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Background. Despite great progress in studies on Wolbachia infection in insects, the

knowledge about its relations with beetle species, populations and individuals, and the

effects of bacteria on these hosts is still unsatisfactory. In this review we summarize the

current state of knowledge about Wolbachia occurrence and interactions with Coleopteran

hosts. Methods. An intensive search of the available literature resulted in the selection of

86 publications that describe the relevant details about Wolbachia presence among

beetles. These publications were then examined with respect to the distribution and

taxonomy of infected hosts and diversity of Wolbachia found in beetles. Sequences of

Wolbachia genes (16S rDNA, ftsZ) were used for the phylogenetic analyses. Results. The

collected publications revealed that Wolbachia has been confirmed in 204 beetle species

and that the estimated average prevalence of this bacteria across beetle species is 38.3%

and varies greatly across families and genera (0-88% infected members) and is much

lower (c. 13%) in geographic studies. The majority of the examined and infected beetles

were from Europe and East Asia. The most intensively studied have been two groups of

herbivorous beetles: Curculionidae and Chrysomelidae. Coleoptera harbor Wolbachia

belonging to three supergroups: F found in only 3 species, and A and B found in similar

numbers of beetles (including some doubly infected); however the latter two were most

prevalent in different families. 59% of species with precise data were found to be totally

infected. Single infections were found in 69% of species and others were doubly- or

multiply-infected. Wolbachia caused numerous effects on its beetle hosts, including

selective sweep with host mtDNA (found in 3% of species), cytoplasmic incompatibility

(detected in c. 6% of beetles) and other effects related to reproduction or development

(like male-killing, possible parthenogenesis or haplodiploidy induction, and egg

development). Phylogenetic reconstructions for Wolbachia genes rejected cospeciation

between these bacteria and Coleoptera, with minor exceptions found in some

Hydraenidae, Curculionidae and Chrysomelidae. In contrast, horizontal transmission of
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bacteria has been suspected or proven in numerous cases (e.g. among beetles sharing

habitats and/or host plants). Discussion.  The present knowledge about Wolbachia

infection across beetle species and populations is very uneven. Even the basic data about

infection status in species and frequency of infected species across genera and families is

very superficial, as only c. 0.15% of all beetle species have been tested so far. Future

studies on Wolbachia diversity in Coleoptera should still be based on the Multi-locus

Sequence Typing system, and next-generation sequencing technologies will be important

for uncovering Wolbachia relations with host evolution and ecology, as well as with other,

co-occurring endosymbiotic bacteria.
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Abstract

Background. Despite great progress in studies on Wolbachia infection in insects, the knowledge 

about its relations with beetle species, populations and individuals, and the effects of bacteria on 

these hosts is still unsatisfactory. In this review we summarize the current state of knowledge 

about Wolbachia occurrence and interactions with Coleopteran hosts. 

Methods. An intensive search of the available literature resulted in the selection of 86 

publications that describe the relevant details about Wolbachia presence among beetles. These 

publications were then examined with respect to the distribution and taxonomy of infected hosts 

and diversity of Wolbachia found in beetles. Sequences of Wolbachia genes (16S rDNA, ftsZ) 

were used for the phylogenetic analyses. 

Results. The collected publications revealed that Wolbachia has been confirmed in 204 beetle 

species and that the estimated average prevalence of this bacteria across beetle species is 38.3% 

and varies greatly across families and genera (0-88% infected members) and is much lower (c. 

13%) in geographic studies. The majority of the examined and infected beetles were from Europe

and East Asia. The most intensively studied have been two groups of herbivorous beetles: 

Curculionidae and Chrysomelidae. Coleoptera harbor Wolbachia belonging to three supergroups: 

F found in only 3 species, and A and B found in similar numbers of beetles (including some 

doubly infected); however the latter two were most prevalent in different families. 59% of species

with precise data were found to be totally infected. Single infections were found in 69% of 

species and others were doubly- or multiply-infected. Wolbachia caused numerous effects on its 

beetle hosts, including selective sweep with host mtDNA (found in 3% of species), cytoplasmic 

incompatibility (detected in c. 6% of beetles) and other effects related to reproduction or 
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development (like male-killing, possible parthenogenesis or haplodiploidy induction, and egg 

development). Phylogenetic reconstructions for Wolbachia genes rejected cospeciation between 

these bacteria and Coleoptera, with minor exceptions found in some Hydraenidae, Curculionidae 

and Chrysomelidae. In contrast, horizontal transmission of bacteria has been suspected or proven 

in numerous cases (e.g. among beetles sharing habitats and/or host plants). 

Discussion.  The present knowledge about Wolbachia infection across beetle species and 

populations is very uneven. Even the basic data about infection status in species and frequency of

infected species across genera and families is very superficial, as only c. 0.15% of all beetle 

species have been tested so far. Future studies on Wolbachia diversity in Coleoptera should still 

be based on the Multi-locus Sequence Typing system, and next-generation sequencing 

technologies will be important for uncovering Wolbachia relations with host evolution and 

ecology, as well as with other, co-occurring endosymbiotic bacteria. 

Short title Wolbachia among Coleoptera: a review

Introduction 

The relations between the intracellular α-proteobacterium Wolbachia pipientis Hertig 

1936 (hereafter Wolbachia) and its hosts from various groups of arthropods and nematodes have 

been the object of much research and numerous publications (O’Neill et al., 1992; Werren et al., 

1995a; Weinert et al. 2015). The majority of these studies have focused on verifying 

endosymbiotic bacteria occurrence and diversity in various hosts at different levels: i) among 

selected species sharing a geographic area (e.g. O’Neill et al., 1992; Werren et al., 1995a, 2000), 

ii) among species inhabiting the same environment or that are ecologically-associated (e.g. 

Stahlhut et al., 2010), iii) among species from particular taxonomic groups (e.g. Czarnetzki et al., 

2004; Lachowska et al., 2010; Sontowski et al., 2015), and iv) within populations of selected taxa

(e.g. Stenberg et al., 2004; Mazur et al., 2016). Another branch of research on the relations 

between Wolbachia and its hosts has focused on host species phylogenetics or population 

genetics, which is in some cases related to population differentiation and speciation (e.g. Kubisz 

et al., 2012; Montagna et al., 2014). In this research, Wolbachia is sometimes treated as an 

additional “marker” – a source of genetic data about the eco-evolutionary relations of its hosts. A 
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third type of Wolbachia studies has concerned the direct or indirect effects of the infection on 

host fitness, development or survival at the individual and population levels (e.g. Weeks 2002; 

O’Neill 2007).  Moreover, in a separate branch of research (or in conjunction with the 

abovementioned types of studies), Wolbachia is often examined directly, mainly with respect to 

strain diversity, distribution and relations with other strains or different co-existing bacteria 

(Baldo et al., 2007). All these branches of research have substantially extended the knowledge 

about the relations between the most widespread intracellular endosymbiont – Wolbachia and its 

various hosts. Moreover, these studies have been expanded to encompass other bacteria with 

similar biologies and effects on hosts (like Cardinium, Spiroplasma, Rickettsia) (Zchori-Fein & 

Perlman 2004; Goto et al., 2006; Duron et al., 2008; Weinert et al. 2015); however, a great 

majority of studies are still conducted on Wolbachia (Zug & Hammerstein, 2012). Recently, the 

various Wolbachia supergroups have been proposed to belong to several “Candidatus Wolbachia”

species (Ramírez-Puebla et al., 2015); however, this approach has been criticized (Lindsey et al., 

2016). Due to the uncertain species status of the “Candidatus Wolbachia” and because all 

previous studies considered these presumed different species as distant supergroups, in this 

review we have followed the previous Wolbachia taxonomy. 

In summary, Wolbachia has been detected in 10-70% of examined hosts (Hilgenboecker et

al., 2008; Zug & Hammerstein, 2012), depending on the geographical, ecological or taxonomical 

association of the selected species. Moreover, more detailed studies, at the population level, have 

shown that infection is not as straightforward as was assumed in the early stages of Wolbachia 

research. More and more species have been found to be only partially infected, e.g. in only some 

parts of their ranges or infection was associated with only some phylogenetic lineages (usually 

correlated with the distribution of mitochondrial lineages) (Clark et al., 2001; Roehrdanz et al., 

2006). Furthermore, examples of multiply infected species and individuals have been reported, 

which has important consequences for the understanding of some of the effects of Wolbachia 

infection (Malloch et al., 2000; Gurfield, 2016). Wolbachia is known to have numerous effects on

its hosts, among which the most interesting and important are those that disturb host 

reproduction, such as cytoplasmic incompatibility, thelytokous parthenogenesis, feminization of 

genetic males, male-killing, increased mating success of infected males via sperm competition 

and the host’s complete dependence on bacteria for egg production (for reviews see Werren, 

1997; Werren & O’Neill, 1997 and Stouthamer et al., 1999). Some of these effects are responsible

for diversification of host populations and consequently Wolbachia have probably been involved 
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in speciation (e.g. by the selective sweep of mtDNA or the whole genome of the infected host 

with the genome of bacteria; Keller et al., 2004; Mazur et al., 2016). This could be another major 

factor, additional to those already known, responsible for radiation of insects and particularly 

beetles.

There are several reviews summarizing the state of knowledge on Wolbachia infection 

among various taxonomic groups of nematodes and arthropods. Over the last years, such reviews 

have been prepared for the following groups: filarial nematodes (Filarioidea) (Taylor & Hoerauf, 

1999; Casiraghi et al., 2001), crustaceans (Crustacea) (Cordaux et al., 2001), spiders (Araneae) 

(Goodacre et al., 2006; Yun et al., 2010), mites (Acari) (Chasirini et al., 2015), springtails 

(Collembola) (Czarnetzki et al., 2004), Heteropteran Bugs (Heteroptera) (Kikuchi et al., 2003), 

ants (Formicidae) (Russell, 2012), wasps (Hymenoptera: Apocrita) (Schoemaker et al., 2002) and

butterflies (Lepidoptera) (Tagami et al., 2004). Surprisingly, there is no such review for beetles 

(Coleoptera), which include large number of diversified taxa, known from various habitats, and 

whose members belong to all major trophic guilds of animals. Some groups of beetles have been 

examined with respect to Wolbachia infection, but usually only with a limited coverage of species

(e.g. weevils, Curculionidae, Lachowska et al., 2010; leaf beetles; Chrysomelidae, Clark et 

al., 2001, Jäckel et al., 2013; jewel beetles; Buprestidae, Sontowski et al., 2015 and minute moss 

beetles, Hydraenidae, Sontowski et al., 2015).

In this review we have summarized the current state of knowledge on the relations 

between beetles and Wolbachia by referring to all the abovementioned aspects of research. 

Moreover, we have highlighted future research directions concerning Wolbachia relationships 

with their diverse Coleopteran hosts.  

Survey Methodology 

We searched the scientific literature with Web of Knowledge databases, using the 

following combination of keywords linked by AND (the Boolean search term to stipulate that the 

record should contain this AND the next term): “Wolbachia” AND “Coleoptera” and 

“Wolbachia” AND “beetles”. Our final literature search for this analysis was conducted on 

December 22, 2017. This produced 322 results. Each result was inspected to determine whether 

or not it contained information on the subject matter. Articles that had no relevance (e.g. any 

reports that were not about Wolbachia-Coleoptera relations, including those that only had some 

references to either beetles or bacteria in the citations) were excluded. After the removal of 
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duplicates, 65 were excluded from the remaining articles (n = 234) for not being direct reports 

about Wolbachia-Coleoptera relations, 44 were excluded because they examined other hosts and 

only referred to publications on Coleoptera, and 44 others were excluded because they referred to

data already presented in previous publications on Coleoptera. The use of two alternative and 

comprehensive scientific collections should have reduced any biases. Each document was read 

critically for the information that it contained on Wolbachia-Coleoptera relations, with special 

reference to answering the study questions listed below. Figure 1 shows a flow diagram for the 

systematic review following Prisma guidelines (Moher et al., 2009).

We examined the collected data on various aspects of Wolbachia infection in Coleoptera 

with respect to the following: the i) characteristics of the publications (to determine the scope and

progress of studies on Wolbachia) (n=86), ii) geographic distribution of infected beetle species 

and populations (n=84), iii) sampling design (how many sites and individuals were examined) 

(n=63), iv) characteristics of the markers (genes) used for genotyping the bacteria (n=82) and 

their hosts (n=34), v) numbers and frequencies of species found to be infected in particular beetle

families and genera (n=58), vi) supergroup prevalence in examined taxonomic groups (n=43), 

vii) strain distribution and diversity in populations and individuals (n=30), vii) effects of 

Wolbachia on its beetle hosts (n=39). Statistical analyses (Spearman correlation for number of 

publication across years and for the number of examined and number of infected species, Chi2 

test for frequency of supergroups and infected taxa in particular taxonomic groups, Chi2 ANOVA

for comparison of single/double/multiple infected taxa, Kruskal-Wallis Z test for infection 

frequency in Chrysomelidae and Curculionidae) were done in Statistica 11 (Statsoft). 

Finally, we downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and the 

Wolbachia MLST database (https://pubmlst.org/wolbachia/) all available sequences of Wolbachia

genes found in any species of beetle. We restricted further analyses to the most widely used 

bacteria genes, i.e. 16S rDNA and cell division protein gene ftsZ. Because of the different lengths 

and spans of available sequences, the long parts of the 3’ and 5’ ends of each gene were trimmed, 

which resulted in alignments of length 663 bp for 16S rDNA  and 241 bp for ftsZ. The length of 

the ftsZ alignment was particularly short as two different sets of primers have been used for its 

amplification, and its amplicons only overlapped across a relatively short part of the gene. 

Phylogenetic trees were only reconstructed for unique gene variants found in particular host taxa. 

Trees were inferred using Maximum Likelihood (ML) implemented in IQ-TREE web server 

http://www.iqtree.org/ (Trifinopoulos et al., 2016)  under the following settings Auto selection of 

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

PeerJ reviewing PDF | (2017:11:21704:2:1:NEW 9 Feb 2018)

Manuscript to be reviewed

http://www.iqtree.org/
https://pubmlst.org/wolbachia/
https://www.ncbi.nlm.nih.gov/genbank/


substitution model, ultrafast bootstrap approximation (UFBoot) (Minh et al., 2013) with 10000 

iterations, maximum correlation coefficient = 0.99, single branch test with use of the approximate

Likelihood-Ratio Test (SH-aLRT) (Anisimova & Gascuel, 2006; Guindon et al., 2010) and other 

default options. 

The nomenclature of host taxa and their systematic positions throughout the paper follow 

the articles from which the data was derived.

Characterization of Wolbachia infection among Coleoptera

Publications

The final list of publications concerning data about Wolbachia infection in Coleoptera 

comprised 86 papers (Supplementary Table 1). The oldest articles with relevant information about

Wolbachia infection in beetles were published in 1992 (Campbell et al., 1992; O’Neill et al., 

1992), and the number of articles since then has increased significantly year by year (Spearman 

correlation = 0.841; Fig. 2). The majority of these articles (60%) concerned infection in only 

single beetle species, whereas 19% discussed infection in multiple species belonging to the same 

genus, 6% − multiple species from the same family, 6% − various species of Coleoptera et al., 

and a further 9% − studies on geographic groups of insects that included some, usually random 

species of beetles (O’Neill et al., 1992; Werren et al., 1995, 2000; Weinert et al. 2015). 

Most studies were done on Curculionidae (34) and Chrysomelidae (34), following 

Tenebrionidae (9), Coccinellidae (10) and Sylvanidae (3) (Supplementary Table 1). The members

of all other families were investigated in only 1-2 studies. Consequently, 2.5 and 1.6 

Curculionidae and Chrysomelidae species were respectively examined per article. All species of 

Hydraenidae and Buprestidae were included in only single articles (Sontowski et al., 2015), 

whereas limited numbers of species of Coccinellidae and Tenebrionidae were examined in several

articles (Hurst et al., 1999; Fialho & Stevens 1996, 1997, 2000; Majerus et al., 2000; et al., 

Weinert et al., 2007; Elnagdy et al., 2013; Ming et al., 2015; Goodacre et al., 2015; Kageyama et 

al., 2015; Li et al., 2015; Li  et al., 2016; Dudek et al.; 2017). Wolbachia infection was only 

studied more than once in 20 species. 

Sampling design

The majority of species investigated with respect to Wolbachia infection were from 

Europe, and a relatively high number of species were from Asia and both Americas, whereas only
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ten infected species were from Africa, and three from Australia-Oceania (Fig. 3). A number of 

publications describing Wolbachia infection in Coleoptera had similar geographic coverages (Fig.

3).

Studies were done on samples collected from an average of 5.2 sites and concerned on 

average 53.0 specimens, or if excluding the most widely studied families Curculionidae and 

Chrysomelidae, 6.0 sites and 65.1 individuals (Fig. 4). For Curculionidae and Chrysomelidae, 

these numbers were on average 4.4 and 6.0 sites, respectively, and 40.7 and 70.2 individuals, 

respectively (Fig. 4). The numbers of sites and individuals examined in particular groups were 

insignificantly different, with the exception of the numbers of examined individuals in 

Curculionidae and Chrysomelidae (Fig. 4). 

Examined genetic markers

The most often used Wolbachia gene for studies on Coleoptera was ftsZ, followed by 

hcpA, wsp and 16S rDNA (Fig. 5). Most studies using hcpA also used other MLST genes, 

including ftsZ. On the other hand, many species were only investigated with either 16S rDNA or 

wsp or ftsZ alone. Single studies used groEL (Monochamus alternatus, Aikawa et al., 2009; 

Tribolium madens, Fialho & Stevens, 2000) or ITS genes (Tribolium madens, Fialho & Stevens, 

2000). So far, only five studies have used next-generation sequencing technology (Illumina or 

454) to detect Wolbachia; two used 16S rDNA for metabarcoding of microbiota (Sitona obsoletus,

Steriphus variabilis, White et al., 2015; Aleochara bilineata and Aleochara bipustulata, Bili et al.,

2016; Hylobius abietis, Berasategui et al., 2016; Brontispa longissimi, Takano et al., 2017; 

Harmonia axyridis, Dudek et al., 2017) and one used shotgun genomic sequencing (Amara 

alpine, Heintzman et al., 2014). For genotyping of hosts, 52.4% of studies utilized fragments of 

COI from mtDNA (usually a barcode fragment of this gene). Fewer studies (23.1%) analyzed 

rDNA (usually ITS1 and/or ITS2 spacers), EF1α  (14.0%), Wingless (2.2%), Histone H3 (2.2%) 

and  microsatellites (6.1%). In Wolbachia-related studies, host genes have been used for several 

purposes like i) using host DNA as a control for genetic material quality, ii) barcoding for host 

species identification, iii) phylogenetics, phylogeography and population genetics, iv) estimating 

co-evolutionary relations between the bacteria and host, and v) detecting some of the effects of 

Wolbachia on its hosts (like linkage disequilibrium, selective sweep, cytoplasmic 

incompatibility). 

Taxonomic coverage
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The beetles examined with respect to Wolbachia infection belong to 23 families 

(Micromalthidae, Gyrinidae, Haliplidae, Noteridae, Dytiscidae, Carabidae, Staphyllinidae, 

Hydrophilidae, Hydraenidae, Anobiidae, Dermestidae, Buprestidae, Byturidae, Cleridae, 

Lampyridae, Coccinellidae, Tenebrionidae, Scarabeidae, Meloidae, Sylvanidae, Cerambycidae, 

Chrysomelidae, Curculionidae). In total 204 beetle species were found to harbor Wolbachia 

infection; however, the distribution of infected species among families varied markedly. The 

highest numbers of infected beetle species were found for the Curculionidae (81 species), 

Chrysomelidae (49 species), Hydraenidae (14 species), Buprestidae (13 species), Coccinellidae 

(12 species) and Dytiscidae (8 species) (Fig. 6). In all other families only 1-3 species were 

reported to harbor Wolbachia (Supplementary Table 1). However, these numbers are biased by 

the low number of articles (studies) dealing with members of particular beetle families (see 

above). 

Considering infection across beetle genera, the most richly infected genera were Altica 

(Chrysomelidae, 17 species), Naupactus (Curculionidae, 11 species), Hydraena (Hydraenidae, 8 

species) and Agrilus (Buprestidae, 6 species) (Supplementary Table 1). In total, 49 genera were 

found to have infected members (Supplementary Table 1, Table 1). The infection in Coleoptera 

was estimated at 38.3% of examined species; however, the proportion of infected species varied 

greatly between families and genera. At the family level the infection frequency was from 10.5% 

(Tenebrionidae) to 100% (Noteridae) (Goodacre et al., 2015, Sontowski et al., 2015); however 

when considering only families for which more than 30 species were investigated (e.g. Clark et 

al., 2001; Lachowska-Cierlik  et al.; 2010, Rodriguer et al.; 2010a, Kondo et al.; 2011, Jäckel et 

al., 2013; Sontowski et al.; 2015, Kawasaki et al., 2016), infection was found in up to 63% of 

species (Hydraenidae) (Table 1). At lower taxonomic levels, Wolbachia was found in 25% of 

Diabroticite (Chrysomelidae; Clark et al., 2001), 14.3-16.7% of Bruchina (Chrysomelidae; 

Kondo et al., 2011), 34.8% of Scolytinae (Curculionidae, Kawasaki et al., 2016) and 16.7% of 

Curculioninii (Toju et al., 2013). Among 54 genera in which Wolbachia infection was examined 

for at least 2 species, 12 genera were completely uninfected, while 6 genera were completely 

infected (Table 1). If considering only genera with at least 5 verified species, Wolbachia was 

found in 0% (Acmaeodera; Buprestidae; Sontowski et al., 2015) to 88% of species (Altica, 

Chrysomelidae; Jäckel et al., 2013). There was only a marginally negative and insignificant 

correlation between the number of examined and number of infected species (R=-0.078). If 

considering only the most widely examined families, Chrysomelidae and Curculionidae, the 
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difference in infection frequency between these two groups was insignificant (Z=-1.656, 

P=0.098). Geographic studies on Wolbachia prevalence in insects have found much lower 

frequencies of infection in Coleoptera species: the bacterium was found in only 10.5% of beetles 

from Panama and 13.5% of beetles from North America (Werren et al., 1995a, 2000).

Wolbachia diversity

Among the various beetle species, Wolbachia strains belonged to three supergroups (A, B 

and F). However, they occurred at very different proportions in different groups of beetles, and 

these differences were significant (Chi2=98.78, P=0.000). Overall, the proportion of beetle 

species found to be infected with Wolbachia strains belonging to supergroups A or B was similar, 

with approx. 12% of all species harboring either supergroup (either as single infections in 

different species or populations or as multiple infections within individuals) (Fig. 7), whereas 

supergroup F was found in only 3 beetle species: Agrilus araxenus and Lamprodila mirifica (both

Buprestidae; Sontowski et al., 2015) and Rhinocyllus conicus (Curculionidae; Campbell et al., 

1992). In the four groups of beetles with the highest numbers of examined and infected species, 

the distributions of supergroups varied: in Buprestidae, a similar numbers of species were 

infected by supergroups A and B (all singly infected), with a relatively high proportion of F 

infected species (Sontowski et al., 2015). In contrast, in Hydraenida, supergroup A dominated 

over supergroup B (Sontowski et al., 2015). This was also the case in Chrysomelidae, with some 

species infected by both strains (Kondo et al., 2011,; Jäckel et al., 2013; Kolasa et al., 2017). The 

most varied infections were observed in Curculionidae, with supergroup B dominating, a 

presence of taxa infected by both A and B supergroups, and a single species infected by F 

supergroup (Lachowska-Cierlik  et al.; 2010, Rodriguer et al., 2010a; Kawasaki et al., 2016) (Fig.

7). Considering the frequency of infected specimens in the examined beetle species represented 

by the available data (N=106), 63 species were reported to be totally infected (all individuals 

possessed Wolbachia), whereas 43 species had this bacterium in only some individuals (if 

exclude Chrysomelidae and Curculionidae: 8 and 15 species, respectively) (Fig. 8). The same 

calculated for Chrysomelidae resulted in 17 and 10 species, respectively, and for Curculionidae in

38 and 18 species, respectively (Fig. 8). These differences between these values (between these 

groups of species) were significant (Chi2=72.03, P=0.000). A single Wolbachia strain was 

observed in 43 species (species with available data N = 62), whereas two strains were reported in 

10 species (Byturus tomentosus, Malloch et al., 2000; Altica quercetorum, Jäckel et al., 2013; 

Callosobruchus chinensis, Okayama et al., 2016; Chelymorpha alternans, Keller et al., 2004; 
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Crioceris quaterdecimpunctata and Crioceris quinquepunctata, Kolasa et al., 2017; Adalia 

bipunctata, Majerus et al., 2000; Polydrusus inustus, Kajtoch et al., 2012; Cyanapion afer and C.

spencii, Kajtoch et al., 2017) and multiple infection in a further 9 species (Callosobruchus 

chinensis, Kondo et al., 2002; Diabrotica barberi, Roehrdanz & Levine, 2007; Conotrachelus 

nenuphar, Zhang et al., 2010; Pityogenes chalcographus, Arthofer et al., 2009; Xyleborus dispar 

and Xylosandrus germanus, Kawasaki et al., 2016) (Fig. 8). In Chrysomelidae (N=22) these 

numbers were 12, 5 and 5, respectively and in Curculionidae (N=37), 30, 3 and 4, respectively 

(Fig. 8). The numbers of single, double and multiple infected individuals in these groups of 

beetles differed insignificantly (Chi2 ANOVA=2.364, P=0.307). 

Effects on hosts

Wolbachia affected beetle hosts in several ways. Linkage disequilibrium and/or selective 

sweep between bacteria and host genomes (usually with host mtDNA) were detected in 6 species 

(3% or 9% if excluding Chrysomelidae and Curculionidae): 2 (4%) Chrysomelidae (Altica lythri,

Jäckel et al., 2013; Aphthona nigriscutis, Roehrdanz et al., 2006) and 4 (5%) Curculionidae 

(Eusomus ovulum, Mazur et al., 2016; Naupactus cervinus, Rodriguero et al., 2010b, Polydrusus 

inustus, Polydrusus pilifer, Kajtoch et al., 2012). Cytoplasmic incompatibility was detected or 

suspected but unconfirmed in 12 (6% or 18% if excluding Chrysomelidae and Curculionidae) 

Coleoptera: 6 (13%) Chrysomelidae (Chelymorpha alternans, Keller et al., 2004, Diabrotica 

barberi, Roehrdanz & Levine 2007, et al.,Diabrotica virgifera virgifera, Giordano et al., 1997; 

Callosobruchus chinensis, Kondo et al., 2002; Callosobruchus analis, Numajiri et al., 2017; 

Brontispa longissimi,  Takano et al., 2017), 3 (4 %) of Curculionidae (Cossomus sp., Zhang et al.,

2010; Hypothenemus hampei,Mariño et al., 2017, Xylosandrus germanus, Kawasaki et al., 2016),

1 of Sylvanidae (Oryzaephilus surinamensis, Sharaf  et al., 2010) and 1 of Tenebrionidae 

(Tribolium confusum, Li  et al., 2016, Ming et al., 2015). Horizontal transfer of Wolbachia was 

detected or suspected in 26 species of Coleoptera (13% or 39% if excluding Chrysomelidae and 

Curculionidae) − 16 (33%) species of Chrysomelidae (several species of Altica, Jäckel et al., 

2013, Crioceris quaterdecimpunctata and Crioceris quinquepunctata, Kolasa et al., 2017) and 10 

(14%) species of Curculionidae (members of Euwallacea, Xyleborus, Xylosandrus, Xyleborinus 

schaufussi and Taphrorychus bicolor, Kawasaki et al., 2016, Polydrusus and Parafoucartia 

squamulata, Kajtoch et al., 2012; Sitophilus oryzae and S. zaemais, Carvalho et al., 2014). Other 

effects of Wolbachia on beetles included the following: i) transfer of bacteria genes to the 

autosomes of the host (so far detected only for Monochamus alternatus, Cerambycidae, Aikawa 
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et al., 2009 and Callosobruchus chinensis, Chrysomelidae, Nikoh et al., 2008); ii) coexistence of 

Wolbachia with Rickettsia (Calvia quattuordecimguttata, Coccidula rufa, Coccinella 

septempunctata, Halyzia sedecimguttata, Rhizobius litura, Weinert et al., 2007; Sitona obsoletus, 

White et al., 2015; Micromalthus debilis, Perotti et al., 2016) in the host or with Spiroplasma 

(Chilocorus bipustulatus, Weinert et al., 2007; Aleochara bipustulata, Bili et al., 2016) or with 

both (Adalia bipunctata, Majerus et al., 2000, Harmonia axyridis, Dudek et al., 2017; Curculio 

sikkimensis, Toju & Fukatsu, 2011; Aleochara bilineata, Bili et al., 2016); iii) induction and 

reinforcement of parthenogenesis, however this effect had weak support and had other possible 

alternative explanations (numerous species of Naupactini, Rodriguer et al., 2010a and Eusomus 

ovulum, Mazur et al., 2016; all Curculionidae; Micromalthus debilis, Perotti et al., 2016); iv) 

possible induction of haplodiploidy (Euwallacea interjectus, Euwallacea validus, Curculionidae, 

Kawasaki et al., 2016); v) male-killing (Tribolium madens, Tenebrionidae, Fialho & Stevens, 

2000); vi) necessity of infection for egg development (Otiorhynchus sulcatus, Curculionidae, Son

et al., 2008; Coccotrypes dactyliperda, Zchori-Fein et al., 2006); vii) populations evolving 

towards endosymbiont loss and repeated intraspecific horizontal transfer of Wolbachia 

(Pityogenes chalcographus, Curculionidae, Arthofer et al., 2009), viii) fitness decline in infected 

beetles (Callosobruchus analis, Numajiri et al., 2017), ix) modification of sperm (Chelymorpha 

alternans, Clark et al., 2008), x) down-regulation of defense genes in host plants (Diabrotica 

virgifera virgifera on maize, Barr et al., 2010).

Phylogenetic relations

The tree reconstructed for 16S rDNA included 52 sequences from bacteria found in 45 

host beetle species. This tree included three major lineages, with separate clusters of Wolbachia 

sequences belonging to A, B and F supergroups (Supplementary Fig. 1). F supergroup was 

represented by a single sequence from Rhinocyllus conicus (Curculionidae) (Supplementary Fig. 

1).  Sequences assigned to supergroup A (based on information available in the articles) were 

found to be polyphyletic. Some 16S sequences from Xylosandrus spp. and Curculio spp. 

(Curculionidae), or Oreina cacaliae and Galeruca tanaceti (Chrysomelidae) clustered as a sister 

lineage to all other A and B sequences (Supplementary Fig. 1). Overall, the diversity of 16S 

sequences assigned to supergroup B was much greater than those assigned to supergroup A 

(Supplementary Fig. 1).
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The tree reconstructed for ftsZ included 131 sequences found in 114 host beetle species. 

The ftsZ phylogenetic tree resulted in a topology similar to that of 16S rDNA − it included groups

of sequences belonging to A, B and F supergroups (Supplementary Fig. 2). Supergroup F was 

represented by Agrilus araxenus and Sphaerobothris aghababiani (both Buprestidae). Moreover, 

the supergroup B clade was divided into two clusters, among which one included a small group 

of sequences found in four beetle hosts: Chelymorpha alternans (Chrysomelidae), Eurymetopus 

fallax, Sitophilus oryzae and Conotrachelus nenuphar (all three Curculionidae) (Supplementary 

Fig. 2). Also in this gene, the genetic variation of sequences belonging to supergroup A was much

lower, and only a few sequences were highly diverged (e.g. strains of Callosobruchus chinensis, 

Chrysomelidae; Tribolium confusum, Tenebrionidae or Polydrosus pilosus, Curculionidae) 

(Supplementary Fig. 2). There was also one slightly distinct clade that mainly consisted of 

bacteria sequences found in some Hydraenidae, Curculionidae and Chrysomelidae 

(Supplementary Fig. 2).

The abovementioned phylogenetic reconstructions of the relations among Wolbachia 

strains identified on the basis of polymorphism of several genes show that there is no strict 

correlation between host phylogeny and bacterial strain relationships. Even in studies that 

covered multiple related species (e.g. those belonging to the same genus), evidence for direct 

inheritance of Wolbachia strains from common ancestors is restricted to Hydraenidae (Sontowski 

et al., 2015) and some species of Oreina (Montagna et al., 2014) or Curculio (Toju et al., 2013). 

In the case of Altica, the data show that cospeciation was rare and restricted to a few recently 

diverged species (Jäckel et al., 2013). In contrast, there are numerous examples of 

phylogenetically related beetle species possessing different Wolbachia strains (e.g. Lachowska et 

al., 2010). It is also often the case among related species that some are infected, whereas others 

not (Crioceris, Kubisz et al., 2012; Oreina, Montagna et al., 2014; Cyanapion, Kajtoch et al., 

2017); so any assumption that the bacteria were inherited from a common ancestor would also 

need to consider multiple losses of infection. The latter phenomenon is probable; however, there 

is no direct evidence from natural populations, at least in studies on beetles, of Wolbachia 

disappearing over time. Some exemplary studies that found Wolbachia present in related species, 

after detailed examination, rejected the idea that bacteria was inherited from a common ancestor. 

This was because different host species harbored unrelated stains (e.g. among weevils, 

Lachowska et al., 2010, Rodriguer et al., 2010a) or in cases where strains were  identical or 

similar, the hosts were not phylogenetically close to each other (e.g. Crioceris, Kubisz et al., 
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2012). Finally, there is evermore proof of horizontal Wolbachia transmission via different 

mechanisms, such as via predators, parasitoids, common habitat or foraging on the same host 

plants (Huigens et al., 2004; Stahlhut et al., 2010; Caspi-Fluger et al., 2012; Ahmed et al., 2015; 

Kolasa et al., 2017). Studies on beetles have mainly provided indirect evidence of such 

transmissions. There are known groups of species that inhabit the same environments and share 

the same or very similar Wolbachia strains, e.g. steppic weevils from East-central Europe (Mazur 

et al., 2014) and bark beetles in Japane (Kawasaki et al., 2016). Recently, evidence for has also 

appeared for the role of host plants in bacteria spread – Wolbachia DNA was detected in two 

species of Crioceris leaf beetles and in their host plant – Asparagus spp. (Kolasa et al., 2017). 

Finally, in light of the proposed “Candidatus Wolbachia” species, the summarized 

phylogenetic relations among Wolbachia strains infecting various beetles indicate that the 

taxonomic distinctiveness of supergroups is inconclusive (Ramírez-Puebla et al., 2015; Lindsey 

et al., 2016). First, beetles generally harbor members of supergroups A and B, and only 

occasionally members of supergroup F. Therefore, it is not possible to make any conclusions 

about broader Wolbachia taxonomy based only on Wolbachia strains found in Coleoptera. 

However, there are numerous examples of beetle hosts harboring both supergroups, including 

beetles in which some Wolbachia genes are of supergroup A origin, while others are of 

supergroup B origin; this indicates that recombination between strains belonging to different 

supergroups is quite frequent. This is evidence against the designation of the “Candidatus 

Wolbachia” species, at least with respect to members of supergroup A and B. 

Current gaps and future endeavors

The present knowledge on Wolbachia infection across beetle species and populations is 

very uneven. Even the basic data about infection statuses in species and frequencies of infected 

species across genera and families is superficial, as there are only c. 200 beetle species known to 

be infected. This means that if 38% is the average frequency of infection among beetle species, 

then only c. 530 species have been tested so far. This is merely c. 0.15% of the total number of 

beetles, which is estimated to be around 360 000 species (Farrell, 1998; Bouchard et al., 2009). 

We know even less at the population level, as the majority of beetle species have only had single 

individuals tested for Wolbachia infection (e.g. Lachowska et al., 2010, Sontowski et al., 2015). 

These very basic screens have probably underestimated the number of infected species because of

false-negative results obtained for species with low or local infection in populations. There is also
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another and important cause that should be mentioned - low titer infections that are under the 

detection limit of conventional PCR (e.g., Arthofer et al., 2009; Schneider et al., 2013). On the 

other hand, these preliminary estimates could have overestimated the real number infected 

beetles, as sampling in these studies was rarely random and most often focused on specific 

groups, e.g. on genera for which preliminary data suggested the presence of Wolbachia infection. 

Indeed, an intensive search of Wolbachia infection across hundreds of beetle species from Europe

suggested a lower infection rate – c. 27% to be infected (Kajtoch et al., unpublished). Also, 

knowledge about infection at the geographic scale is very uneven, and only Europe and Asia 

(basically China and Japan) have been relatively well investigated. There is a huge gap in the 

knowledge for African, Australian and Oceanian beetles, where a high diversity of beetles exists 

and probably a similar diversity of Wolbachia could be expected (e.g. compared to preliminary 

data available from Central and South America (Werren et al., 1995; Rodriguer et al., 2010a)). 

Little is known about Wolbachia diversity in beetle hosts, as the majority of studies used 

only single genetic markers, and often different genes were sequenced for different taxa. This 

precludes complex analysis of Wolbachia diversity across all tested beetle hosts. This has 

changed since 2006, since Baldo et al. (2006) proposed Multilocus Sequence Typing (MLST), 

which is based on the genotyping of five housekeeping genes, usually in conjunction with wsp 

sequencing. MLST is and should remain a sufficient way to understand basic Wolbachia 

diversity. On the other hand, to fully understand Wolbachia relations among strains and 

supergroups (or presumed species), between Wolbachia and its hosts and especially between 

Wolbachia and other microorganisms, amplicon-sequencing (e.g. 16S rDNA) or genome-

sequencing are needed. This could be achieved thanks to the development of next-generation 

sequencing technologies (NGS). Surprisingly, despite fast development of NGS in the last years, 

very few studies have used this technology for studying Wolbachia in beetle populations. For 

example, five studies sequenced 16S amplicons generated from microbiota and detected 

Wolbachia (White et al., 2015; Bili et al., 2016; Berasategui et al., 2016; Takano et al., 2017; 

Dudek et al., 2017). The only study that utilized shotgun sequencing was executed for other 

purposes and only accidentally showed Wolbachia genes in examined species (Heintzman et al., 

2014).  NGS is probably the best prospect for studies on Wolbachia infection and diversity, and 

will help to answer most current riddles and issues. 

The big challenge is to understand the impact of infection on beetle biology, physiology 

and ecology. It is known that Wolbachia has several effects on host reproduction, but relatively 
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few studies prove or suggest e.g. cytoplasmic incompatibility, male-killing or other effects on the 

development of selected beetles (Clark et al., 2001; Keller et al., 2004 Roehrdanz et al., 2006 

Roehrdanz & Levine 2007 Sharaf  et al., 2010 Zhang et al., 2010; Jäckel et al., 2013; Ming et al., 

2015; Kawasaki et al., 2016; Li  et al., 2016; Mariño et al., 2017; Numajiri et al., 2017; Takano et 

al., 2017). It is very probable that this bacteria has large and frequent effects on beetle 

reproduction and is consequently partially responsible for beetle radiation, at least in some 

taxonomic groups, geographic areas or habitats. Also very few studies have shown data on 

linkage disequilibrium and selective sweep between bacteriium and host genomes (Roehrdanz et 

al., 2006; Rodriguero et al., 2010b; Kajtoch et al., 2012; Jäckel et al., 2013; Mazur et al., 2016). 

These effects could also have probably been involved in speciation of numerous beetles. 

Moreover, this phenomenon could have serious implications for beetle barcoding, as selective 

sweep is known to reduce mitochondrial diversity in its hosts and therefore could decrease the 

number of identified species (Hurst & Jiggins, 2005). On the other hand, cytoplasmic 

incompatibility can lead to the origin of highly diverged phylogenetic mitochondrial lineages 

within species, which would increase the number of identified taxa (Smith et al., 2012). Also 

here, NGS technologies will enable more sophisticated analyses of these genetic relations and 

their effects (e.g. by the sequencing of transcriptomes for physiological studies or by genotyping-

by-sequencing for phylogenetic studies). Genotyping with NGS should also verify whether the 

recent assumption that different supergroups are indeed “Candidatus Wolbachia” species is 

correct or not (Ramírez-Puebla et al., 2015; Lindsey et al., 2016).

Only very preliminary results suggest Wolbachia was not only transmitted vertically, but 

that it could also have spread horizontally (Jäckel et al., 2013; Carvalho et al., 2014; Kawasaki et 

al., 2016; Kolasa et al., 2017; Mazur et al., 2017). Horizontal transmission was considered as an 

event that happens in evolutionary timescales. Only recently, Schuler et al. (2013) showed that 

such a transfer can happen within a few years after arrival of a new strain. In light of the general 

lack of cospeciation between bacteria and beetles, horizontal transmission must be a highly 

underestimated phenomenon. Horizontal transmission of Wolbachia among beetles cannot be 

confirmed without considering other coexisting insects that can mediate transmission, such as 

predators, parasitoids or beetle prey. Moreover, other arthropods that share habitats with beetles, 

e.g. phoretic ticks (Hartelt et al., 2004) and nematodes (Casiraghi et al., 2001), need to be 

examined. Finally, host plants are promising objects of studies on Wolbachia transmission across 

beetle populations (Kolasa et al., 2017), as phloem is probably an important mediator of this 
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bacteria’s spread across insect populations (DeLay, 2012; Li et al., 2016). Concerning 

transmission – another very interesting topic is the transfer of Wolbachia genes into host genomes

(Dunning Hotopp et al., 2007; Koutsovoulos et al., 2014; Funkhouser-Jones et al., 2015). This 

issue has only been reported twice for beetle hosts so far (Nikoh et al., 2008; Aikawa et al., 

2009). This problem could be important as if such transfers are frequent, simple testing of 

Wolbachia presence in a host based on single or even several gene sequencing could overestimate

the number of truly infected species, populations or individuals.

Finally, a very interesting topic for future studies is the examination of the presence of 

other intracellular and symbiotic bacteria (like Cardinium, Spiroplasma, Rickettsia) in Coleoptera

and their relations, both with the host and Wolbachia. So far, only seven studies have found 

Wolbachia with Rickettsia and/or Spiroplasma together in beetle hosts (Majerus et al., 2000; 

Weinert et al., 2007;  Toju & Fukatsu 2011; White et al., 2015; Perotti et al., 2016; Bili et al., 

2016; Dudek et al., 2017). Preliminary results suggest that there is some balance in the number of

these bacteria, probably caused by competition within host cells (Goto et al., 2006). A recent 

summary of the presence of these bacteria in insects showed that Rickettsia has been found in 

single species of Micromalthidae, Staphylinidae, Buprestidae,  Coccinellidae and Curculionidae 

(Werren et al., 1994; Lawson et al., 2001; Weinert et al., 2007; Toju & Fukatsu 2011; White et al.,

2015; Perotti et al., 2016; Bili et al., 2016), Spiroplasma in some species of Staphylinidae, 

Coccinellidae and Curculionidae (Majerus et al., 1998; Hurst et al., 1999; Tinsley & Majerus, 

2006; Weinert et al., 2007; Toju & Fukatsu 2011; Bili et al., 2016), and Cardinium has not been 

detected so far in any beetle species (Zchori-Fein et al., 2004). The coexistence of different 

endosymbiotic bacteria and their effects on hosts should also be investigated with NGS 

technologies, which are able to detect bacteria in numerous hosts (e.g. individuals) at once and 

estimate prevalence of bacteria in various hosts or different tissues. NGS has already been proven

to be a powerful tool for detecting undescribed bacteria (e.g. it allowed the identification of new 

Alphaproteobacteria in Brontispa longissimi; Takano et al., 2017). Different endosymbiotic 

bacteria could have either similar or contrasting effects on beetle species, populations and 

individuals and could be the greatest overlooked phenomenon in the evolution and ecology of 

Coleoptera.

In our opinion, beetles are still an insufficiently examined group of Wolbachia hosts, 

especially considering their systematic and ecological diversity. All issues in studies on 

Wolbachia in Coleoptera are generally the same as in other hosts of these bacteria, or vice versa; 
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there is no issue that has been or is being studied on Wolbachia infection in other (non-beetle) 

hosts that could not also be examined in beetle hosts. And the extraordinary diversity of beetles 

(with respect to their diverse systematics at various taxonomic levels, complex phylogenetic 

relations and extensive ecological relations with each other and numerous other species) makes 

this group an excellent target for Wolbachia studies. The presented summary about Wolbachia 

infection in beetles shows that despite numerous studies, there are still many issues that need to 

be investigated. We hope that this systematic review will facilitate various future studies on 

Wolbachia infection among beetles.
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Table 1(on next page)

Share of Wolbachia infected species among families and genera of examined beetles.

Only taxonomic groups for which at least two species were tested are presented.
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family N of examined % of infected genus N of examined % of infected genus N of examined % of infected

Buprestidae 61 23.0 Barypeithes 9 11.0 Julodis 2 0.0

Chrysomelidae 84 45.2 Brachysomus 4 0.0 Koreoculio 2 50.0

Curculionidae 137 41.6 Brumoides `2 0.0 Laccophilus 2 0.0

Dytiscidae 36 16.7 Buprestis 3 0.0 Limnebius 7 28.6

Gyrinidae 3 33.3 Byturus 3 33.0 Longitarsus 3 100.0

Haliplidae 2 50.0 Callosbruchus 3 33.3 Meliboeus 2 0.0

Hydraenidae 27 63.0 Callosobruchus 7 33.0 Micraspis 2 0.0

Hydrophilidae 12 16.7 Capnodis 3 33.3 Naupactus 16 69.0

Noteridae 2 100.0 Charidotella 2 50.0 Neoglanis 2 0.0

Tenebrionidae 11 9.1 Chlaenius 7 14.3 Ochthebius 12 41.7

subfamily N of examined % of infected Chrysobothris 3 33.3 Ophionea 3 0.0

Bruchinae 24 16.7 Coccinella 2 50.0 Oreina 5 80.0

Galerucinae 12 25.0 Crioceris 5 40.0 Otiorhynchus 4 50.0

Curculionidae 36 16.7 Curculio 23 17.4 Paederus 3 0.0

Scolytinae 23 34.8 Cyanapion 6 50.0 Pantomorus 3 100.0

genus N of examined % of infected Deronectes 11 45.4 Polydrosus 4 75.0

Acalymma 2 100.0 Diabrotica 12 25.0 Rhantus 2 0.0

Acmaeodera 5 0.0 Dorytomus 3 67.0 Rhinusa 3 33.3

Acmaeoderella 4 0.0 Epilachna 2 0.0 Sciaphobus 2 50.0

Agabus 6 16.7 Eurymetopus 2 100.0 Sitophilus 3 100.0

Agrilus 34 17.6 Gyrinus 3 33.0 Sphenoptera 11 9.1

Altica 16 88.0 Haliplus 3 33.0 Strophosoma 3 67.0

Anthaxia 6 16.7 Helophorus 3 0.0 Trachypteris 2 0.0

Aramigus 3 100.0 Hydraena 24 33.3 Trachys 6 16.7

Archarius 6 16.7 Hydroporus 5 0.0 Tribolium 8 12.5

Atrichonotus 2 50.0 Hygrotus 5 20.0

Aulacophora 3 0.0 Ilybius 2 0.0    
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Figure 1

Prisma flow-diagram (see Moher et al., 2009) for literature on Wolbachia-Coleoptera

relations included in this study.
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Figure 2

Change in the number of publications considering Wolbachia infection among

Coleoptera.
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Figure 3

Number of publications that described Wolbachia infection among Coleoptera and

number of infected beetle species.

Both are shown with respect to the zoogeography of the examined hosts (from which

continent the host was collected).
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Figure 4

Number of sites (A) and number of individuals (B) of beetles examined with respect to

Wolbachia infection.

P – Mann-Whitney test p-values.
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Figure 5

Shares of Wolbachia genes used in studies on Wolbachia infection among Coleoptera.
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Figure 6

Shares of Wolbachia infected beetle species across the examined families of Coleoptera.

The numbers presented after the family names indicate the number of infected species.
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Figure 7

Shares of beetles infected by Wolbachia supergroups (A, B, F).

[Beetle photographs are from ICONOGRAPHIA COLEOPTERORUM POLONIAE (© Copyright by

Prof. Lech Borowiec].
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Figure 8

Diversity of Wolbachia infection in Coleoptera with respect to shares of infected

individuals within species and numbers of strains found in beetles.

[Beetle photographs are from ICONOGRAPHIA COLEOPTERORUM POLONIAE (© Copyright by

Prof. Lech Borowiec].
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