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Background. Despite great progress in studies on Wolbachia infection in insects, the
knowledge about its relations with beetle species, populations and individuals, and the
effects of bacteria on these hosts, is still unsatisfactory. In this review we summarize
the current state of knowledge about Wolbachia occurrence and interactions with
Coleopteran hosts.

Methods. An intensive search of the available literature resulted in the selection of 86
publications that describe the relevant details about Wolbachia presence among beetles.
These publications were then examined with respect to the distribution and taxonomy
of infected hosts and diversity of Wolbachia found in beetles. Sequences of Wolbachia
genes (16S rDNA, ftsZ) were used for the phylogenetic analyses.

Results. The collected publications revealed that Wolbachia has been confirmed in 204
beetle species and that the estimated average prevalence of this bacteria across beetle
species is 38.3% and varies greatly across families and genera (0-88% infected members)
and is much lower (c. 13%) in geographic studies. The majority of the examined and
infected beetles were from Europe and East Asia. The most intensively studied have
been two groups of herbivorous beetles: Curculionidae and Chrysomelidae. Coleoptera
harbor Wolbachia belonging to three supergroups: F found in only three species, and A
and B found in similar numbers of beetles (including some doubly infected); however
the latter two were most prevalent in different families. A total of 59% of species with
precise data were found to be totally infected. Single infections were found in 69%
of species and others were doubly- or multiply-infected. Wolbachia caused numerous
effects on its beetle hosts, including selective sweep with host mtDNA (found in 3%
of species), cytoplasmic incompatibility (detected in c. 6% of beetles) and other effects
related to reproduction or development (like male-killing, possible parthenogenesis
or haplodiploidy induction, and egg development). Phylogenetic reconstructions for
Wolbachia genes rejected cospeciation between these bacteria and Coleoptera, with
minor exceptions found in some Hydraenidae, Curculionidae and Chrysomelidae. In
contrast, horizontal transmission of bacteria has been suspected or proven in numerous
cases (e.g., among beetles sharing habitats and/or host plants).

Discussion. The present knowledge about Wolbachia infection across beetle species
and populations is very uneven. Even the basic data about infection status in species
and frequency of infected species across genera and families is very superficial, as only
c. 0.15% of all beetle species have been tested so far. Future studies on Wolbachia
diversity in Coleoptera should still be based on the Multi-locus Sequence Typing
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system, and next-generation sequencing technologies will be important for uncovering
Wolbachia relations with host evolution and ecology, as well as with other, co-occurring
endosymbiotic bacteria.

Subjects Ecology, Entomology, Evolutionary Studies, Microbiology
Keywords «-proteobacteria, Beetles, Ecology, Endosymbiont, Evolution, Interactions,
Intracellular

INTRODUCTION

The relations between the intracellular a-proteobacterium Wolbachia pipientis Hertig 1936
(hereafter Wolbachia) and its hosts from various groups of arthropods and nematodes have
been the object of much research and numerous publications (O’Neill et al., 1992; Werren,
Windsor & Guo, 19955 Weinert et al., 2015). The majority of these studies have focused
on verifying endosymbiotic bacteria occurrence and diversity in various hosts at different
levels: (i) among selected species sharing a geographic area (e.g., O’Neill et al., 1992; Werren,
Windsor ¢ Guo, 1995; 2000), (ii) among species inhabiting the same environment or that
are ecologically-associated (e.g., Stahlhut et al., 2010), (iii) among species from particular
taxonomic groups (e.g., Czarnetzki & Tebbe, 2004; Lachowska, Kajtoch ¢ Knutelski, 2010;
Sontowski et al., 2015), and (iv) within populations of selected taxa (e.g., Stenberg ¢
Lundmark, 2004; Mazur et al., 2016). Another branch of research on the relations between
Wolbachia and its hosts has focused on host species phylogenetics or population genetics,
which is in some cases related to population differentiation and speciation (e.g., Kubisz
et al., 2012; Montagna et al., 2014). In this research, Wolbachia is sometimes treated as an
additional “marker”—a source of genetic data about the eco-evolutionary relations of its
hosts. A third type of Wolbachia studies has concerned the direct or indirect effects of the
infection on host fitness, development or survival at the individual and population levels
(e.g., Weeks, Reynolds ¢» Hoffimann, 2002; O’Neill, 2007). Moreover, in a separate branch of
research (or in conjunction with the abovementioned types of studies), Wolbachia is often
examined directly, mainly with respect to strain diversity, distribution and relations with
other strains or different co-existing bacteria (Baldo & Werren, 2007). All these branches
of research have substantially extended the knowledge about the relations between the
most widespread intracellular endosymbiont—Wolbachia and its various hosts. Moreover,
these studies have been expanded to encompass other bacteria with similar biologies
and effects on hosts (like Cardinium, Spiroplasma, Rickettsia) (Zchori-Fein ¢» Perlman,
2004; Goto, Anbutsu & Fukatsu, 2006; Duron et al., 2008; Weinert et al., 2015); however, a
great majority of studies are still conducted on Wolbachia (Zug ¢ Hammerstein, 2012).
Recently, the various Wolbachia supergroups have been proposed to belong to several
“Candidatus Wolbachia” species (Ramirez-Puebla et al., 2015); however, this approach has
been criticized (Lindsey et al., 2016). Due to the uncertain species status of the “Candidatus
Wolbachia” and because all previous studies considered these presumed different species
as distant supergroups, in this review we have followed the previous Wolbachia taxonomy.
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In summary, Wolbachia has been detected in 10-70% of examined hosts (Hilgenboecker
et al., 2008; Zug ¢ Hammerstein, 2012), depending on the geographical, ecological or
taxonomical association of the selected species. Moreover, more detailed studies, at the
population level, have shown that infection is not as straightforward as was assumed in
the early stages of Wolbachia research. More and more species have been found to be only
partially infected, e.g., in only some parts of their ranges or infection was associated with
only some phylogenetic lineages (usually correlated with the distribution of mitochondrial
lineages) (Clark et al., 2001; Roehrdanz et al., 2006). Furthermore, examples of multiply
infected species and individuals have been reported, which has important consequences
for the understanding of some of the effects of Wolbachia infection (Malloch, Fenton ¢
Butcher, 2000). Wolbachia is known to have numerous effects on its hosts, among which
the most interesting and important are those that disturb host reproduction, such as
cytoplasmic incompatibility, thelytokous parthenogenesis, feminization of genetic males,
male-killing, increased mating success of infected males via sperm competition and the
host’s complete dependence on bacteria for egg production (for reviews see Werren,
1997; Werren ¢» O’Neill, 1997; Stouthamer, Breeuwer ¢ Hurst, 1999). Some of these effects
are responsible for diversification of host populations and consequently Wolbachia have
probably been involved in speciation (e.g., by the selective sweep of mtDNA or the whole
genome of the infected host with the genome of bacteria; Keller et al., 2004; Mazur et al.,
2016). This could be another major factor, additional to those already known, responsible
for radiation of insects and particularly beetles.

There are several reviews summarizing the state of knowledge on Wolbachia infection
among various taxonomic groups of nematodes and arthropods. Over the last years, such
reviews have been prepared for the following groups: filarial nematodes (Filarioidea) (Taylor
& Hoerauf, 1999; Casiraghi et al., 2001), crustaceans (Crustacea) (Cordaux, Bouchon ¢
Greve, 2011), spiders (Araneae) (Goodacre et al., 20065 Yun et al., 2011), mites (Acari)
(Chaisiri et al., 2015), springtails (Collembola) (Czarnetzki ¢~ Tebbe, 2004), Heteropteran
Bugs (Heteroptera) (Kikuchi ¢ Fukatsu, 2003), ants (Formicidae) (Russell, 2012), wasps
(Hymenoptera: Apocrita) (Shoemaker et al., 2002) and butterflies (Lepidoptera) (Tagami
¢ Miura, 2004). Surprisingly, there is no such review for beetles (Coleoptera), which
include large number of diversified taxa, known from various habitats, and whose
members belong to all major trophic guilds of animals. Some groups of beetles have been
examined with respect to Wolbachia infection, but usually only with a limited coverage
of species (e.g., weevils, Curculionidae, Lachowska, Kajtoch ¢ Knutelski, 2010; leaf beetles;
Chrysomelidae, Clark et al., 2001; Jickel, Mora ¢ Dobler, 2013; jewel beetles; Buprestidae,
Sontowski et al., 2015 and minute moss beetles, Hydraenidae, Sontowski et al., 2015).

In this review we have summarized the current state of knowledge on the relations
between beetles and Wolbachia by referring to all the abovementioned aspects of
research. Moreover, we have highlighted future research directions concerning Wolbachia
relationships with their diverse Coleopteran hosts.
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SURVEY METHODOLOGY

We searched the scientific literature with Web of Knowledge databases, using the following
combination of keywords linked by AND (the Boolean search term to stipulate that the
record should contain this AND the next term): “Wolbachia” AND “Coleoptera” and
“Wolbachia” AND “beetles”. Our final literature search for this analysis was conducted
on December 22, 2017. This produced 322 results. Each result was inspected to determine
whether or not it contained information on the subject matter. Articles that had no relevance
(e.g., any reports that were not about Wolbachia-Coleoptera relations, including those that
only had some references to either beetles or bacteria in the citations) were excluded. After
the removal of duplicates, 65 were excluded from the remaining articles (n=239) for
not being direct reports about Wolbachia-Coleoptera relations, 44 were excluded because
they examined other hosts and only referred to publications on Coleoptera, and 44 others
were excluded because they referred to data already presented in previous publications on
Coleoptera. Each document was read critically for the information that it contained on
Wolbachia-Coleoptera relations, with special reference to answering the study questions
listed below. Figure 1 shows a flow diagram for the systematic review following Prisma
guidelines (Moher et al., 2009). We intended to also use data from The National Center for
Biotechnology Information database (GenBank) but the majority of hits (if “Wolbachia”
AND “Coleoptera” or “beetle” were used) led to either studies not related with Wolbachia
infection in beetles (which only included references to some other studies on either bacteria
or beetles), or to Wolbachia sequences submitted to GenBank but without any references
to published (and reviewed) articles. Searches in NCBI (GenBank) resulted only in the
finding of some beetle hosts, which have been already described in papers found via Web
of Science searches.

We examined the collected data on various aspects of Wolbachia infection in Coleoptera
with respect to the following: the (i) characteristics of the publications (to determine
the scope and progress of studies on Wolbachia) (n = 86), (ii) geographic distribution
of infected beetle species and populations (n = 84), (iii) sampling design (how many
sites and individuals were examined) (n=63), (iv) characteristics of the markers (genes)
used for genotyping the bacteria (n = 82) and their hosts (n = 34), (v) numbers and
frequencies of species found to be infected in particular beetle families and genera (n = 58),
(vi) supergroup prevalence in examined taxonomic groups (n = 43), (vii) strain distribution
and diversity in populations and individuals (n = 30), (vii) effects of Wolbachia on its beetle
hosts (n = 39). Statistical analyses (Spearman correlation for number of publication across
years and for the number of examined and number of infected species, Chi® test for
frequency of supergroups and infected taxa in particular taxonomic groups, Chi2 ANOVA
for comparison of single/double/multiple infected taxa, Kruskal-Wallis Z test for infection
frequency in Chrysomelidae and Curculionidae) were done in Statistica 11 (Statsoft).

Finally, we downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and
the Wolbachia MLST database (https://pubmlst.org/wolbachia/) all available sequences of
Wolbachia genes found in any species of beetle. We restricted further analyses to the most
widely used bacteria genes, i.e., 16S rDNA and cell division protein gene ftsZ. Because of
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Figure 1 Prisma flow-diagram (see Moher et al., 2009) for literature on Wolbachia-Coleoptera rela-
tions included in this study
Full-size Gal DOI: 10.7717/peerj.4471/fig-1

the different lengths and spans of available sequences, the long parts of the 3" and 5’ ends of
each gene were trimmed, which resulted in alignments of length 663 bp for 16S rDNA and
241 bp for ftsZ. The length of the ftsZ alignment was particularly short as two different sets
of primers have been used for its amplification, and its amplicons only overlapped across a
relatively short part of the gene. Phylogenetic trees were only reconstructed for unique gene
variants found in particular host taxa. Trees were inferred using Maximum Likelihood
(ML) implemented in the IQ-TREE web server (http://www.iqtree.org/) (Trifinopoulos
et al., 2016) under the following settings Auto selection of substitution model, ultrafast
bootstrap approximation (UFBoot) (Minh, Nguyen ¢ Von Haeseler, 2013) with 10,000
iterations, maximum correlation coefficient = 0.99, single branch test with use of the
approximate Likelihood-Ratio Test (SH-aLRT) (Anisimova ¢ Gascuel, 20065 Guindon et
al., 2010) and other default options.

The nomenclature of host taxa and their systematic positions throughout the paper
follow the articles from which the data was derived.
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Figure 2 Change in the number of publications considering Wolbachia infection among Coleoptera.
Full-size Cal DOI: 10.7717/peer;j.4471/fig-2

CHARACTERIZATION OF WOLBACHIA INFECTION AMONG
COLEOPTERA

Publications
The final list of publications concerning data about Wolbachia infection in Coleoptera
comprised 86 papers (Table S1). The oldest articles with relevant information about
Wolbachia infection in beetles were published in 1992 (Campbell, Bragg ¢ Turner, 1992;
O’Neill et al., 1992), and the number of articles since then has increased significantly year by
year (Spearman correlation = 0.841; Fig. 2). The majority of these articles (60%) concerned
infection in only single beetle species, whereas 19% discussed infection in multiple species
belonging to the same genus, 6%—multiple species from the same family, 6%—various
species of Coleoptera et al., and a further 9%—studies on geographic groups of insects that
included some, usually random species of beetles (O’Neill et al., 1992; Werren, Windsor ¢
Guo, 1995; Weinert et al., 2015.

Most studies were done on Curculionidae (34) and Chrysomelidae (34), following
Coccinellidae (10), Tenebrionidae (9), and Sylvanidae (3) (Table S1). The members
of all other families were investigated in only 1-2 studies. Consequently, 2.5 and 1.6
Curculionidae and Chrysomelidae species were respectively examined per article. All
species of Hydraenidae and Buprestidae were included in only single article (Sontowski et
al., 2015), whereas limited numbers of species of Coccinellidae and Tenebrionidae were
examined in several articles (Hurst et al., 199915 Hurst et al., 1999b; Fialho ¢ Stevens, 1996;
Fialho & Stevens, 1997; Fialho & Stevens, 2000; Majerus & Majerus, 2000; Weinert et al.,
2007; Elnagdy et al., 2013; Ming et al., 2015; Goodacre, Fricke & Martin, 2015; Kageyama et
al., 2010 Li et al., 2015; Li et al., 2016b; Dudek et al., 2017). Wolbachia infection was only
studied more than once in 20 species.
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Figure 3 Number of publications that described Wolbachia infection among Coleoptera and number
of infected beetle species. Both are shown with respect to the zoogeography of the examined hosts (from
which continent the host was collected).

Full-size Gal DOI: 10.7717/peerj.4471/fig-3

Sampling design

The majority of species investigated with respect to Wolbachia infection were from Europe,
and a relatively high number of species were from Asia and both Americas, whereas only
ten infected species were from Africa, and three from Australia-Oceania (Fig. 3). A number
of publications describing Wolbachia infection in Coleoptera had similar geographic
coverages (Fig. 3).

Studies were done on samples collected from an average of 5.2 sites and concerned on
average 53.0 specimens, or if excluding the most widely studied families Curculionidae
and Chrysomelidae, 6.0 sites and 65.1 individuals (Fig. 4). For Curculionidae and
Chrysomelidae, these numbers were on average 4.4 and 6.0 sites, respectively, and 40.7
and 70.2 individuals, respectively (Fig. 4). The numbers of sites and individuals examined
in particular groups were insignificantly different, with the exception of the numbers of
examined individuals in Curculionidae and Chrysomelidae (Fig. 4).

Examined genetic markers

The most often used Wolbachia gene for studies on Coleoptera was ftsZ, followed by
hepA, wsp and 16S rDNA (Fig. 5). Most studies using hcpA also used other MLST genes,
including ftsZ. On the other hand, many species were only investigated with either 16S
rDNA or wsp or ftsZ alone. Single studies used groEL (Monochamus alternatus, Aikawa
et al., 2009; Tribolium madens, Fialho ¢ Stevens, 2000) or ITS genes (Tribolium madens,
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Figure 5 Shares of Wolbachia genes used in studies on Wolbachia infection among Coleoptera.
Full-size Gal DOI: 10.7717/peerj.4471/fig-5

Fialho ¢ Stevens, 2000). So far, only five studies have used next-generation sequencing
technology (Illumina or 454) to detect Wolbachia; two used 16S rDNA for metabarcoding of
microbiota (Sitona obsoletus, Steriphus variabilis, White et al., 2015; Aleochara bilineata and
Aleochara bipustulata, Bili et al., 2016; Hylobius abietis, Berasategui et al., 2016; Brontispa
longissimi, Takano et al., 2017; Harmonia axyridis, Dudek et al., 2017) and one used shotgun
genomic sequencing (Amara alpine, Heintzinan et al., 2014). For genotyping of hosts, 52.4%
of studies utilized fragments of COI from mtDNA (usually a barcode fragment of this gene).
Fewer studies (23.1%) analyzed rDNA (usually ITS1 and/or ITS2 spacers), EFla (14.0%),
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Figure 6 Shares of Wolbachia infected beetle species across the examined families of Coleoptera. The
numbers presented after the family names indicate the number of infected species.
Full-size Gal DOI: 10.7717/peerj.4471/fig-6

Wingless (2.2%), Histone H3 (2.2%) and microsatellites (6.1%). In Wolbachia-related
studies, host genes have been used for several purposes like (i) using host DNA as a control
for genetic material quality, (ii) barcoding for host species identification, (iii) phylogenetics,
phylogeography and population genetics, (iv) estimating co-evolutionary relations between
the bacteria and host, and (v) detecting some of the effects of Wolbachia on its hosts (like
linkage disequilibrium, selective sweep, cytoplasmic incompatibility).

Taxonomic coverage

The beetles examined with respect to Wolbachia infection belong to 23 families
(Micromalthidae, Gyrinidae, Haliplidae, Noteridae, Dytiscidae, Carabidae, Staphyllinidae,
Hydrophilidae, Hydraenidae, Anobiidae, Dermestidae, Buprestidae, Byturidae,
Cleridae, Lampyridae, Coccinellidae, Tenebrionidae, Scarabeidae, Meloidae, Sylvanidae,
Cerambycidae, Chrysomelidae, Curculionidae). In total 204 beetle species were found
to harbor Wolbachia infection; however, the distribution of infected species among
families varied markedly. The highest numbers of infected beetle species were found for
the Curculionidae (81 species), Chrysomelidae (49 species), Hydraenidae (14 species),
Buprestidae (13 species), Coccinellidae (12 species) and Dytiscidae (8 species) (Fig. 6). In
all other families only 1-3 species were reported to harbor Wolbachia (Table S1). However,
these numbers are biased by the low number of articles (studies) dealing with members of
particular beetle families (see above).

Considering infection across beetle genera, the most richly infected genera were
Altica (Chrysomelidae, 17 species), Naupactus (Curculionidae, 11 species), Hydraena
(Hydraenidae, eight species) and Agrilus (Buprestidae, 6 species) (Table S1). In total,
49 genera were found to have infected members (Table S1, Table 1). The infection in
Coleoptera was estimated at 38.3% of examined species; however, the proportion of
infected species varied greatly between families and genera. At the family level the infection
frequency was from 10.5% (Tenebrionidae) to 100% (Noteridae) (Goodacre, Fricke ¢
Martin, 2015; Sontowski et al., 2015); however when considering only families for which
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Table 1 Share of Wolbachia infected species among families and genera of examined beetles. Only taxonomic groups for which at least two
species were tested are presented.

N of % of Genus Nof % of genus N of % of

examined infected examined infected examined infected
Family
Buprestidae 61 23.0 Barypeithes 9 11.0 Julodis 2 0.0
Chrysomelidae 84 45.2 Brachysomus 4 0.0 Koreoculio 2 50.0
Curculionidae 137 41.6 Brumoides 2 0.0 Laccophilus 2 0.0
Dytiscidae 36 16.7 Buprestis 3 0.0 Limnebius 7 28.6
Gyrinidae 3 33.3 Byturus 3 33.0 Longitarsus 3 100.0
Haliplidae 2 50.0 Callosbruchus 3 33.3 Meliboeus 2 0.0
Hydraenidae 27 63.0 Callosobruchus 7 33.0 Micraspis 2 0.0
Hydrophilidae 12 16.7 Capnodis 3 33.3 Naupactus 16 69.0
Noteridae 2 100.0 Charidotella 2 50.0 Neoglanis 2 0.0
Tenebrionidae 11 9.1 Chlaenius 7 14.3 Ochthebius 12 41.7
Subfamily Chrysobothris 3 33.3 Ophionea 3 0.0
Bruchinae 24 16.7 Coccinella 2 50.0 Oreina 5 80.0
Galerucinae 12 25.0 Crioceris 5 40.0 Otiorhynchus 4 50.0
Curculionidae 36 16.7 Curculio 23 17.4 Paederus 3 0.0
Scolytinae 23 34.8 Cyanapion 6 50.0 Pantomorus 3 100.0
Genus Deronectes 11 45.4 Polydrosus 4 75.0
Acalymma 2 100.0 Diabrotica 12 25.0 Rhantus 2 0.0
Acmaeodera 5 0.0 Dorytomus 3 67.0 Rhinusa 3 33.3
Acmaeoderella 4 0.0 Epilachna 2 0.0 Sciaphobus 2 50.0
Agabus 6 16.7 Eurymetopus 2 100.0 Sitophilus 3 100.0
Agrilus 34 17.6 Gyrinus 3 33.0 Sphenoptera 11 9.1
Altica 16 88.0 Haliplus 3 33.0 Strophosoma 3 67.0
Anthaxia 6 16.7 Helophorus 3 0.0 Trachypteris 2 0.0
Aramigus 3 100.0 Hydraena 24 33.3 Trachys 6 16.7
Archarius 6 16.7 Hydroporus 5 0.0 Tribolium 8 12.5
Atrichonotus 2 50.0 Hygrotus 5 20.0
Aulacophora 3 0.0 Ilybius 2 0.0

more than 30 species were investigated (e.g., Clark et al., 2001; Lachowska, Kajtoch &
Knutelski, 2010; Rodriguero et al., 2010a; Kondo et al., 2011; Jickel, Mora & Dobler, 2013;
Sontowski et al., 2015; Kawasaki et al., 2016), infection was found in up to 63% of species
(Hydraenidae) (Table 1). At lower taxonomic levels, Wolbachia was found in 25% of
Diabroticite (Chrysomelidae; Clark et al., 2001), 14.3-16.7% of Bruchina (Chrysomelidae;
Kondo et al., 2011), 34.8% of Scolytinae (Curculionidae, Kawasaki et al., 2016) and 16.7%
of Curculioninii (Toju et al., 2013). Among 54 genera in which Wolbachia infection was
examined for at least two species, 12 genera were completely uninfected, while six genera
were completely infected (Table 1). If considering only genera with at least five verified
species, Wolbachia was found in 0% (Acmaeodera; Buprestidae; Sontowski et al., 2015) to
88% of species (Altica, Chrysomelidae; Jickel, Mora ¢ Dobler, 2013). There was only a
marginally negative and insignificant correlation between the number of examined and
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number of infected species (R = —0.078). If considering only the most widely examined
families, Chrysomelidae and Curculionidae, the difference in infection frequency between
these two groups was insignificant (Z = —1.656, P = 0.098). Geographic studies on
Wolbachia prevalence in insects have found much lower frequencies of infection in
Coleoptera species: the bacterium was found in only 10.5% of beetles from Panama and
13.5% of beetles from North America (Werren, Windsor ¢ Guo, 1995).

Wolbachia diversity

Among the various beetle species, Wolbachia strains belonged to three supergroups (A, B
and F). However, they occurred at very different proportions in different groups of beetles,
and these differences were significant (Chi? = 98.78, P = 0.000). Overall, the proportion
of beetle species found to be infected with Wolbachia strains belonging to supergroups
A or B was similar, with approximately 12% of all species harboring either supergroup
(either as single infections in different species or populations or as multiple infections
within individuals) (Fig. 7), whereas supergroup F was found in only three beetle species:
Agrilus araxenus and Lamprodila mirifica (both Buprestidae; Sontowski et al., 2015) and
Rhinocyllus conicus (Curculionidae; Campbell, Bragg & Turner, 1992). In the four groups
of beetles with the highest numbers of examined and infected species, the distributions
of supergroups varied: in Buprestidae, a similar numbers of species were infected by
supergroups A and B (all singly infected), with a relatively high proportion of F infected
species (Sontowski et al., 2015). In contrast, in Hydraenida, supergroup A dominated over
supergroup B (Sontowski et al., 2015). This was also the case in Chrysomelidae, with some
species infected by both strains (Kondo et al., 2011; Jickel, Mora ¢ Dobler, 2013; Kolasa et
al., 2017). The most varied infections were observed in Curculionidae, with supergroup
B dominating, a presence of taxa infected by both A and B supergroups, and a single
species infected by F supergroup (Lachowska, Kajtoch & Knutelski, 20105 Rodriguero et al.,
2010a; Kawasaki et al., 2016) (Fig. 7). Considering the frequency of infected specimens in
the examined beetle species represented by the available data (n = 106), 63 species were
reported to be totally infected (all individuals possessed Wolbachia), whereas 43 species
had this bacterium in only some individuals (if exclude Chrysomelidae and Curculionidae:
8 and 15 species, respectively) (Fig. 8). The same calculated for Chrysomelidae resulted in
17 and 10 species, respectively, and for Curculionidae in 38 and 18 species, respectively
(Fig. 8). These differences between these values (between these groups of species) were
significant (Ch? = 72.03, P = 0.000). A single Wolbachia strain was observed in 43 species
(species with available data n = 62), whereas two strains were reported in 10 species
(Byturus tomentosus, Malloch, Fenton ¢ Butcher, 2000; Altica quercetorum, Jickel, Mora ¢
Dobler, 2013; Callosobruchus chinensis, Okayama et al., 2016; Chelymorpha alternans, Keller
et al., 2004; Crioceris quaterdecimpunctata and Crioceris quinquepunctata, Kolasa et al.,
2017; Adalia bipunctata, Majerus & Majerus, 20005 Polydrusus inustus, Kajtoch, Korotyaev
& Lachowska-Cierlik, 2012; Cyanapion afer and C. spencii, Kajtoch, Montagna ¢ Wanat,
2018) and multiple infection in a further nine species (Callosobruchus chinensis, Kondo et
al., 2002; Diabrotica barberi, Roehrdanz ¢ Levine, 2007; Conotrachelus nenuphar, Zhang et
al., 20105 Pityogenes chalcographus, Arthofer et al., 2009; Xyleborus dispar and Xylosandrus
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Figure 7 Shares of beetles infected by Wolbachia supergroups (A, B, F). (Beetle photographs are from
ICONOGRAPHIA COLEOPTERORUM POLONIAE (©Copyright by Prof. Lech Borowiec).
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germanus, Kawasaki et al., 2016) (Fig. 8). In Chrysomelidae (n = 22) these numbers were
12, 5 and five, respectively and in Curculionidae (n =37), 30, 3 and four, respectively (Fig.
8). The numbers of single, double and multiple infected individuals in these groups of
beetles differed insignificantly (Chi? ANOVA = 2.364, P = 0.307).

Effects on hosts

Wolbachia affected beetle hosts in several ways. Linkage disequilibrium and/or selective
sweep between bacteria and host genomes (usually with host mtDNA) were detected
in six species (3% or 9% if excluding Chrysomelidae and Curculionidae): two

(4%) Chrysomelidae (Altica lythri, Jickel, Mora ¢ Dobler, 2013; Aphthona nigriscutis,
Roehrdanz et al., 2006) and four (5%) Curculionidae (Eusomus ovulum, Mazur et

al., 2016; Naupactus cervinus, Rodriguero, Lanteri ¢ Confalonieri, 2010b, Polydrusus
inustus, Polydrusus pilifer, Kajtoch, Korotyaev ¢ Lachowska-Cierlik, 2012). Cytoplasmic
incompatibility was detected or suspected but unconfirmed in 12 (6% or 18% if
excluding Chrysomelidae and Curculionidae) Coleoptera: six (13%) Chrysomelidae
(Chelymorpha alternans, Keller et al., 2004, Diabrotica barberi, Roehrdanz ¢ Levine, 2007,
et al., Diabrotica virgifera virgifera, Giordano, Jackson ¢ Robertson, 1997; Callosobruchus
chinensis, Kondo et al., 2002; Callosobruchus analis, Numajiri, Kondo ¢ Toquenaga, 2017,
Brontispa longissimi, Takano et al., 2017), three (4%) of Curculionidae (Cossomus sp., Zhang
et al., 2010; Hypothenemus hampei, Mariiio, Verle Rodrigues & Bayman, 2017, Xylosandrus
germanus, Kawasaki et al., 2016), one of Sylvanidae (Oryzaephilus surinamensis, Sharaf
et al., 2010) and one of Tenebrionidae (Tribolium confusum, Li et al., 2016b; Ming et

al., 2015). Horizontal transfer of Wolbachia was detected or suspected in 26 species

of Coleoptera (13% or 39% if excluding Chrysomelidae and Curculionidae)—16
(33%) species of Chrysomelidae (several species of Altica, Jickel, Mora ¢ Dobler, 2013,

Kajtoch and Kotaskova (2018), PeerJ, DOI 10.7717/peer|.4471 12/31


https://peerj.com
https://doi.org/10.7717/peerj.4471/fig-7
http://dx.doi.org/10.7717/peerj.4471

PeerJ

COLEOPTERA (OTHERS)

10.8% CURCULIONIDAE
81.1%

CHRYSOMELIDAE

0,
22.7% 37.0%
54.5%
22.7% 63.0%
1 STRAIN M ALL INFECTED
M 2 STRAINS B SOME INFECTED

B MULTIPLE STRAINS

Figure 8 Diversity of Wolbachia infection in Coleoptera with respect to shares of infected individuals
within species and numbers of strains found in beetles. (Beetle photographs are from ICONOGRAPHIA
COLEOPTERORUM POLONIAE ((©Copyright by Prof. Lech Borowiec).

Full-size & DOI: 10.7717/peerj.4471/fig-8

Crioceris quaterdecimpunctata and Crioceris quinquepunctata, Kolasa et al., 2017) and
10 (14%) species of Curculionidae (members of Euwallacea, Xyleborus, Xylosandrus,
Xyleborinus schaufussi and Taphrorychus bicolor, Kawasaki et al., 2016, Polydrusus and
Parafoucartia squamulata, Kajtoch, Korotyaev & Lachowska-Cierlik, 2012; Sitophilus
oryzae and S. zaemais, Carvalho et al., 2014). Other effects of Wolbachia on beetles
included the following: (i) transfer of bacteria genes to the autosomes of the host (so
far detected only for Monochamus alternatus, Cerambycidae, Aikawa et al., 2009 and
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Callosobruchus chinensis, Chrysomelidae, Nikoh et al., 2008); (ii) coexistence of Wolbachia
with Rickettsia (Calvia quattuordecimguttata, Coccidula rufa, Coccinella septempunctata,
Halyzia sedecimguttata, Rhizobius litura, Weinert et al., 2007; Sitona obsoletus, White et al.,
2015; Micromalthus debilis, Perotti, Young ¢» Braig, 2016) in the host or with Spiroplasma
(Chilocorus bipustulatus, Weinert et al., 2007; Aleochara bipustulata, Bili et al., 2016) or
with both (Adalia bipunctata, Majerus ¢» Majerus, 2000, Harmonia axyridis, Dudek et al.,
2017; Curculio sikkimensis, Toju & Fukatsu, 2011; Aleochara bilineata, Bili et al., 2016);
(iii) induction and reinforcement of parthenogenesis, however this effect had

weak support and had other possible alternative explanations (numerous species

of Naupactini, Rodriguero et al., 2010a and Eusomus ovulum, Mazur et al., 2016; all
Curculionidae; Micromalthus debilis, Perotti, Young & Braig, 2016); (iv) possible induction
of haplodiploidy (Euwallacea interjectus, Euwallacea validus, Curculionidae, Kawasaki et
al., 2016); (v) male-killing (Tribolium madens, Tenebrionidae, Fialho ¢ Stevens, 2000);
(vi) necessity of infection for egg development (Otiorhynchus sulcatus, Curculionidae, Son
et al., 2008; Coccotrypes dactyliperda, Zchori-Fein, Borad ¢» Harari, 2006); (vii) populations
evolving towards endosymbiont loss and repeated intraspecific horizontal transfer of
Wolbachia (Pityogenes chalcographus, Curculionidae, Arthofer et al., 2009), (viii) fitness
decline in infected beetles (Callosobruchus analis, Numajiri, Kondo ¢ Toquenaga, 2017),
(ix) modification of sperm (Chelymorpha alternans, Clark et al., 2008), (x) down-regulation
of defense genes in host plants (Diabrotica virgifera virgifera on maize, Barr et al., 2010).

Phylogenetic relations

The tree reconstructed for 16S rDNA included 52 sequences from bacteria found in 45 host
beetle species. This tree included three major lineages, with separate clusters of Wolbachia
sequences belonging to A, B and F supergroups (Fig. S1). F supergroup was represented by
a single sequence from Rhinocyllus conicus (Curculionidae) (Fig. S1). Sequences assigned to
supergroup A (based on information available in the articles) were found to be polyphyletic.
Some 168 sequences from Xylosandrus spp. and Curculio spp. (Curculionidae), or Oreina

cacaliae and Galeruca tanaceti (Chrysomelidae) clustered as a sister lineage to all other A

and B sequences (Fig. S1). Overall, the diversity of 16S sequences assigned to supergroup

B was much greater than those assigned to supergroup A (Fig. S1).

The tree reconstructed for ftsZ included 131 sequences found in 114 host beetle
species. The ftsZ phylogenetic tree resulted in a topology similar to that of 165 rDNA—it
included groups of sequences belonging to A, B and F supergroups (Fig. 52). Supergroup
F was represented by Agrilus araxenus and Sphaerobothris aghababiani (both Buprestidae).
Moreover, the supergroup B clade was divided into two clusters, among which one
included a small group of sequences found in four beetle hosts: Chelymorpha alternans
(Chrysomelidae), Eurymetopus fallax, Sitophilus oryzae and Conotrachelus nenuphar (all
three Curculionidae) (Fig. S2). Also in this gene, the genetic variation of sequences
belonging to supergroup A was much lower, and only a few sequences were highly
diverged (e.g., strains of Callosobruchus chinensis, Chrysomelidae; Tribolium confusum,
Tenebrionidae or Polydrosus pilosus, Curculionidae) (Fig. S2). There was also one slightly

Kajtoch and Kotaskova (2018), PeerdJ, DOI 10.7717/peer|.4471 14/31


https://peerj.com
http://dx.doi.org/10.7717/peerj.4471#supp-2
http://dx.doi.org/10.7717/peerj.4471#supp-2
http://dx.doi.org/10.7717/peerj.4471#supp-2
http://dx.doi.org/10.7717/peerj.4471#supp-2
http://dx.doi.org/10.7717/peerj.4471#supp-3
http://dx.doi.org/10.7717/peerj.4471#supp-3
http://dx.doi.org/10.7717/peerj.4471#supp-3
http://dx.doi.org/10.7717/peerj.4471

Peer

distinct clade that mainly consisted of bacteria sequences found in some Hydraenidae,
Curculionidae and Chrysomelidae (Fig. 52).

The abovementioned phylogenetic reconstructions of the relations among Wolbachia
strains identified on the basis of polymorphism of two genes show that there is no strict
correlation between host phylogeny and bacterial strain relationships. Even in studies that
covered multiple related species (e.g., those belonging to the same genus), evidence for
direct inheritance of Wolbachia strains from common ancestors is restricted to Hydraenidae
(Sontowski et al., 2015) and some species of Oreina (Montagna et al., 2014) or Curculio
(Toju et al., 2013). In the case of Altica, the data show that cospeciation was rare and
restricted to a few recently diverged species (Jickel, Mora ¢ Dobler, 2013). In contrast,
there are numerous examples of phylogenetically related beetle species possessing different
Wolbachia strains (e.g., Lachowska, Kajtoch ¢ Knutelski, 2010). It is also often the case
among related species that some are infected, whereas others not (Crioceris, Kubisz et al.,
20125 Oreina, Montagna et al., 2014; Cyanapion, Kajtoch, Montagna & Wanat, 2018); so
any assumption that the bacteria were inherited from a common ancestor would also need
to consider multiple losses of infection. The latter phenomenon is probable; however,
there is no direct evidence from natural populations, at least in studies on beetles, of
Wolbachia disappearing over time. Some exemplary studies that found Wolbachia present
in related species, after detailed examination, rejected the idea that bacteria was inherited
from a common ancestor. This was because different host species harbored unrelated
stains (e.g., among weevils, Lachowska, Kajtoch ¢ Knutelski, 2010) or in cases where strains
were identical or similar, the hosts were not phylogenetically close to each other (e.g.,
Crioceris, Kubisz et al., 2012). Finally, there is evermore proof of horizontal Wolbachia
transmission via different mechanisms, such as via predators, parasitoids, common habitat
or foraging on the same host plants (Huigens et al., 2004; Stahlhut et al., 2010; Caspi-Fluger
et al., 2012; Ahmed et al., 2015; Kolasa et al., 2017). Studies on beetles have mainly provided
indirect evidence of such transmissions. There are known groups of species that inhabit
the same environments and share the same or very similar Wolbachia strains, e.g., steppic
weevils from East-central Europe (Mazur, Kubisz ¢ Kajtoch, 2014) and bark beetles in
Japan (Kawasaki et al., 2016). Recently, evidence for has also appeared for the role of host
plants in bacteria spread—Wolbachia DNA was detected in two species of Crioceris leaf
beetles and in their host plant—Asparagus spp. (Kolasa et al., 2017).

Finally, in light of the proposed “Candidatus Wolbachia” species, the summarized
phylogenetic relations among Wolbachia strains infecting various beetles indicate that
the taxonomic distinctiveness of supergroups is inconclusive (Ramirez-Puebla et al., 2015;
Lindsey et al., 2016). First, beetles generally harbor members of supergroups A and B,
and only occasionally members of supergroup F. Therefore, it is not possible to make
any conclusions about broader Wolbachia taxonomy based only on Wolbachia strains
found in Coleoptera. However, there are numerous examples of beetle hosts harboring
both supergroups, including beetles in which some Wolbachia genes are of supergroup A
origin, while others are of supergroup B origin; this indicates that recombination between
strains belonging to different supergroups is quite frequent. This is evidence against the
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designation of the “Candidatus Wolbachia” species, at least with respect to members of
supergroup A and B.

CURRENT GAPS AND FUTURE ENDEAVORS

The present knowledge on Wolbachia infection across beetle species and populations is very
uneven. Even the basic data about infection statuses in species and frequencies of infected
species across genera and families is superficial, as there are only c. 200 beetle species
known to be infected. This means that if 38% is the average frequency of infection among
beetle species, then only c. 530 species have been tested so far. This is merely c. 0.15% of
the total number of beetles, which is estimated to be around 360,000 species (Farrell, 1998;
Bouchard et al., 2009). We know even less at the population level, as the majority of beetle
species have only had single individuals tested for Wolbachia infection (e.g., Lachowska,
Kajtoch & Knutelski, 2010; Sontowski et al., 2015). These very basic screens have probably
underestimated the number of infected species because of false-negative results obtained
for species with low or local infection in populations. There is also another and important
cause that should be mentioned—low titer infections that are under the detection limit
of conventional PCR (e.g., Arthofer et al., 2009; Schneider et al., 2013). On the other hand,
these preliminary estimates could have overestimated the real number infected beetles, as
sampling in these studies was rarely random and most often focused on specific groups,
e.g., on genera for which preliminary data suggested the presence of Wolbachia infection.
Indeed, an intensive search of Wolbachia infection across hundreds of beetle species from
Europe suggested a lower infection rate—c. 27% to be infected (L Kajtoch et al., 2018,
unpublished data). Also, knowledge about infection at the geographic scale is very uneven,
and only Europe and Asia (basically China and Japan) have been relatively well investigated.
There is a huge gap in the knowledge for African, Australian and Oceanian beetles, where
a high diversity of beetles exists and probably a similar diversity of Wolbachia could be
expected (e.g., compared to preliminary data available from Central and South America
(Werren, Windsor ¢ Guo, 1995; Rodriguero et al., 2010a).

Little is known about Wolbachia diversity in beetle hosts, as the majority of studies
used only single genetic markers, and often different genes were sequenced for different
taxa. This precludes complex analysis of Wolbachia diversity across all tested beetle hosts.
This has changed since 2006, since Baldo et al. (2006) proposed Multilocus Sequence
Typing (MLST), which is based on the genotyping of five housekeeping genes, usually
in conjunction with wsp sequencing. MLST is and should remain a sufficient way to
understand basic Wolbachia diversity. On the other hand, to fully understand Wolbachia
relations among strains and supergroups (or presumed species), between Wolbachia and its
hosts and especially between Wolbachia and other microorganisms, amplicon-sequencing
(e.g., 165 rDNA) or genome-sequencing are needed. This could be achieved thanks to
the development of next-generation sequencing technologies (NGS). Surprisingly, despite
fast development of NGS in the last years, very few studies have used this technology
for studying Wolbachia in beetle populations. For example, five studies sequenced 16S
amplicons generated from microbiota and detected Wolbachia (White et al., 2015; Bili et
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al., 2016; Berasategui et al., 2016; Takano et al., 2017; Dudek et al., 2017). The only study
that utilized shotgun sequencing was executed for other purposes and only accidentally
showed Wolbachia genes in examined species (Heintzman et al., 2014). NGS is probably
the best prospect for studies on Wolbachia infection and diversity, and will help to answer
most current riddles and issues.

The big challenge is to understand the impact of infection on beetle biology, physiology
and ecology. It is known that Wolbachia has several effects on host reproduction, but
relatively few studies prove or suggest e.g., cytoplasmic incompatibility, male-killing
or other effects on the development of selected beetles (Clark et al., 2001; Keller et al.,
2004; Roehrdanz et al., 2006; Roehrdanz & Levine, 2007; Sharaf et al., 2010; Zhang et al.,
20105 Jéickel, Mora & Dobler, 2013; Ming et al., 2015; Kawasaki et al., 2016; Li et al., 2016b;
Marifio, Verle Rodrigues & Bayman, 2017; Numajiri, Kondo & Toquenaga, 2017; Takano et
al., 2017). It is very probable that this bacteria has large and frequent effects on beetle
reproduction and is consequently partially responsible for beetle radiation, at least in
some taxonomic groups, geographic areas or habitats. Also, very few studies have shown
data on linkage disequilibrium and selective sweep between bacteriium and host genomes
(Roehrdanz et al., 2006; Rodriguero, Lanteri ¢ Confalonieri, 2010b; Kajtoch, Korotyaev &
Lachowska-Cierlik, 2012; Jickel, Mora ¢ Dobler, 2013; Mazur et al., 2016). These effects
could also have probably been involved in speciation of numerous beetles. Moreover, this
phenomenon could have serious implications for beetle barcoding, as selective sweep is
known to reduce mitochondrial diversity in its hosts and therefore could decrease the
number of identified species (Hurst ¢ Jiggins, 2005). On the other hand, cytoplasmic
incompatibility can lead to the origin of highly diverged phylogenetic mitochondrial
lineages within species, which would increase the number of identified taxa (Smith et al.,
2012). Also here, NGS technologies will enable more sophisticated analyses of these genetic
relations and their effects (e.g., by the sequencing of transcriptomes for physiological
studies or by genotyping-by-sequencing for phylogenetic studies). Genotyping with NGS
should also verify whether the recent assumption that different supergroups are indeed
“Candidatus Wolbachia” species is correct or not (Ramirez-Puebla et al., 2015; Lindsey et
al., 2016).

Only very preliminary results suggest Wolbachia was not only transmitted vertically, but
that it could also have spread horizontally (Jickel, Mora ¢ Dobler, 2013; Carvalho et al.,
20145 Kawasaki et al., 2016; Kolasa et al., 2017; Mazur et al., 2016). Horizontal transmission
was considered as an event that happens in evolutionary timescales. Only recently, Schuler
et al. (2013) showed that such a transfer can happen within a few years after arrival of a new
strain. In light of the general lack of cospeciation between bacteria and beetles, horizontal
transmission must be a highly underestimated phenomenon. Horizontal transmission of
Wolbachia among beetles cannot be confirmed without considering other coexisting insects
that can mediate transmission, such as predators, parasitoids or beetle prey. Moreover,
other arthropods that share habitats with beetles, e.g., phoretic ticks (Hartelt et al., 2004)
and nematodes (Casiraghi et al., 2001), need to be examined. Finally, host plants are
promising objects of studies on Wolbachia transmission across beetle populations (Kolasa
et al., 2017), as phloem is probably an important mediator of this bacteria’s spread across
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insect populations (DeLay et al., 2012; Li et al., 2016a). Concerning transmission—another
very interesting topic is the transfer of Wolbachia genes into host genomes (Dunning
Hotopp et al., 2007; Koutsovoulos et al., 2014; Funkhouser-Jones et al., 2015). This issue has
only been reported twice for beetle hosts so far (Nikoh et al., 2008; Aikawa et al., 2009). This
problem could be important as if such transfers are frequent, simple testing of Wolbachia
presence in a host based on single or even several gene sequencing could overestimate the
number of truly infected species, populations or individuals.

Finally, a very interesting topic for future studies is the examination of the presence
of other intracellular and symbiotic bacteria (like Cardinium, Spiroplasma, Rickettsia) in
Coleoptera and their relations, both with the host and Wolbachia. So far, only seven
studies have found Wolbachia with Rickettsia and/or Spiroplasma together in beetle
hosts (Majerus & Majerus, 2000; Weinert et al., 2007; Toju ¢ Fukatsu, 2011; White et al.,
20153 Perotti, Young ¢ Braig, 2016; Bili et al., 2016; Dudek et al., 2017). Preliminary results
suggest that there is some balance in the number of these bacteria, probably caused by
competition within host cells (Goto, Anbutsu ¢ Fukatsu, 2006). A recent summary of
the presence of these bacteria in insects showed that Rickettsia has been found in single
species of Micromalthidae, Staphylinidae, Buprestidae, Coccinellidae and Curculionidae
(Werren et al., 1994; Lawson et al., 2001; Weinert et al., 2007; Toju & Fukatsu, 2011; White
et al., 2015; Perotti, Young ¢ Braig, 20165 Bili et al., 2016), Spiroplasma in some species of
Staphylinidae, Coccinellidae and Curculionidae (Majerus et al., 1998; Hurst et al., 1999a;
Hurst et al., 1999b; Tinsley ¢ Majerus, 2006; Weinert et al., 2007; Toju & Fukatsu, 2011; Bili
et al., 2016), and Cardinium has not been detected so far in any beetle species (Zchori-Fein
& Perlman, 2004). The coexistence of different endosymbiotic bacteria and their effects on
hosts should also be investigated with NGS technologies, which are able to detect bacteria
in numerous hosts (e.g., individuals) at once and estimate prevalence of bacteria in various
hosts or different tissues. NGS has already been proven to be a powerful tool for detecting
undescribed bacteria (e.g., it allowed the identification of new Alphaproteobacteria in
Brontispa longissimi; Takano et al., 2017). Different endosymbiotic bacteria could have
either similar or contrasting effects on beetle species, populations and individuals and
could be the greatest overlooked phenomenon in the evolution and ecology of Coleoptera.

In our opinion, beetles are still an insufficiently examined group of Wolbachia hosts,
especially considering their systematic and ecological diversity. All issues in studies on
Wolbachia in Coleoptera are generally the same as in other hosts of these bacteria, or vice
versa; there is no issue that has been or is being studied on Wolbachia infection in other
(non-beetle) hosts that could not also be examined in beetle hosts. Also, the extraordinary
diversity of beetles (with respect to their diverse systematics at various taxonomic levels,
complex phylogenetic relations and extensive ecological relations with each other and
numerous other species) makes this group an excellent target for Wolbachia studies. The
presented summary about Wolbachia infection in beetles shows that despite numerous
studies, there are still many issues that need to be investigated. We hope that this systematic
review will facilitate various future studies on Wolbachia infection among beetles.
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