

ular Orbital (FMO) (Fedorov & Kitaura, 2007) geometry optimizations using RHF/6-

31G(d) (Francl et al., 1982; Gordon et al., 1982; Hariharan & Pople, 1973; Nagata et al.,

2011) and the D3 dispersion correction (Grimme et al., 2010; Peverati & Baldridge, 2008).

Calculations were performed in either in the gas phase or in bulk solvent using a

polarizable continuum to model the solvent (Tomansi, Mennucci & Cammi, 2005). For

solvated PM6-D3H+ calculations, we used a recent C-PCM implementation (Steinmann

et al., 2013). For the FMO calculations, we used the recent completely analytical

RHF/C-PCM gradient (Nagata et al., 2012). All PCM calculations were done using the

FIXPVA (Su & Li, 2009) tesselation scheme with 60 tesserae per sphere. All geometry

optimizations used a convergence criterion of 5.0 × 10−4 Hartree/Bohr.

All MOPAC calculations were done with MOPAC2012 (Stewart, 2012; Maia et al., 2012).

Geometry optimizations were done with the LBFGS optimizer for reasons described in

section ‘Geometry optimization’, unless noted otherwise. The COSMO model (Klamt &

Schuurmann, 1993) were used to model bulk solvation for the protein calculations.

Timings was carried out on either a 8 core Intel(R) Xeon(R) CPU X5560 @ 2.80 GHz or

24 core AMD Opteron(tm) Processor 6172 @ 2.1 GHz machine.
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Figure 3 Scan of the two parameters for the H+ correction term, nitrogen (CN) and oxygen (CO) in
the hydrogen bond dominant complexes of the S22 and S66 noncovalent complexes. A global optimum
was found at CN = −0.11 and CO = −0.12.

RESULTS AND DISCUSSION
Parameterization of correction terms
Because we use a different dispersion energy function than in the previous DH+

model and make modification to the original hydrogen bonding correction model, it is

necessary to determine new optimum values for the CN and CO. The parameters for H+

are parameterized to minimize the root-mean-square deviation (RMSD) between the

interaction energies for PM6 with dispersion correction only (PM6-D3) for a subset of

structures from the S22 and S66 data sets (1–7 and 1–23, respectively), plus the H+ term

and the estimated CCSD(T)/CBS reference interaction energy. The CN and CO parameters

are then scanned in ranges from −0.2 to 0.0, around the original optimum. A global

optimum was found at CN = −0.11 and CO = −0.12, with a RMSD of 1.11 kcal/mol, as

seen in Fig. 3 and Table 2.

This was done using both two and three-body dispersion, but including three-body

dispersion did not make any substantial difference in the resulting optimum, and the

default was set to two-body for PM6-D3H+, because of the extra computational time

associated with three-body. The computational cost becomes a time consuming issue for

protein-sized molecules. The final set of parameters for both dispersion and hydrogen

bond correction terms can be seen in Table 1.

Interaction energies
Table 2 shows results of PM6, PM6-DH+ and PM6-D3H+ for the full, dispersion

and hydrogen bond dominant complexes sets of the S22 and S66 from BEGDB.
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Table 2 Root-mean-square deviation, RMSD; mean absolute deviation, MAD; as well as the maxi-
mum error Max, with respect to the estimated CCSD(T)/CBS interaction energies from the S22 and
S66 sets are presented. Hydrogen bond and dispersion subsets are complexes from S22 and S66 with a
dominant factor of the interaction energy being hydrogen bond or dispersion interaction. All values are
in kcal/mol.

PM6a,b DH2b DH+b D3H+a,c D3H+a,d

Full set

RMSD 3.35 0.83 0.80 0.82 0.83

MAD 2.85 0.58 0.61 0.60 0.61

Max 7.99 3.53 2.47 2.11 2.09

Dispersion subset

RMSD 3.15 0.49 0.49 0.48 0.54

MAD 2.79 0.42 0.42 0.36 0.39

Max 7.29 0.92 0.92 1.11 1.43

Hydrogen bond subset

RMSD 4.29 1.05 0.98 1.11 1.11

MAD 3.65 0.70 0.80 0.92 0.91

Max 7.99 3.53 2.10 1.85 1.84

Notes.
a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
c The calculation has been done using two-body dispersion.
d The calculation has been done using three-body dispersion.

Root-mean-square deviation (RMSD), mean absolute deviation (MAD) and maximum

error span (Max) with respect to the benchmark estimated CCSD(T)/CBS interaction

energies are given in kcal/mol. The PM6-D3H+ method was tested using both two and

three-body dispersion.

Overall, the accuracy of PM6-D3H+ is very similar to PM6-DH2 and PM6-DH+, with

RMSD and MAD values within 0.02 kcal/mol of one another. The main difference is that

the maximum error for PM6-D3H+ is 1.42 and 0.36 kcal/mol smaller than for PM6-DH2

and PM6-DH+, respectively. The maximum error for PM6-DH2, -DH+, and -D3H+

were observed for the S66-19, S66-60, and S66-65 dimer, respectively and, in general, we

did not notice any particular dimer that resulted in unusually large errors for all three

corrections. All interaction energies can be found in Supplemental Information. The

differences in RMSD and MAD between methods are slightly larger (up to 0.13 kcal/mol)

for subsets where dispersion and hydrogen-bonding dominate. Including three-body

dispersion correction had no substantial effect on accuracy, but might play a role for large

systems.

Next, we test PM6-DH3+ on two sets of molecules not in the training set. Table 3

lists computed interaction energies for formamide dimer, pentamer–monomer, and

trimer–trimer (Fig. 4) computed with various methods. Compared to MP2/TZVP

PM6-DH2 performs best for this particular system, while PM6-DH+ and PM6-D3H+

appear to perform roughly similarly, with mean absolute deviations (MAD) of 0.8 and

1.3 kcal/mol, respectively. However, it is interesting to note that the decrease in interaction
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Table 3 Hydrogen bond interaction energies, with various methods, from formamide dimer,
pentamer–monomer, and trimer–trimer, as well as MP2/TZVP reference data. All values are in
kcal/mol.

PM6a,b DH2b DH+b D3H+a MP2/TZVPc

Dmer −5.36 −6.71 −7.81 −8.12 −6.65

Pentamer–monomer −7.17 −8.82 −9.56 −10.06 −8.66

Trimer–trimer −9.27 −11.33 −11.45 −12.23 −11.26

Notes.
a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
c From Kobko et al. (2001) and Kobko & Dannenberg (2003).

Figure 4 Illustrating the formamide trimer–trimer (A), hexamer (B) and pentamer–monomer (C).

energy on going from the dimer to the pentamer–monomer predicted by PM6-DH+

(3.6 kcal/mol) is somewhat lower than that predicted by other methods corrections

and MP2/TZV (4.1–4.6 kcal/mol). This decrease comes primarily from cooperative

polarization effects that are accounted for by the underlying PM6 method, and PM6,

PM6-DH2, and PM6-D3H+ all predict similar decreases. It is not clear why the DH+

terms leads to an underestimation of the cooperative effect.

Table 4 contains RMSD, MAD, mean-deviation (MD) and maximum deviation relative

to estimated CCSD(T)/CBS//MP2/pVTZ interaction energies computed for 12 hydrogen

bonded base pair complexes (Table S1) from the JSCH-2005 (Jurečka et al., 2006) set from

BEGDB. The 12 complexes represent all the complexes in the JSCH-2005 set with hydrogen

bonds involving N and O atoms and for which interaction energies have been computed at
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Table 4 Root-mean-square deviation, RMSD; mean absolute deviation, MAD; mean deviation, MD;
as well as the maximum error, Max, with respect to the estimated CCSD(T)/CBS interaction energies
from selected complexes from JSCH-2005 dataset.

Method RMSD MAD MD Max

PM6a,b 8.24 7.98 7.98 10.71

PM6-DH2b 1.45 1.09 0.21 3.97

PM6-DH+
b 0.94 0.69 0.46 1.90

PM6-D3H+
a 1.18 0.95 0.37 2.45

Notes.
a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.

a level similar to that used in the parameterization of PM6-D3H+ [i.e., CCSD(T)/CBS//

MP2/pVTZ]. For this set all three corrections offer very significant increases in accuracy

(e.g., a ca 8 kcal/mol decrease in the MAD) compared to PM6. As for the training set

(Table 2) the accuracy of PM6-DH2, PM6-DH+, and PM6-D3H+ are very similar, with

MADs between 0.7 and 1.1 kcal/mol.

Geometry optimization
All structures from the S22 and S66 data sets were optimized with PM6, and PM6-DH+

using MOPAC or PM6 and PM6-D3H+ using GAMESS to test how well the methods

reproduce the reference MP2/cc-pVTZ geometries and to compare the optimization

algorithms in GAMESS and MOPAC.

For the GAMESS optimizations we used the default (quasi Newton–Raphson) geometry

optimizer and defined convergence as having a maximum gradient component less than

5 × 10−4 Hartree/Bohr and an RMS gradient less than 5/3 × 10−4 Hartree/Bohr. These

convergence criteria are five times higher than the default and are chosen because we

have found that for large systems these criteria can lead to significantly faster convergence

without affecting the structure or final energy significantly. See supporting information

for GAMESS examples of input files. For complex 58 in the S66 set it was necessary to

re-compute the Hessian every 20 steps to obtain convergence and in the case of complex 22,

51, and 58 it was necessary to skip the projection of translational and rotational degrees of

freedom from the gradient to obtain convergence, which was done by settings the keyword

PROJCT=.F. in $Force. For 11 of the complexes (see Table S1) it was necessary to decrease

convergence criterion to 10−4 Hartree/Bohr in order to remove imaginary frequencies. In

the case of complex 4 and 5 from S22 PM6-D3H+ predicted that the minimum has C1

symmetry rather than Cs as predicted by MP2, and a deviation in the planarity structure of

0.1 Å was needed (added to the first atom). This is not the case for PM6 and thus a result of

the D3H+ energy correction.

For the MOPAC optimization we used the LBFGS geometry optimizer because we

found that this is the only optimization algorithm that can be practically applied to

optimization of large systems. Using eigenvector following leads to termination of the

geometry optimization and the following error message: “TRUST RADIUS NOW LESS
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Table 5 Geometry optimization of equilibrium conformations of the S22 and S66 datasets in gas
phase. Root-mean-square-deviation was calculated between the optimized structures and the original
structure from S22 and S66, as well as the hydrogen bond lengths. The average number of steps
(N̄S), average of the final root-mean-squared gradient (RMS) in Hartree/Bohr, and average number of
imaginary frequencies (N̄i) was noted for the different methods.

Avg. RMSD (Å) HB RMSD (Å) N̄S Avg. Gradient RMS N̄i (max)

PM6a 0.11 0.13 30 1.0 × 10−4 0.02 (1)

PM6-D3H+
a 0.12 0.08 31 1.0 × 10−4 0.07 (1)

PM6b,c 0.28 0.24 229 1.4 × 10−3 0.71 (6)

PM6-DH+
b,d 0.21 0.24 376 2.3 × 10−3 0.79 (9)

Notes.
a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
c Averages computed without complexes 10 and 17 from S22 and 29, 53 and 54 from S66, as they did not converge.
d Averages computed without complexes 11 from S22 and 53, 54, 60 and 63 from S66, as they did not converge.

THAN 0.00010 OPTIMIZATION TERMINATING”. Based on the output the convergence

criterion for the LFBGS optimizer appears to be a change heat of formation of less than

ca 0.1 kcal/mol during several consecutive optimization steps. For PM6, this convergence

test was not passed after ca 200 geometry optimization steps for complex 10 and 17 from

the S22 set and 29, 53, and 54 from the S66 set. For PM6-DH+, this convergence failed

after ca 140 geometry optimization steps for complex 11 from the S22 set and 53, 54 and 60

from the S66 set. In all these cases MOPAC terminates the geometry optimization after the

mentioned number of steps with the message: “A FAILURE HAS OCCURRED”.

The results are summarized in Table 5. The average RMSD between the MP2/cc-pVTZ

and semi-empirical structures are below 0.28 Å for all methods and a factor of two

lower for the GAMESS optimizations. The RMSD was calculated using the Kabsch

algorithm (Kabsch, 1976), for all the atoms, including hydrogens. For the hydrogen

bonding subset RMSD was calculated for the hydrogen bond lengths, which are much

lower with GAMESS, and with PM6-D3H+ being the lowest with a RMSD of 0.08 Å. The

GAMESS optimizations converge, on average, in 30 steps, while the MOPAC optimization

takes 10 times more steps.

Furthermore, MOPAC optimized geometries tend to have a significantly larger RMS

gradient, compared to GAMESS. This leads to significantly more imaginary frequencies in

a subsequent vibrational analyses compared to those obtained with GAMESS. In the case

of MOPAC 54, 17, 15, and 2 geometries result in 0, 1, 2, and ≥3 imaginary frequencies,

while the corresponding numbers for GAMESS are 82, 6, 0, and 0 (Tables S2–S4). Using the

(default) eigenvector following algorithm in MOPAC for comparison results in 60, 19, 5,

and 4 geometries with 0, 1, 2, and ≥3 imaginary frequencies, respectively, with complexes 1

and 3 from S22 and 1 and 20 from S66 failing the optimization.

For four of the six cases where a GAMESS optimization leads to a structure with a single

imaginary frequency a convergence criterion of 10−4 Hartree/Bohr is used, but lowering

the convergence criterion further does not remove the imaginary frequencies. In the sixth

case, complex 16 in the S66 set (water hydrogen bonded to an amide group—Fig. 5), the
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Figure 5 Hydrogen bond configuration of complex 16 of the S66 set. This figure was made with Jmol.

optimization stalls, when setting convergence criterion to 10−4 Hartree/Bohr, with the

maximum gradient oscillating between 3 × 10−4 and 2 × 10−4 Hartree/Bohr. This is due to

the dihedral angleψ (Eq. (3)) which is defined as R1R2X ...H (cf. Figs. 1 and 2), where R1 is

defined as the atom closest to the H atom. In the case of the amide–water hydrogen bond,

R1 and R2 are the two water H atoms, which are approximately equidistant from the amide

proton. The oscillation in the maximum gradient is caused by the oscillation between two

different definitions ofψ , which has an effect on the gradient direction. The normal mode

associated with the imaginary frequency for the structure converged with a convergence

criterion of 5 × 10−4 corresponds to a motion between these two structures, so this is

likely the explanation for the imaginary frequency. Similarly, in the case of the complex

1 in the S22 set (ammonia dimer), we believe the imaginary frequency is due to highly

symmetric hydrogen configuration, with switching torsion angles (atomic definition ofψ).

Since this only affects structures with highly symmetric hydrogen bonds it is unlikely to

cause problems in most applications. We note that the PM6-DH+ method has the same

problem.

In the remaining four cases where a GAMESS optimization leads to a structure with an

imaginary frequency the cause is most likely an extremely flat potential energy surface for

the corresponding degrees of freedom: all imaginary frequencies are<31i cm−1. Similarly,

the lowest real frequencies for these five cases are all<40 cm−1.

In summary, the PM6-D3H+ method as implemented in GAMESS offers an attractive

alternative to PM6-DH+ in MOPAC in cases where the default geometry optimizer fails

to find a converged structure and the LBFGS optimizer must be used and a vibrational

analysis is needed e.g., when computing vibrational free energies.
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Table 6 Optimized proteins Chignolin with 138 atoms and Trp-Cage with 304 atoms, in gasphase
and implicit solvent, using PM6-DH+ and PM6-D3H+ with COSMO and PCM respectively for
solvent polarization. RMSD (in Å) are calculated with reference to the protein structures optimized at
FMO2-RHF-D3/6-31G(d) level of theory and FMO2-RHF-D3/6-31G(d)/PCM level for solvent effects.
Time in hours and number of optimization steps were noted. Calculations was run on a single core.

PM6-DH+b PM6-D3H+a

System PDB RMSD (Å) Time (h) Steps Ni RMSD (Å) Time (h) Steps Ni
d

Chignolin 1UAO 0.90 0.1 739 4 0.98 0.2 204 0 (0)

Trp-Cage 1L2Y 1.89 1.1 1774 2 1.61 5.4 481 2 (0)

Chignolinc 1UAO 1.14 0.1 941 5 0.56 0.6 128 3 (0)

Trp-Cagec 1L2Y 1.23 0.6 882 12 0.83 5.2 174 2 (0)

Notes.
a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
c Calculations was done using implicit solvent models. PCM for GAMESS, COSMO for MOPAC.
d Number of imaginary frequencies for OPTTOL = 5 × 10−4 (1 × 10−4) aus.

Application to protein structure refinement
In this section we test the applicability of the PM6-D3H+ method, combined with the

PCM for bulk solvation as implemented in GAMESS, to geometry optimization of large

systems such as proteins and compare to corresponding calculations performed using

MOPAC.

We optimize the proteins Chignolin (1UAO) and Trp-Cage (1L2Y), which are two

small proteins with 138 and 304 atoms, respectively. We optimize the structures using

PM6-DH+ in MOPAC (Stewart, 2012), and PM6-D3H+ in GAMESS (Schmidt et al.,

1993), with and without implicit solvent models. The optimized semi-empirical structures

are compared to the reference structure optimized at the RHF/6-31G(d) level of theory

using dispersion correction (DFTD3) and two-body Fragment Molecular Method

(FMO2). Previous calculations by Nagata et al. (2012) have shown that this level of

theory yields protein structures in good agreement with corresponding MP2 calculations.

Optimized reference structures are available on GitHub (JensenGroup, 2014a).

The results are summarized in Table 6. The RMSD values are about 1 Å in the gas

phase for both methods, with PM6-DH+ being slightly smaller. The RMSD values for the

structures in solution are slightly larger compared to the corresponding gas phase values

for PM6-DH+, and slightly smaller for PM6-D3H+. The structural overlap between

PM6-D3H+/PCM optimization and the reference structure can been seen in Figs. 6 and 7.

For Trp-cage both methods converge in about half the number of steps compared to gas

phase. MOPAC requires significantly more optimization steps than GAMESS to converge,

but the overall time for optimization of the structures is by far faster than GAMESS.

The difference in CPU time per geometry optimization step is significantly larger for

optimization in bulk solvent, which indicates that it is the difference in the COSMO and

PCM interfaces that differ most in terms of CPU requirements. Despite being significantly

slower than PM6-DH+/COSMO, the PM6-D3H+/PCM implementation in GAMESS is

sufficiently fast to make geometry optimizations of small proteins feasible.
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Figure 6 Trp-cage (1L2Y) optimized with FMO2-RHF-D3/6-31G(d)/PCM (black), compared to (A)
PM6-D3H+/PCM (blue) and (B) PM6-DH+/COSMO (green). This figure was made with PyMOL
Schrodinger.

Figure 7 Chignolin (1UOA) optimized with FMO2-RHF-D3/6-31G(d)/PCM (black), compared to (A)
PM6-D3H+/PCM (blue) and (B) PM6-DH+/COSMO (green). This figure was made with PyMOL
Schrodinger.

The number of imaginary frequencies computed for the optimized protein geometries

(Ni) are listed in Table 6. Again, the GAMESS optimization leads to significantly fewer

imaginary frequencies: 3 and 3 using PM6-D3H+/PCM implemented in GAMESS, com-

pared to 5 and 12 for Chignolin and Trp-cage using PM6-DH+/COSMO implemented

in MOPAC. In the case of GAMESS the number of imaginary frequencies can be reduced

to 0 for both proteins by decreasing the geometry optimization criterion (OPTTOL) to

1 × 10−4 aus. This required 205 and 298 additional optimization steps for Chignolin and

Trp-cage, respectively.

The relative speedup from running in parallel in solvent is shown on Fig. 8, where no

improvement is observed beyond 8 cores for all methods. The timings were done on 24

core AMD Opteron(tm) Processor 6172 @ 2.1 GHz machine for GAMESS and 8 core

Intel(R) Xeon(R) CPU X5560 @ 2.80 GHz for MOPAC, because we were unable to get
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Figure 8 Speedup by using multiple cores with PCM enabled for single point energy and gradient
evaluation of the proteins Trp-Cage (1L2Y) with 304 atoms and Chignolin (1UAO) with 138 atoms,
using (A) PM6 and (B) PM6-D3H+ in GAMESS and (C) PM6 and (D) PM6-DH+ in MOPAC. The
evaluation was done using implicit solvent models COSMO and PCM for respectively MOPAC and
GAMESS. a The calculations have been done using the GAMESS software. b The calculations have been
done using the MOPAC software.

MOPAC running on the AMD ones. Using the dispersion correction and hydrogen bond

correction on the PM6 method in GAMESS reduces the relative speedup from 4 to about 2.

The correction terms to the PM6 energy only runs in serial, and a modest speedup could be

gained by parallelising them. Here we note that the poor scaling of run times with regards

to the number of CPUs used is an inherent problem for semi-empirical since the matrix

diagonalization in the SCF procedure cannot be efficiently parallelized (Maia et al., 2012).

CONCLUSIONS
Recent studies by Gilson (Muddana & Gilson, 2012) and Grimme (2012) and co-workers

have used dispersion and hydrogen bonded corrected PM6 to compute the vibrational free

energy contribution to the standard binding free energy for host–guest systems. However,

computing this vibrational free energy contribution can be complicated by the presence

of one or more imaginary frequencies in the vibrational analysis, and these numerical

problems can introduce a significant error in the binding free energy.
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In this paper we address this problem by developing the PM6-D3H+ method and

implementing it in the GAMESS program. The method combines the D3 dispersion

correction devloped by Grimme and co-workers with a modified version of the H+

hydrogen bond correction developed by Korth and co-workers. Overall, the accuracy of

PM6-D3H+ is very similar to PM6-DH2 and PM6-DH+, with RMSD and MAD values

within 0.02 kcal/mol of one another. The main difference is that the maximum error

for PM6-D3H+ is 1.42 and 0.36 kcal/mol smaller than for PM6-DH2 and PM6-DH+,

respectively.

Geometry optimizations of 88 complexes result in 82, 6, 0, and 0 geometries with 0,

1, 2, and ≥3 imaginary frequencies using PM6-D3H+ implemented in GAMESS, while

the corresponding numbers for PM6-DH+ implemented in MOPAC are 54, 17, 15, and

2 (Tables S2–S4). This decrease is mainly due to differences in geometry optimization

algorithms and convergence criteria.

Furthermore, the numerical stability of the method could be increased by changing

the definition of some of the dihedral angles used in the hydrogen bond correction term.

However, this appears only to be an issue for very symmetric systems which is unlikely to

occur in large heterogenous systems such as proteins.

The PM6-D3H+ method as implemented in GAMESS offers an attractive alternative to

PM6-DH+ in MOPAC in cases where the LBFGS optimizer must be used and a vibrational

analysis is needed, e.g., when computing vibrational free energies.

While the GAMESS implementation is up to 10 times slower for geometry optimiza-

tions of proteins in bulk solvent, it is sufficiently fast to make geometry optimizations of

small proteins practically feasible.
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