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ABSTRACT
Insect diversity patterns of high mountain ecosystems remain poorly studied in the

tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and

Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt

(TMVB) in the Mexican transition zone at 2,700 and 3,400 MASL, and on the

windward and leeward sides. Sampling units represented a forest–shrubland–pasture

(FSP) mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung

beetle species were collected. Diversity, abundance and compositional similarity

(CS) displayed a high variability at all scales; elevation, cardinal direction, or FSP

mosaics did not show any patterns of higher or lower values of those measures. The

four mountains were different regarding dispersion patterns and taxonomic groups,

both for species and individuals. Onthophagus chevrolati dominated all four

mountains with an overall relative abundance of 63%. CS was not related to distance

among mountains, but when O. chevrolati was excluded from the analysis, CS values

based on species abundance decreased with increasing distance. Speciation,

dispersion, and environmental instability are suggested as the main drivers of high

mountain diversity patterns, acting together at different spatial and temporal scales.

Three species new to science were collected (>10% of all species sampled). These

discoveries may indicate that speciation rate is high among these volcanoes—a

hypothesis that is also supported by the elevated number of collected species with a

restricted montane distribution. Dispersion is an important factor in driving species

composition, although naturally limited between high mountains; horizontal

colonization events at different time scales may best explain the observed species

composition in the TMVB, complemented by vertical colonization events to a lesser

extent. Environmental instability may be the main factor causing the high variability

of diversity and abundance patterns found during sampling. Together, we interpret

these results as indicating that species richness and composition in the high

mountains of the TMVB may be driven by biogeographical history while variability

in diversity is determined by ecological factors. We argue that current conservation

strategies do not focus sufficiently on protecting high mountain fauna, and that

there is a need for developing and applying new conservation concepts that take into

account the high spatial and temporal variability of this system.

How to cite this article Arriaga-Jiménez et al. (2018), High variability of dung beetle diversity patterns at four mountains of the

Trans-Mexican Volcanic Belt. PeerJ 6:e4468; DOI 10.7717/peerj.4468

Submitted 16 August 2017
Accepted 16 February 2018
Published 27 February 2018

Corresponding author
Matthias Rös, iguarana@gmail.com

Academic editor
Nigel Andrew

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj.4468

Copyright
2018 Arriaga-Jiménez et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.4468
mailto:iguarana@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.4468
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


Subjects Biodiversity, Biogeography, Ecology, Entomology

Keywords Mexican transition zone, Compositional similarity, Species distribution patterns,

q-Diversity, Horizontal colonization, Environmental instability, Archipelago reserves

INTRODUCTION
The importance of studying high mountain ecosystems in order to understand

biodiversity patterns and evolutionary processes is widely recognized (Körner, 2000;

Schmitt, 2009). Mountain tops have different ecological conditions from their

surrounding lowlands, and interconnection of their biota is less than in other ecosystems.

Vertical colonization (highland assemblages composed by species phylogenetically related

with those inhabiting lowlands) and horizontal colonization (colonization of highland

assemblages by lineages with a different evolutionary history and origin than those

occupying lowlands), as well as speciation, are described as drivers of mountain diversity

(Lobo & Halffter, 2000; Escobar, Lobo & Halffter, 2006; Schmitt, 2009; Halffter & Morrone,

2017). Mountain tops can act as refuges for flora and fauna that had expanded during

glacial or cooler conditions; as a consequence, their biota exhibits greater differences when

compared to that in lower elevations, especially in tropical areas where ecological

conditions change dramatically among different altitudes (Körner, 2007).

Research exclusively focused on diversity patterns on tropical mountains at elevations

higher than 2,500 MASL is scarce (Mastretta-Yanes et al., 2015). The main focus of

diversity patterns in mountains has been directed to altitudinal gradients, where

literature is abundant (Hanski & Niemelä, 1990; Kessler, 2000; McCain & Grytnes, 2010;

Nogués-Bravo et al., 2008; Rahbek, 1997). Mountain gradients often show higher regional

biodiversity due to a high species turnover than areas of the same size in tropical lowlands

(Rahbek, 1997). Also, mountains are speciation hotspots with a high degree of endemic

species (Halffter, 1987; Marshall & Liebherr, 2000). In recent times, with the Earth facing

climate change, species of high mountains are thought to be exposed to greater extinction

risk due to a changing ecosystem and upward colonization of species adapted to warmer

climates (Cahill et al., 2012).

Altitudinal gradients in the tropics present mostly two patterns: (1) Decreasing species

richness with increasing altitude (Alvarado, Escobar & Montero-Muñoz, 2014) or (2)

species richness peaks at middle elevations, due to climatic conditions following humidity

gradients (Nunes et al., 2016) or due to geometrical constraints, called mid-domain effect

(Colwell & Hurtt, 1994; Colwell & Lees, 2000; Colwell, Rahbek & Gotelli, 2004, 2005). These

patterns have in common that diversity is lowest at high elevations.

The Mexican transition zone (MTZ) is characterized as an area where biotas with

Nearctic and Neotropical (NT) origins overlap. It extends from the south of the United

States to the plains of southern Nicaragua (Halffter & Morrone, 2017). Since the land

connection made by the Panama Bridge, 3.5 million years ago, mountains in the MTZ

were primarily dispersion tracks for the northern fauna adapted to cold conditions (which

benefited additionally from quaternary glaciations), whereas the lowlands allowed

NT species to pass through northern areas (Halffter, 1987; Halffter & Morrone, 2017).

As discussed by Halffter (1976), the high level of endemic entomofauna in the MTZ is
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considered in part a product of speciation following vertical and horizontal colonization,

which maintain well-defined affinities with faunas to the south and north (Halffter, 1964,

1976; Lobo & Halffter, 2000).

The Trans-Mexican Volcanic Belt (TMVB) is an irregular province oblique to the

American Average Trench. It crosses Mexico between 19� and 21� northern latitude with a

mean elevation of 2,300 MASL at its high plateau, where the eight highest volcanoes of

Mexico are distributed, which have peak elevations ranging between 4,100 and 5,600

MASL (Mooser, 1972; Demant, 1978; Ferrari et al., 1999). The TMVB is one of the largest

physiographic provinces in Mexico, formed during the Cenozoic (65 Ma to the present),

and one of the best studied mountain system of the MTZ (Arroyo-Cabrales et al., 2008).

In general, locally low diversity of TMVB has been described, but with a high species

turnover and a high degree of endemic species (Munguı́a, 2004). Nevertheless, not much is

known about diversity patterns above 2,500 MASL (Mastretta-Yanes et al., 2015).

Dung beetles are one of the best studied insect groups in Mexico and in the tropics in

general; compared to many other insect groups their ecology, natural history,

biogeography, and diversity patterns are well known (Halffter, 1991; Halffter & Edmonds,

1982; Halffter & Matthews, 1966; Hanski & Cambefort, 1991; Scholtz, Davis & Kryger,

2009). For these reasons, dung beetles have been used widely as a biodiversity indicator

group (Halffter & Favila, 1993; Nichols & Gardner, 2010). Commonly, the term dung

beetle is used for the three subfamilies Scarabaeinae, Aphodiinae, and Geotrupinae, all

belonging to the Scarabaeoidea superfamily. Whereas Scarabaeinae are most diverse and

abundant in the tropics, the two latter groups are more diverse in northern temperate

regions (Hanski & Cambefort, 1991). In the MTZ, all groups coincide at the same

latitudes, but at different richness and abundance levels depending mostly on the

elevation (Halffter, 1987; Halffter & Morrone, 2017). Halffter (1976) proposed and

discussed that the entomofauna in the MTZ could not only be separated into Northern or

Southern origin, but regarding their dispersal patterns (DP), which were defined as the

actual distribution of a group of biota originating in a defined area and coexisting for a

long period, thus sharing a common biogeographic history (Halffter & Morrone, 2017).

Besides NT and Nearctic DP, the Paleoamerican DP is abundant, which corresponds to

species distributed in the zone long before both Americas were interconnected (Halffter,

1987; Halffter & Morrone, 2017). Geotrupinae present Nearctic DP, Aphodiinae Nearctic

as well as NT DP, while Scarabaeinae show the highest variety, including NT DP, and

different subgroups of the Paleoamerican DP (Halffter & Morrone, 2017). In tropical

mountain gradients, Scarabaeinae were featured by patterns already described, with

peaks at lowlands or mid-elevations; in contrast, Aphodiinae and Geotrupinae were

absent or rare at lowlands or mid-elevations, increasing their diversity at elevations

higher than 2,000 MASL or sometimes are exclusively limited to these altitudes

(Hanski & Cambefort, 1991).

This work represents the first study of diversity patterns of dung beetles carried out

at high mountains, at altitudes between 2,700 and 3,400 MASL. No comparable studies

were found in the literature, as high mountains were mostly approached as part of

altitudinal gradient studies, where sampling effort at high elevations were comparably low
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(Davis, Scholtz & Chown, 1999; Lobo & Halffter, 2000; Escobar, Halffter & Arellano, 2007;

Herzog et al., 2013).

The aims of this research are: first, to study dung beetle diversity patterns at MTZ

high mountains extensively in order to collect representative data on species richness

and composition, as a lack of sampling intensity in former studies was identified;

second, to analyze compositional similarity (CS) at different spatial scales within and

between MTZ mountains; and finally, to provide information that could indicate the

probable origin of diversity patterns, focusing on biogeographical factors (e.g., vertical

and horizontal colonization, speciation), as well as ecological variables (e.g., elevation,

exposure, forest mosaics). We predict that (a) dung beetle alpha and gamma diversity of

tropical high mountains in the MTZ will be higher than previously documented in

altitudinal gradient studies; (b) CS within mountains will be relatively high, with the

expected small differences between sampling sites explained by altitude, cardinal

direction, and forest mosaics; and (c) CS between mountains will be low, because each

mountain is largely defined by its own history and dung beetle fauna.

METHODS
Sampling sites
Four mountains were sampled in the TMVB: La Malinche (4,460 MASL), Cofre de Perote

(4,200 MASL), Pico de Orizaba (5,610 MASL), and Sierra Negra (4,580 MASL; mountains

are abbreviated as: MA, CP, PO, and SN, respectively; see Fig. 1). The three latter

volcanoes separate the Mexican High Plateau from the coastal plains of the Gulf of Mexico

(Concha-Dimas et al., 2005). The eastern part of the TMVB is the most recent one, and the

peaks studied are modern in their current form. The oldest is the Malinche volcano,

followed by Cofre de Perote, Sierra Negra, and Pico de Orizaba (Carrasco-Núñez, 2000;

Siebert & Carrasco-Núñez, 2002; Neyra Jauregui, 2012).

Volcanoes’ vegetation between 2,500 and 3,500 MASL is characterized by a high degree

of heterogeneity, naturally consisting of a mosaic of pine forest, shrubland, and pastures.

The treeline is up to 4,020 MASL (Körner & Paulsen, 2004). Pine forest is dominated by

species of Pinus and Abies (e.g., Pinus hartwegii LINDL and Abies religiosa (KUNTH)

SCHLTDL & CHAM). They are abundant at all four mountains (Neyra Jauregui, 2012).

This forest is characterized by a semi-open canopy which allows sunlight to reach the

ground, where shrubs and grasses can grow. Vegetation structure is also heterogeneous in

terms of tree age, height, and basal area; and patches where trees at an early stage of

succession are frequent.

Due to human influence in the TMVB during the past centuries, high mountain

landscapes are modified, and natural vegetation was replaced by crops and pastures for

livestock. Milpa (the traditional Mesoamerican non-intensive polyculture system of

maize, beans, and other plants) is the principal agroecosystem at the region, at higher

altitudes non-intensive potato crops, and at lower sites more intensive corn crops are

recurrent. Locally, natural pastures are used for cattle and goat grazing. Forest extension

differs among volcanoes; MA has the greatest forest area, followed by CP and PO, while SN

presents the least extent forest.
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Sampling design
At each mountain, four sampling sites were chosen at two different altitudes (∼2,700 and
∼3,400 MASL) and on two directions (windward/east and leeward/west). Due to the

heterogeneity of the vegetation, no homogeneous sampling sites could be established.

Instead, sampling sites reflected vegetation variability of the forest–shrubland–pasture

(FSP) mosaic.

At MA the two upper sampling sites were dominated by forest, whereas the FSP mosaic

prevailed in lower sites. At higher sites at CP, a forest–shrubland (FS) mosaic was

abundant, where the forest dominated larger parts of it, with pasture present only at the

west. The eastern lower sampling site was formed by a well-conserved forest, whereas the

western site had a FS mosaic (without dominance of any), with pastures nearby. The FSP

mosaics at upper sites in PO were shrubland–pasture dominated in the west, and more

forest dominated in the east. The western lower site consisted of an open forest with

pastures in the treeless areas. At the eastern lower site the FSP mosaic was dominated by

forest, surrounded by milpas. At SN all sites were formed by FSP mosaics.

Sampling was accomplished during the rainy seasons (June–August) from 2011 to

2013. Ten pitfall traps baited with human dung were placed at each site, separated at least

Figure 1 Map of the study area. Map of the study sites in the Trans-Mexican Volcanic Belt (indicated by the rectangle), with the four sampled

volcanos (indicated by triangles). MA, La Malinche; CP, Cofre de Perote; PO, Pico de Orizaba; SN, Sierra Negra. The map is based on the digital

elevation model for Mexico, provided by INEGI (downloadable at http://www.inegi.org.mx). Full-size DOI: 10.7717/peerj.4468/fig-1
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by 50 m (Larsen & Forsyth, 2005), left for 48 h and repeated once. Traps were placed

exclusively in the natural vegetation types (forest, shrubland, or pasture), but not in crops

or pastures used for cattle grazing. The sampling effort was the same, totaling 240 trap

days per mountain. This protocol was followed each year, intercalating months for each

mountain (e.g., MAwas sampled in June 2011, July 2012 and August 2013, see Table S1).

Later, dung beetle composition and abundance of each site were recorded. Direct

sampling was done during the three years, collecting inside gopher nests and in livestock

excrements, in order to capture species not attracted by baits. Nevertheless, these species

and individuals were not used in the analysis, but results are included in the discussion.

Field experiments were performed with a permission of the Secretaria del Medio

Ambiente y Recursos Naturales, Mexico (FAUD-0018). Species were identified by experts

for each of the subfamilies: Marco and Giovanni Dellacasa (Universita di Pisa) determined

Aphodiinae, Mario Zunino (Universita di Urbino) and Gonzalo Halffter the Scarabaeinae

and Geotrupinae species. All the vouchers were deposited in entomological collections:

Dellacasa (Genova, Italy), Morón (Xalapa, Mexico) and Halffter (Xalapa, Mexico)

personal collections, as well as a reference collection in the Colección Entomológica IEXA,

INECOL (Xalapa, Mexico).

Analysis
Unweighted diversity partition based on Hill Numbers proposed by Jost (Hill, 1973;

Jost, 2006, 2007) was applied using orders q = 0 and 2, where the first is equal to species

richness, the latter manifests patterns for abundant species, and their unit is the effective

number of species. The formula is:

qD ¼
XS
i¼1

pi
q

 !1=ð1�qÞ

These methods are now widely used and have been described in detail many times

(Arroyo-Rodrı́guez et al., 2013; Jost, 2007; Martı́nez et al., 2009; Murillo-Pacheco et al.,

2016). In the unweighted form, mean relative abundance is used to determine gamma

diversity. Beta diversity is the quotient of gamma diversity and mean alpha diversity, and

varies between 1 (when species are the same in all sampling units), and the number of

sampling units (when all species are different). Because different scales with different

numbers of sampling units were compared, CS qCS as a direct transformation of beta

diversity qb was used:

qCS ¼ 1=qb� 1=Nð Þ= 1� 1=Nð Þ
This converts beta diversity into values between 0 (no similarity) and 1 (complete

similarity). More generally speaking, qCS-values below 0.33 were considered as low and

values above 0.66 as high similarity. qCS for q = 0 and N = 2 equals the Jaccard index, and

for q = 2 the Morisita–Horn index.

Entropart package in the R-program for diversity partition was used (Marcon &

Herault, 2015; R-Development-Core-Team, 2009). Chao 1 richness estimator, as well as
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sampling coverage, was calculated in order to address sampling completeness for each

mountain (Colwell, 2010; Chao & Jost, 2012).

Homogeneity of multivariate dispersion using Jaccard andMorisita–Horn dissimilarity

indices was carried out (Anderson, 2001) applying permutation test based on

999 repetitions and Tukey´s honest significant difference method with the vegan package in

R (Oksanen et al., 2007; R-Development-Core-Team, 2009). Sampling units were the 16 sites,

grouped by mountains or by three FSP mosaic classes (see Supplemental Information).

Species were classified regarding their DP as: NT, Mexican High Plateau (NT origin),

Meso-American Montane (MM, species evolved in Mesoamerican mountains but of both

northern and southern origin), Nearctic (of recent northern origin), and Paleoamerican

(which Halffter divided into the subpatterns Mountain Paleoamerican, Paleoamerican

High Plateau and Tropical Paleo-American; Halffter, 1964, 1976, 1978).

RESULTS
About 3,430 individuals of 29 species at the four mountains were collected during the

three sampling seasons (see Table 1). The most diverse subfamily was Aphodiinae with

16 species in 10 genera, followed by Scarabaeinae (eight species in three genera) and

Geotrupinae (five species in three genera). The most abundant subfamily was

Scarabaeinae with 60% of all individuals, followed by Aphodiinae and Geotrupinae (25%

and 15%, respectively). These percentages are nearly the same across altitudes and sites.

Regarding different altitudes, 25 species were collected at lower altitudes (with ten unique

species) versus 19 species at superior altitudes (with four unique species). Of the

29 species, five were captured at all volcanoes; seven species were restricted to two and

13 were unique to one of the four volcanoes. Sampling completeness was high, values of

Chao 1 estimators were 92% for the pooled mountains, and 96%, 81%, 89 %, 78% for

each of the mountains (MA, CP, PO, and SN respectively), and sampling coverage varied

between 98.7% and 99.9% (see Table 1).

Variability was the most consistent pattern at all scales and measures (dung beetle

diversity, abundance, and CS, see Figs. 2 and 3). Among and within all mountains, there

were a high variation of diversity and abundance values (Fig. 2): Richness varied between

2 and 15 species and from 1.1 to 4.7 effective species for order q = 2. The abundance

ranged from 9 (SN upper leeward site) to 585 individuals (PO lower western site). On the

same mountain, measures could vary between sites by three-fold (0D at PO, 2D at CP) to

as much as 24-fold (abundance at MA). At each mountain, the forest-dominated sites did

not have higher or lower diversity, abundance or CS values when compared to the sites

with a FSP mosaic, and were similarly variable (Figs. 2 and 3; Fig. S1).

Comparing mountains, PO had the highest diversity and abundance. CP presented

the second highest species richness and abundance, and the lowest CS. SN had by far

the lowest alpha and gamma diversity (less than 50% of adjacent PO), as well as

abundances (20% compared to PO, see Fig. 2), whereas CS varied similarly as in MA and

PO. At CP, the relatively high gamma diversity was product of the high beta diversity. CS

demonstrated differences among and within mountains depending on the order q. CP had

the lowest CS for both q = 0 and 2. Sites at Sierra Negra shared only a few species, but the
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abundant species were most similar, so 0CS was nearly as low as at CP, but 2CS-value was

the highest of all mountains. MA had the highest CS values for order q = 0 (although they

were not high), and second highest for order = 2.

Compositional similarity between pairs of mountains did not increase with distance

(Fig. 4). Species similarity was relatively low among mountains (0.3–0.38), with the

exception of the 0CS between CP and PO (0.5).

Table 1 Species sampled at each volcano.

Species SF DP MA CP PO SN Four volcanos

Agrilinellus azteca A PM 0.2 8.8 8.3 5.4 5.71

Agrilinellus ornatus A PM* 2.7 0.5 4.0 17.9 6.27

Blackburneus charmionus A NT* 0.1 0.02

Blackburneus guatemalensis A NT* 0.1 2.8 0.73

Blackburneus saylorea A NT* 0.2 0.04

Cephalocyclus hogei A NA 24.0 3.1 0.4 6.86

Gonaphodiellus bimaculosus A NT 1.3 0.33

Gonaphodiellus ophisthius A NT 1.6 0.2 8.4 2.54

Labarrus pseudolividus A NT 0.4 0.10

Neotrichonotulus inurbanus A NA 0.1 0.02

Oscarinus indutilis A NA 0.1 0.1 0.04

Oxyomus setosopunctatus A NA 1.3 0.33

Planolinellus vittatus A NA 0.1 0.4 0.12

Trichonotuloides alfonsinae A PM* 0.5 0.8 0.33

Trichonotuloides hansferyi A PM* 0.1 0.02

Trichonotuloides glyptus A PM 1.0 0.26

Ceratotrupes bolivari G PM 3.6 0.8 0.1 0.4 1.23

Halffterius rufoclavatus G PM 2.1 0.3 0.60

Onthotrupes herbeus G PM 2.3 1.0 24.3 0.8 7.09

Onthotrupes nebularum G PM 0.6 0.2 8.8 2.38

Onthotrupes sallei G PM* 0.4 0.11

Copris armatus S PM 11.9 1.7 3.39

Onthophagus aureofuscus S PM 9.9 1.1 2.74

Onthophagus bolivari S PM* 20.9 5.22

Onthophagus ch. chevrolati S PM 38.8 50.2 34.8 72.1 49.00

Onthophagus lecontei S HP 15.4 0.6 4.00

Onthophagus mexicanus S HP 1.3 0.33

Phanaeus qu. quadridens S HP 0.5 0.12

Phanaeus a. amethystinus S MM 0.2 0.04

Individuals 824 1,155 1,211 240 3,430

Richness 13 17 19 9 29

Chao 1/Coverage (%) 96/99.9 81/99.7 89/99.7 78/98.7 92/99.9

Notes:
Species sampled via pit fall traps, indicating relative abundance percentage for species at each volcano. Values for four
volcanos are mean %. SF, subfamily; DP, dispersion pattern (HP, high plateau; MM, mesoamerican montane; NA,
nearctic; PM, Paleoamerican; NT, neotropical).
* DP unknown but assumed according to the genera. Volcanos: MA,Malinche; CP, Cofre de Perote; PO, Pico de Orizaba;
SN, Sierra Negra.
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The Scarabaeinae Onthophagus chevrolati chevrolati Harold dominated all mountains,

with 50% of all collected individuals, and its distribution pattern was principally

responsible for the higher 2CS-values between all mountains (see Fig. 4). 2CS was the

highest between CP and PO with 0.84, meaning that similarity was greater between these

two mountains at a 53 km distance than between PO and SN at a distance of 7 km.

The great dominance of O. ch. chevrolati hid the high variability of the other species, as

shown in the table in Fig. 4. When omitting O. ch. chevrolati from the analysis, 2CS turned

into low values, and in general, it decreased as distance increased.

The permutation test for beta diversity did not reveal significant differences in

variability among mountains, aiming that, as already described as the general diversity

pattern for our study, variability was similarly high at all mountains (Fig. S1).

Temporal variation was also high; each year approximately 60% of overall richness was

collected (Table S1). The most abundant species, O. ch. chevrolati was present at each

mountain every year. In contrast, eight species were present only at one mountain one

Figure 2 Alpha and gamma diversity of the four mountains. Results of alpha and gamma diversity for orders q = 0 and q = 2 (upper and lower

value, respectively), and abundance for each sampling site. Values in the central square show gamma diversity of each mountain. Numbers below

the square indicate abundances. (A) MA, La Malinche; (B) CP, Cofre de Perote; (C) PO, Pico de Orizaba; (D) SN, Sierra Negra. W, western leeward

side; E, eastern windward side. Upper squares display values at 3,400 MASL and lower squares at 2,700 MASL.

Full-size DOI: 10.7717/peerj.4468/fig-2
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year. Most species also varied highly regarding abundance between years, inclusive at

the same mountain. Each year, every mountain displayed different richness and CS

(see Tables S1 and S2).

Dispersion patterns exhibited differences among mountains; for instance, species

representing the Nearctic Pattern were absent in MA but abundant in CP and present in

PO. Pico de Orizaba was the only mountain with one Mesoamerican Montane Pattern

species. Paleoamerican Mountain pattern dominated both at species and individual level,

at all mountains. SN was almost entirely dominated by individuals of PM-species

(Fig. S2).

Regarding taxonomic differences, MA had by far the highest percentage of Scarabaeinae

individuals and species. On the other three volcanoes, Aphodiinae presented the highest

species richness, while Scarabaeinae had the highest abundance. Geotrupinae showed the

highest variation in abundance, being most abundant on PO and least abundant on the

adjacent SN (Fig. S2).

Figure 3 Compositional similarity at the four mountains. Compositional similarity qCS within and among sites (q = 0 upper value, q = 2 lower

value) at the four mountains: (A) MA, La Malinche; (B) CP, Cofre de Perote; (C) PO, Pico de Orizaba; (D) SN, Sierra Negra. Values inside the

squares show CS among traps. Left squares—western leeward sides, right squares—eastern windward sides. Upper squares display values at 3,400

MASL and lower squares at 2,700 MASL. Values without squares show the pairwise CS between sites, arrows indicate which pairs were compared.

Full-size DOI: 10.7717/peerj.4468/fig-3
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DISCUSSION
As predicted, this study provides evidence that high mountains can hold a diverse dung

beetle community. Unexpected and contrary to our predictions, we found high variability

in diversity patterns at different spatial scales, both within and between mountains. No

previous studies on dung beetles in Mexico have reported species richness numbers for

these elevations: Martı́n-Piera & Lobo (1993) collected five species above 2,500 MASL;

Lobo & Halffter (2000) collected seven species; Escobar, Halffter & Arellano (2007) only

two; Halffter et al. (2008) eight species; and Alvarado, Escobar & Montero-Muñoz (2014)

four species (Halffter et al. (2008) did not report Aphodiinae and Escobar, Halffter &

Arellano (2007) only Scarabaeinae). Of these, only Lobo & Halffter (2000) collected three

species at 3,300 MASL, whereas 19 species were found in this study.

More than 10% of species collected were new to science (Arriaga-Jiménez et al., 2016;

Dellacasa, Dellacasa & Gordon, 2014). The three new species belong to the Paleoamerican

mountain DP, which Halffter & Morrone (2017) described as corresponding to lineages

that have undergone vicariant speciation. The discovery of Onthophagus bolivari, which

Figure 4 Compositional similarity between pairs of mountains in relation to its distances. Com-

positional similarity and distances between each pair of mountains, the upper value presents 0CS, the

lower value 2CS (Jaccard and Morisita–Horn compositional similarity, respectively). The table indicates

CS-values when the most abundant species Onthophagus chevrolati chevrolati (with a mean relative

abundance of 0.5), was excluded from the analysis (see text). MA, Malinche; CP, Cofre de Perote; PO,

Pico de Orizaba; SN, Sierra Negra. Positions and distances based on Google earth Images.

Full-size DOI: 10.7717/peerj.4468/fig-4
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probably evolved in the mountain complex of La Malinche and El Pinal (Arriaga-Jiménez

et al., 2016) highlights the importance of the O. chevrolati species group, whose

distribution reflects the MTZ and which now comprises more than 40 species and

subspecies (Zunino & Halffter, 1988). In addition, some species at high mountains

developed particular feeding behaviors, living exclusively in gopher nests (Rodentia:

Cratogeomys), feeding on excrements stored in latrines (Zunino & Halffter, 1988, 2007).

Four dung beetle species (Onthophagus hippopotamus, Geomyphilus pierai, G. barrerai,

and Neotrichonotulus perotensis, see Table S2) were collected only in the gopher nests, as

they were not attracted to bait (thus explaining why they could not be included in the

diversity analysis), but they also support the conclusion that high mountains are a center

of speciation associated with a unique, highly adapted dung fauna.

Dispersion processes may be the main driver of dung beetle richness and

composition in mountains, as only some species are restricted to one or few mountain

chains. Lobo & Halffter (2000) discussed how mountains of the TMVB illustrate

horizontal colonization—an observation that is indeed supported by the DP of most

species collected in this study. As observed by Caballero et al. (2011), temperature and

vegetation equivalents in the last glacial maximum were distributed 1,000 m below the

current altitudes. As a consequence, these conditions were not limited to mountain tops as

is the case today, but instead connected over large areas. As there have been more

glaciation periods in the MTZ, these habitat replacements with repeated separations and a

mix of faunas might have been common (Zunino & Halffter, 1988). Halffter & Morrone

(2017) stated that in the MTZ vertical colonization occurred rarely in relation to

horizontal colonization and in comparison to other tropical regions. Nevertheless, several

species with NT DP (Lobo & Halffter, 2000 only reported one species) show that vertical

colonization events also contributed to species richness and composition in the TMBV

(Lobo & Halffter, 2000).

Whereas speciation and DP may explain dung beetle richness and composition of the

four volcanoes studied, they do not explain the high variability of diversity and CS

patterns found at different spatial scales.

Volcanoes in the TMVB can be considered as dynamic, ecologically instable systems

with a comparably strong disturbance regime at different time scales. Volcanism,

earthquakes, and glaciations cause long-term temporal effects of habitat destruction and

perturbation, leading to local extinctions and population splitting, followed by speciation,

and recolonization (Zunino & Halffter, 1988; Siebe et al., 1996; Castro-Govea & Siebe, 2007;

Battisti, Poeta & Fanelli, 2016).

Severe climate, diverse soil conditions, and the resulting FSP mosaic form

heterogeneous conditions of permanent environmental instability. Because dung beetles

are mainly linked to herbivorous mammals, they may be especially vulnerable to

environmental instability (Nichols et al., 2009). It has often been reported that diversity

patterns produced by instability are high regional diversity, due to lower local (alpha)

diversity but higher beta diversity (Halffter et al., 2007;Martı́nez et al., 2015; Battisti, Poeta

& Fanelli, 2016). While our study provides some support for such patterns (e.g., for Cofre

de Perote), instability seems nevertheless to lead to highly variable patterns: high and low
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abundance, diversity and CS, without any apparent linkage to measured ecological

variables. Also, the dominance of O. ch. chevrolati may hide a clearer pattern of the

expected low similarity; it is not common that one species dominates a dung beetle

community to such a degree that similarity patterns change totally when it is

excluded from analyses. O. ch. chevrolati, also present in other studies of the region

(Lobo & Halffter, 2000; Escobar, Halffter & Arellano, 2007), is abundant in all mountains

of the TMVB in forest and pastures, and it is the species with the highest known

elevation record in Mexico at 3,800 MASL (Zunino & Halffter, 1988). Nevertheless, there

is little information about its natural history or physiological adaptations to high

mountain climates and habitats. This species belongs to a recent lineage in an ongoing

phase of dispersion (Zunino & Halffter, 1988). As shown in the results, when excluding

O. ch. chevrolati from CS analysis for order q = 2 (regarding abundant species), the

community presented a large degree of heterogeneity and dynamism. Even the remaining

most frequent species had dissimilar abundances on each mountain, indicating that

dynamics are independent and different on each volcano. Severe climate and environment

could cause high population fluctuations, where low densities of individuals result in a

lower species detectability (MacKenzie et al., 2003). Alternatively, we found some species

to be active only in a small window of time due to their biological cycles (e.g.,

Cephalocyclus). Our temporal data indicate high fluctuations from year to year and

between volcanoes for these species, although they could not be linked directly to

climate data.

The observed patterns of diversity and heterogeneity could be typical for the entire

MTZ, with lower values of diversity and heterogeneity near its northern and southern

limits, and more endemisms in the southern part of the zone (Zunino & Halffter, 1988).

As elevation increases, the species turnover is predicted to be higher: Scarabaeinae

richness (a temperate and tropical group), will be replaced by species of Aphodiinae

(a heterogeneous group with different origins) and Geotrupinae (a northern group of

colder climates). Because of its origins, Geotrupinae will lose importance southwards,

whereas Aphodiinae and Scarabaeinae will present still high richness and abundance. By

contrast, in the NT region, Geotrupinae cannot compete with Scarabaeinae (Hanski &

Cambefort, 1991), and are absent in high mountains. Scarabaeinae richness decreases at

higher mountain altitudes, sharing only some species with the MTZ (Escobar et al., 2007;

Halffter & Morrone, 2017; Howden, 1964). Distribution of Aphodiinae species are not well

documented for high mountains, so it is not clear if they show similar richness patterns as

in the TMBV, or if they are mostly absent. The fact that dung beetles are frequently studied

in altitudinal gradients may erroneously lead to the assumption that their high mountain

diversity patterns are well understood. This work reveals the need to conduct more

extensive studies at high elevations in tropical montane systems to understand some of

these as-yet unresolved issues surrounding dung beetle diversity, biogeography, and

evolution.

Present conservation strategies do not protect all the high mountain fauna since

reserves are situated mostly at higher altitudes. New proposals such as archipelago reserves

(Halffter, 2005, 2007) may be an adequate tool, given mountain tops have limited areas
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with similar ecological conditions and similar threats (land use intensification, climate

change). These systems would also benefit from coordinated monitoring and

conservation programs.

Future studies should prioritize representative sampling of other mountains in the

MTZ. Volcanic mountains, dominant from Mexico to Central America, should be

compared to mountains of different origin. For instance, some regions in the adjacent

Mexican states of Oaxaca or Chiapas had different disturbance patterns over a large

temporal scale, which could lead to different diversity patterns. South America also has a

heterogeneous mix of high mountains with and without volcanic activity, so there may be

differences between them and Mexico. More importantly, though, the biogeographical

history and DP in the Andes differ strongly from those of the MTZ. Less is known about

Asian tropical high mountains, despite the fact that all three dung beetle groups are

present there. Filling in some of these research gaps will allow comparison of these

mountain regions and will improve our understanding of species diversity and turnover in

high mountain ecosystems. Despite the research needs that remain, our study nevertheless

makes progress by providing evidence of how tropical high mountains can improve our

understanding of the drivers of diversity patterns, and how biogeographic history and

ecological factors mold them. This knowledge is important to improve the conservation of

these unique and restricted ecosystems.
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el último máximo glacial. Boletı́n de la Sociedad Geológica Mexicana 62(3):359–377

DOI 10.18268/bsgm2010v62n3a4.

Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, Yeong Ryu H,

Sbeglia GC, Spagnolo F, Waldron JB, Warsi O, Wiens JJ. 2012. How does climate change

cause extinction? Proceedings of the Royal Society B: Biological Sciences 280(1750):20121890

DOI 10.1098/rspb.2012.1890.
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Halffter G, Verdú JR, Márquez J, Moreno CE. 2008. Biogeographical analysis of Scarabaeinae and

Geotrupinae along a transect in central Mexico (Coleoptera, Scarabaeoidea). Fragmenta

Entomologica 40(2):273–322 DOI 10.4081/fe.2008.99.

Hanski I, Cambefort Y. 1991. Dung Beetle Ecology. Princeton: Princeton University Press.
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