

1 **The importance of sponges and mangroves in supporting fish communities on**
2 **degraded coral reefs in Caribbean Panama**

3

4 Janina Seemann^{1*}, Alexandra Yingst², Rick D. Stuart-Smith³, Graham J. Edgar³, Andrew
5 H. Altieri¹

6

7 ¹MarineGEO, Smithsonian Tropical Research Institute, Panamá, Republic of Panama

8 ² University of Pittsburgh, Pittsburgh, Pennsylvania, United States

9 ³ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania,
10 Australia

11

12 | Email: seemannja@gmail.comseemannj@si.edu

13 **Abstract**

14 Fish communities associated with coral reefs worldwide are threatened by habitat
15 degradation and overexploitation. We assessed coral reefs, mangrove~~mangroves~~ fringes,
16 and seagrass meadows on the Caribbean coast of Panama to explore the influences of
17 habitat cover, connectivity_proximity, and environmental characteristics in sustaining
18 biomass, species richness and trophic structure of fish communities in a degraded tropical
19 ecosystem. We found 94 % of all fish across all habitat types were of small body size
20 (≤ 10 cm), with communities dominated by fishes that usually live in habitats of low
21 complexity, such as Pomacentridae (damselfishes) and Gobiidae (gobies). Total fish
22 biomass was very low, with small fishes from low trophic levels over-represented, and
23 top predators under-represented, compared to coral reefs elsewhere in the Caribbean. For
24 example, herbivorous and omnivorous fishes (trophic level 2 – 2.7) comprised 37 % of
25 total fish biomass, and the small parrotfish *Scarus iseri* comprised 72 % of the parrotfish
26 biomass. WeFor the reef-associated fish community, we found evidence that non-coral
27 biogenic habitats support reef-associated fish communities, provided a mechanism of
28 resilience. In particular, the abundance of sponges on a given reef and proximity of
29 mangroves were found to be important positive factors for the correlates of drivers of reef
30 fish species richness, biomass, abundance and trophic structure. Our study indicates that a
31 diverse fish community can persist on degraded coral reefs, and that the availability and
32 arrangement within the seascape of other habitat-forming organisms, including sponges
33 and mangroves, is critical to the maintenance of functional processes in such ecosystems.

34 **Introduction**

35 Coral reef fishes are useful model communities for exploring drivers of species diversity
36 at landscape and regional scales (Galzin et al. 1994; Fabricius et al. 2005; Knowlton et al.
37 2010; Wilson et al. 2010). They are sensitive to changes in habitat and anthropogenic
38 impacts – a particular concern given that fishes play an important role in coral reef
39 ecosystems, and declines of coral reef fishes threaten people's livelihoods and food
40 security (Cesar 2000; Cesar et al. 2003; Bellwood et al. 2004; Paddack et al. 2009). A
41 variety of human impacts are responsible for coastal degradation, including habitat
42 destruction, eutrophication, and sedimentation (Hughes 1994; Jackson et al. 2001;
43 Aronson et al. 2003). Climate change has additionally contributed to ecosystem decline
44 through coral die-off from bleaching, hypoxia events and storms (~~Beukers and Jones~~
45 ~~1998~~; Wilson ~~2006~~; Alvarez-Filip et al. 2009; Wilson et al. 2010; Altieri et al. 2017). The
46 consequences of these ~~processes events are~~ structural collapses and habitat
47 homogenization in coral reefs, effects which have a variety of potential direct and indirect
48 implications for the resident organisms ~~that reside there~~ (Bell and Galzin 1984; Jackson
49 et al. 2001; Kuffner et al. 2007; Wilson et al. 2010; Alevizon and Porter 2015; Mora
50 2015).

51

52 Additional factors contributing to declining reef fish abundances are unsustainable
53 fisheries and increasing demand for fish products for a growing human population
54 (Hodgson 1999; Jackson et al. 2001; Zaneveld et al. 2016). The overexploitation and
55 disproportionate targeting of large size classes and high trophic levels affects fish

56 population structure, growth, and reproduction, and contributes to a trophic imbalance
57 and shifts in trait composition in the reef fish community (HixonPauly et al. 2014).^{1998;}
58 ~~Mumby et al. 2006~~. This, in turn has led to further changes in habitat structure, phase
59 shifts from coral to algal communities, and decreasing ecosystem stability (Saila et al.
60 1993; Jennings and Lock 1996; White and Jentsch 2001).

61

62 Reef fish populations have also been negatively affected by the loss of coastal habitats,
63 ~~which that provide important-as~~ nurseries (Nagelkerken et al. 2000). The nursery-role
64 concept suggests that many reef fishes (e.g., families Lutjanidae, snappers; Serranidae,
65 groupers; Haemulidae, grunts) have life cycles that include seagrass meadows and
66 mangroves as nursery and feeding grounds (Beck et al. 2001; Nagelkerken et al. 2002;
67 Unsworth et al. 2008; Ley 2014; Serafy et al. 2015). Seagrass meadows and mangrove
68 forests have high primary and secondary productivity relative to unvegetated substrates,
69 and support high diversity and abundances of reef fishes (Nagelkerken et al. 2000; Beck
70 et al. 2001; Mumby et al. 2004). Many fish species on coral reefs therefore depend on the
71 connectivity to, and integrity of, associated habitats.

72

73 Our study region, the Caribbean Sea, has experienced declining reef fish populations as a
74 result of pollution, ecosystem degradation and unsustainable reef fisheries (Hughes 1994;
75 Gardner et al. 2003; Bellwood et al. 2004; Paddack et al. 2009). These problems appear
76 particularly prominent at our focal study area in Bocas del Toro on the Caribbean coast of
77 Panama, where rapid human population growth connected with agriculture (banana

78 industry) and tourism has accelerated the decline of water quality,~~– and the~~ physical
79 destruction of reefs₁ and has increased the fishing pressure (Guzmán and Jiménez 1992;
80 Collin 2005; D'Croz et al. 2005; Cramer 2013; Aronson et al. 2014; Seemann et al.
81 2014). Bocas del Toro encompasses a coastal coral reef-seagrass-mangrove system in a
82 semi-enclosed lagoon. It is composed of six major islands and the mainland, which
83 surrounds the Almirante Bay, and includes mangroves fringing the mainland and
84 mangrove islands scattered across the bay (Collin 2005; Guzmán et al. 2005). Reefs are
85 typically dominated by corals with a high stress tolerance, including *Porites furcata* in
86 shallow (1-4 m) and *Agaricia* spp. (>3 m) in the deeper areas (Seemann 2013; Aronson et
87 al. 2014; Seemann et al. 2014). Associated seagrass meadows are dominated by
88 *Thalassia testudinum* (turtlegrass). Mangrove fringes are comprised of *Rhizophora*
89 *mangle* (red mangrove). Several rivers, creeks and oceanic inlets discharge sediments and
90 nutrients into the bay (Beulig 1999; Collin 2005). Bleaching and low oxygen events
91 occur regularly due to lagoonal characteristics including retention of warm water and
92 depletion of oxygen (Kaufmann and Thompson 2005; Seemann et al. 2014; Altieri et al.
93 2017). Bocas del Toro reefs potentially represent a model system for improving
94 predictions relevant throughout the region due to their exposure to common stressors,
95 such as high terrigenous run off, nutrient levels, and overfishing, that are afflicting other
96 coral reefs in the Caribbean (Riegl et al. 2009; Sammarco and Strychar 2009; Leinfelder
97 et al. 2012; Aronson et al. 2014).

98

99 This study aims to characterize the ecosystem attributes that facilitate the maintenance of
100 essential functions, biodiversity and biomass of coral reef fish communities in a degraded
101 ecosystem. Specifically, we (1) quantify the fish community at 67 sites in 5 bioregions of
102 the Caribbean to assess the status of our focal study system in Bocas del Toro along a
103 gradient of ecosystem degradation and over-fishing, (2) examine the effects of proximity
104 of mangroves and seagrass for fish communities on coral reefs, and (3) identify
105 characteristics of coral reef habitat that are positively related to biomass, abundance and
106 structure of the fish community. Addressing these objectives contributes to a better
107 understanding of how landscape-scale features underlie the resilience of degraded coastal
108 habitats.

109

110 **Methods**

111 **Study system**

112 To place results within the wider regional context, we conducted fish surveys at reefs
113 with different fishery management restrictions in different Caribbean ecoregions.
114 In our focal study areas of Bocas del Toro on the Caribbean coast of Panama (Fig. 1), we
115 also conducted comprehensive surveys of fish communities, benthic surveys, and water
116 quality measurements in adjacent seagrass and mangrove fringe areas. All data from
117 Bocas del Toro were collected from May to July 2015. Data for the other Caribbean
118 regions were collected from 2012 to 2015.

119 Research was conducted under a Scientific Permit from the Ministry of the Environment
120 Panama (MiAmbiente) and Autoridad de los Recursos Acuáticos de Panamá (ARAP)
121 with the Number: SE/APO-1-15 & 10b.

122

123 **Caribbean Data Set**

124 **Fish surveys.** We conducted visual fish surveys using the Reef Life Survey (RLS)
125 method 1 protocol (Edgar and Stuart-Smith 2014) at reefs at 67 sites in the following five
126 ecoregions (Spalding et al. 2007): Southern Caribbean (14 sites, Bonaire), Southwestern
127 Caribbean (31 sites, Bocas del Toro, Kuna Yala, Archipelago of San Andres), Greater
128 Antilles (1 site, Grand Cayman), Floridian (17 sites, Florida Keys) and Bahamian (4 sites,
129 Turks and Caicos Islands). Surveys involved underwater visual censuses by scuba divers
130 at reef sites (each with 2-6 replicate transects) in depths of 1 to 35 m. Divers counted and
131 assigned all fish species observed within binned size-classes along a 50 x 5 m belt
132 transect (250 m²). All fishes sighted on each transect were recorded on a waterproof
133 datasheet as the diver swam along the transect at approximately 2 m min⁻¹. We identified
134 fish species to the highest taxonomic resolution possible, and estimated body length for
135 each individual. The order of priority for recording accurately was to first ensure all
136 species observed along transects were included, then individuals of larger or rare species
137 were accurately counted, then estimates made of abundances of common species. If an
138 individual could not be identified underwater, a photograph was taken for later
139 identification. Abundance, size and species identity were used to estimate biomass in kg

140 ha⁻¹ using conversion factors provided by Fishbase (www.fishbase.com), as described by
141 Edgar and Stuart-Smith (2014).

142

143 **Bocas del Toro Data Set**

144 **Fish surveys.** The RLS method employed on coral reefs in five ecoregions was also
145 applied in seagrass and mangrove habitats located within 250 m of reef sites in Bocas del
146 Toro. Seagrass sites ranged in depth from 1 m to 4 m, whereas mangrove fringe root
147 systems had maximal depth of 2 m. Mangrove surveys were conducted amongst the
148 mangroves prop roots below the upper intertidal fringe with counts and size estimates
149 made for all fishes in a 5 m wide belt within the mangrove root system. Two 50 m
150 transects were laid end-to-end along the mangrove fringe given that side-by-side replicate
151 transects typical of the RLS protocol could not be applied within mangrove root habitats.

152 **Habitat assessment.** We conducted benthic surveys to characterize coral reef and
153 seagrass bed habitats. Reef and seagrass benthos were analyzed with 20 photo quadrats
154 (0.5 m²), which were taken every 2.5 m along the 50 m long transects at each site. Photos
155 were analyzed via point counting using the Coralnet annotation tool (coralnet.ucsd.edu).

156 A total of 25 points were randomly distributed on each photo and categorized.

157 Substratum categories for analyses were: healthy hard coral, bleached hard coral,
158 recently-dead coral, anemones, non-calcifying corals (including hexacorals and
159 octocorals), sponges, sessile worms (tube worms, mostly polychaetes), zoanthids, rubble,
160 sand, rock, calcifying algae, seagrass and macroalgae. If sessile organisms were too small
161 for identification or obscured by dark shadows, then they were excluded from the dataset.

162 In addition, the distance between reef sites surveyed and nearest mangrove was measured
163 using GPS coordinates (table 1).

164 **Water quality measurements.** Water quality was assessed by quantifying temperature
165 (°C), salinity (psu), water depth (m), total dissolved solids (TDS, mg L⁻¹), dissolved
166 oxygen (mg L⁻¹), pH, turbidity (FNU), chlorophyll (µg L⁻¹), blue-green algae
167 concentrations (µg L⁻¹), and dissolved organic matter (fDOM, RFU) with an Exo2
168 multiparameter sonde (YSI, Xylem brand) (Snazelle 2015). The sonde was positioned
169 ~10 cm above the bottom in each habitat (reef, seagrass and mangrove fringe).

170 Measurements were recorded at intervals of 1 – 6 min over a time period of at least 30
171 min during the fish surveys, and constrained to the mid-day hours between, hence
172 measurements were subject to the daily variability of weather conditions or tidal cycles.

173

174 **Data analyses.**

175 The Caribbean reef fish data set was used to characterize the fish community in relation
176 to the protection status of the sites. All 67 sites from the five different ecoregions were
177 individually classed by management type using the criteria of Edgar et al. (2014): NTZ
178 (no take zones, n=27), RZ (restricted zones that allow local fishing within an MPA,
179 n=19) and OZ (open zones where fishing is unrestricted, n=12). These data were
180 compared to data from Bocas del Toro (OZ, n=9). Replicated surveys from each site were
181 averaged.

182

183 Data from the fish surveys were used to calculate fish community metrics, including total
184 abundance (density), abundance of major fish families within size bins (≤ 10 cm; > 10 –
185 20 cm; > 20 cm), total biomass, biomass of fishes ≤ 10 cm, and total species richness. We
186 also calculated the mean trophic level as an abundance weighted mean of the reef fish
187 community by multiplying the trophic level of each species by their log abundance,
188 summing these values across species recorded on a transect, and dividing by the total log
189 abundance of all fishes on the transect. The classification of the trophic level (2 – 5) for
190 each species was based on feeding strategy: herbivores and detritivores (2 – 2.1),
191 omnivores (2.2 – 2.7), low-level carnivores (2.8 – 3.4), mid-level carnivores (3.5 – 3.9)
192 and high-level carnivores (4 – 4.5) (classification and values obtained from Fishbase;
193 www.fishbase.org). We also compared preferred substrate types and resilience factors
194 (values obtained from Fishbase) of the fish species, the latter estimated from population
195 doubling time (low, medium, high). Fish community metrics were averaged ~~across sites~~
196 within-~~a~~ sites and compared among regions for significant differences using one-way
197 ANOVA or a Student's *t*-test.

198

199 For the Bocas del Toro dataset only, we assessed whether mangroves and seagrasses
200 provided juvenile or alternative habitat to coral reefs by comparing the abundance (log
201 transformed) and composition of fishes in the different habitat types. We assumed that
202 higher abundances of fishes amongst mangroves and seagrasses compared to reefs, and
203 high species similarity, indicates ~~high migration and exchange rates, indicates~~ higher
204 likelihood and magnitude of migration and exchange rates. We excluded small-bodied

205 species (maximum total length ≤ 12.5 cm), which are presumably non-migratory fish
206 species (Dahlgren et al. 2006), such as *Apogon townsendi* (belted cardinalfish),
207 *Canthigaster rostrata* (caribbean sharpnose-puffer) and *Coryphopterus* spp. A principal
208 component analysis (PCA) on correlations (fish abundance log transformed, only
209 fish > 12.5 cm) was used to compare differences and to define distances in the fish
210 communities between reefs at different distances to mangroves and **mangroves and**
211 seagrass.

212
213 We also tested for correlations between environmental factors and the reef fish
214 community metrics across all sites. Environmental factors included reef cover, cover of
215 the seagrass benthos, distance to mangroves and water quality parameters. Fish metrics
216 included **species richnessbiodiversity**, fish traits, biomass, size structure and the
217 abundances of individual fish species. Data were characterized using a scatterplot matrix
218 (see appendix) and nonparametric Spearman's tests for pairwise correlation probabilities.
219 For all statistical analyses, fish abundance data were log-transformed to down-weight the
220 extremely high abundance of a few fish species (Edgar et al. 2014). All statistical
221 analyses were conducted using JMP Software 13.01.

222

223 **Results**

224 **Characteristics of the fish community.**

225 We recorded a total of 77 fish species across all habitats in Bocas del Toro, of which 61
226 species were found on coral reefs. The average mean richness per transect was 29 ± 7

227 | (SD) species. This value was low compared to our other Caribbean survey sites which
228 | had a mean richness per transect of 52 ± 4 species (with a cumulative total of 196 species
229 | recorded in the whole Caribbean) (Stuart-Smith et al. 2013; Edgar and Stuart-Smith
230 | 2014). Fish biomass on Bocas del Toro reefs ($71 \pm 63 \text{ kg ha}^{-1}$) was also lower than on
231 | other Caribbean reefs, in both no-take zones and MPAs with restricted fishing (ANOVA,
232 | $P=0.02$ and 0.001 , respectively), although the difference was not significantly lower for
233 | open zones ($P>0.05$) (Fig. 2a). Moreover, the range of total observed fish biomass in
234 | Bocas del Toro ($30 - 1350 \text{ kg ha}^{-1}$) represents the lowest numbers found amongst fish
235 | surveys conducted in the Caribbean, which were $140 - 5930 \text{ kg ha}^{-1}$ elsewhere.

236

237 | The biomass of herbivorous, omnivorous and detritivorous fishes in Bocas del Toro
238 | (trophic level 2 – 2.7) was 37 % of the total biomass and 76 % of all individual fishes
239 | counted (Fig. 2b). Herbivores alone comprised $27 \% \pm 3.5 \% \text{ (SD)}$ of biomass versus
240 | $10 \% \pm 4 \% \text{ across the wider Caribbean}$. Pomacentridae (damselfishes) and Scarinae
241 | (parrotfishes) were the predominant taxa in terms of biomass. *Scarus iseri* (striped
242 | parrotfish) contributed 72 % of the parrotfish biomass. High-level carnivores contributed
243 | $22 \% \pm 3.5 \% \text{ of total fish biomass}$, versus $31 \pm 4 \% \text{ elsewhere in the Caribbean}$.
244 | Dominant high-level carnivores in Bocas del Toro were *Caranoides ruber* (bar jack),
245 | *Cephalopholis cincta* (graysby), *Hyplopectrus nigricans* (black hamlet) and
246 | *Scomberomorus regalis* (cero). There was a trend for fish communities in Bocas del Toro
247 | to exhibit a greater proportion of total biomass comprised of herbivores, omnivores and
248 | detritivores (trophic level: 2 – 2.7), and a lower proportion comprised of high-level

249 carnivores (trophic level: 4 – 4.5), relative to other Caribbean reefs, although the
250 difference was not significantly different for either group (Fig. 2b).

251

252 A total of 94 % of all fishes observed across all habitat types (reef, seagrass, mangrove)
253 in Bocas del Toro were in the smallest size class (≤ 10 cm length). Fishes ≤ 10 cm
254 represented 59 % of the total biomass within the reefs. The abundance of fishes within
255 the smallest size class (≤ 10 cm) was significantly higher in Bocas del Toro than other
256 Caribbean reefs (ANOVA, $P < 0.0001$), whereas the abundances of medium- (> 10 –
257 20 cm) and large- (≥ 20 cm) sized fishes were significantly lower (ANOVA, $P < 0.0001$)
258 (Fig. 2c). This pattern was also evident when comparing reef fish families in Bocas del
259 Toro with other Caribbean reefs (table 2).

260

261 **Relationships between environmental factors and fish community composition**

262 Some environmental parameter and habitat factors were associated with reef fish
263 community metrics in Bocas del Toro. Multiple environmental factors were not
264 independent, as sponge cover was negatively correlated with the distance to mangroves
265 and also positively to chl *a* ($R^2 = 0.60$ and $R^2 = 0.70$, respectively, $P < 0.01$). The other water
266 parameters were not found to correlate with any fish community or species metrics.

267 Sponge cover was the strongest positive correlate among all environmental parameters
268 for species richness ($R^2 = 0.5$, $P < 0.01$), small fish ≤ 10 cm biomass ($R^2 = 0.85$, $P < 0.01$), and
269 trophic level of the fish community ($R^2 = 0.89$, $P < 0.01$). The abundance of *Abudefduf*
270 *saxatilis* (sergeant major) was significantly correlated with sponge cover ($R^2 = 0.62$,

271 p=0.0027). Survey sites characterized by high sponge cover and low distance to
272 mangroves were characterized by fishes such as *Abudefduf saxatilis* (sergeant major),
273 *Hypoplectrus nigricans* (black hamlet), *Coryphopterus personatus* (masked goby) and
274 *Coryphopterus glaucofraenum* (bridled goby). *Scarus iseri* (striped parrotfish), *Stegastes*
275 *partitus* (bicolor damselfish) and *Cephalopholis cinctata* (graysby) had a positive
276 association with recently dead corals, however, the cover of dead corals was negatively
277 correlated with the abundance of most fish species.

278

279 Fish species richness on a given reef was positively correlated with fish-richness values in
280 nearby mangroves ($R^2=0.76$, $P<0.05$). The three reef sites with low sponge cover and
281 without mangroves in close proximity (Salt Creek, Popa, Hospital Point) showed lower
282 biomass, abundances and species richness of fishes (table 1, Fig.3 and Fig. 4). The site
283 without either mangroves or seagrass nearby (Hospital Point) showed the lowest species
284 richness.

285

286 Also, distance to mangroves was identified as a factor to influence reef fish communities
287 (Fig. 5), suggesting that mangrove distance has a strong influence on reef community
288 types, likely by mangroves functioning as effective nursery grounds and as alternative
289 complex habitats. The proportion of carnivorous fishes was significantly higher at the
290 sites closer to the mangroves than those sites that were further away (ANOVA, $P<0.01$,
291 Fig. 4). However, a more detailed look at the carnivorous fishes revealed that the sites at
292 an intermediate distance from mangroves (STRI, Juan Point, Coral Cay) possessed a

Formatted: Font: Not Italic

Formatted: Font: Not Italic

293 significantly higher proportion of top-level carnivores than sites that were closer or
294 further away (Fig. 4, ANOVA, P<0.01).

295

296 The highest abundances of all fish observed were recorded for families Pomacentridae
297 (damselfishes) and Gobiidae (gobies) (table 2). However, Gobiidae were **only** abundant
298 **only** at sites close to mangroves. *Coryphopterus personatus* (masked goby) dominated
299 these sites, with abundances up to 13 individuals m⁻². RLS surveys conducted elsewhere
300 in the Caribbean (e.g. San Andres Archipelago, 350 km distant) revealed much lower
301 densities for the same species (0.2 individuals m⁻²).

302

303 Generally, fishes with life cycles closely associated with hard corals (Lewis 1997), such
304 as Pomacanthidae (angelfishes), were present in very low numbers on the reefs of Bocas
305 del Toro (<1 per transect). Other reef fishes typically associated with hard substrates with
306 a high complexity such as Balistidae (triggerfishes), Apogonidae (cardinalfishes),
307 Muraenidae (moray eels), Sciaenidae (drums), Pseudochromidae (dottybacks) and
308 Serranidae (grouper) were scarce within the bay (<1 per transect). Many fish species **of**
309 **low or very low resilience factors**, including those at higher trophic levels, such as
310 *Diodon hystrix* (porcupinefish), *Ginglymostoma cirratum* (nurse shark), *Gymnothorax*
311 *funebris* (moray eel), *Lutjanus jocu* (dog snapper), *Ocyurus chrysurus* (yellowtail
312 snapper), *Pomacanthus arcuatus* (gray angelfish) were **only** observed **only** on reefs with
313 mangroves in close proximity (≤ 250 m distance).

314

315 **Discussion**

316 Our surveys revealed that the fish fauna in Bocas del Toro is depauperate in species
317 richness and biomass by Caribbean standards. We found evidence that the fish
318 community is representative of a degraded and overexploited ecosystem, characterized by
319 numerical dominance of fishes that are small bodied and also typical of habitats of low
320 complexity, such as Pomacentridae and Gobiidae, with few representatives of fish
321 families that achieve body sizes targeted by fisheries or that are commonly associated
322 with high-relief coral reefs. Nevertheless, sponge cover and proximity to mangroves were
323 found to be positively correlated with fish species richness, biomass, abundance and
324 trophic level. This pattern suggests that sponges as habitat-forming reef organisms, and
325 mangroves as nursery grounds and alternative habitats, continue to provide critical
326 habitats for the reef fish communities in a degraded ecosystem, and ~~may be an important~~
327 ~~mechanism of resilience where they are able to therefore~~ counteract some effects of reef
328 ~~degradations~~ degradation.

329

330 Some fishes appeared to be an indicator species for the overall trends observed at our
331 study site. One example is the goby *Coryphopterus personatus*, which forms schools that
332 hover in a vulnerable position above the bottom in extremely high abundances (65-fold
333 higher abundances than in the San Andres Archipelago). Moreover, fish surveys in our
334 Bocas del Toro study area in 2002 revealed densities an order of magnitude lower at 1.2
335 individuals m⁻² (Dominici-Arosemena and Wolff 2005). We suggest that this species
336 goby represents is an indicator species for overfished reefs that benefits from a loss of

337 predatory fishes that historically ~~kept~~ limited their densities. Another example of an
338 indicator species is *Scarus iseri*, which is perhaps an important habitat
339 interactor, ecologically important given its role as the predominant herbivorous fish in
340 Bocas del Toro (Kuempel and Altieri 2017). If This species likely plays an important role
341 supporting the growth of sponges and corals by cropping competing macroalgae. Third,
342 *Abudefduf saxatilis* was identified as an indicator for sponge cover, which in turn is a
343 factor positively correlated to fish richness, biomass, abundance and relatively high mean
344 community trophic levels.

345

346 A degraded reef fish community in Bocas del Toro is evidenced by low total biomass,
347 under-representation of biomass at high trophic levels, and high abundance of small
348 fishes, all classic symptoms of over-fishing (Pauly et al. 1998; Myers and Worm 2003).
349 Moreover, the range of total observed fish biomass represents the lowest numbers found
350 amongst fish surveys conducted in the Caribbean. High level carnivores and large fishes
351 are depleted in intense fisheries (Cinner and McClanahan 2006; Wilson et al. 2010),
352 causing a skewing of the trophic food web and community size structures. As described
353 in by Wilson et al. (2010), the loss of individuals within the largest size classes, which
354 have the highest per capita reproductive output and produce the majority of juveniles,
355 impacts the recruitment of small size classes containing of juveniles in the reef fish
356 population. Accordingly, we observed that small Haemulidae were rare on Bocas del
357 Toro reefs. Exploitation thus appears to have contributed substantially to the distorted
358 fish community patterns observed at Bocas del Toro (Guzmán et al. 2005; Cramer 2013).

359

360 Another plausible hypothesis for the low total fish biomass and trophic shifts within the
361 fish community in Bocas del Toro relative to other Caribbean sites is the loss of hard
362 corals (Turner et al. 1999; Wilson et al. 2010). This in turn results in the loss of shelter
363 and feeding grounds (Turner et al. 1999; Alevizon and Porter 2015). This hypothesis was
364 supported by significant negative correlations between the proportions of recently-dead
365 corals and the biomass of fishes, as well as the finding that fish species that are known to
366 associate with hard corals or hard substrate were rare. Instead, fishes known to live on
367 habitats of low complexity (particularly Pomacentridae and Gobiidae) and grazers
368 (particularly Scaridae and Pomacentridae) occurred in very high abundances (Booth and
369 Baretta 1994; Bruggemann et al. 1994).

370

371 Herbivores, detritivores and omnivores were overrepresented in the Bocas del Toro fish
372 community compared to elsewhere in the Caribbean. Herbivorous species alone
373 comprised nearly a third of the total fish biomass, which could be explained by a
374 decreased number of predators in the system. Even though most herbivorous fishes were
375 in the smallest size category (≤ 10 cm), this group has the potential to control the growth
376 of macroalgae and prevent algal phase shifts, particularly in combination with
377 invertebrate herbivores, such as sea urchins, which are abundant in this system (Kuempel
378 and Altieri 2017). However, if the reduction of live coral cover continues, herbivorous
379 fishes may reach their limits for grazing control (Williams and Polunin 2001; Williams et
380 al. 2001). Also, the lack of redundant species within the herbivore functional group is

381 likely to result in low resilience, since a system with a single dominant herbivorous
382 species *Scarus iseri* (72%) is vulnerable to stressors affecting that species (Hughes 1994;
383 White and Jentsch 2001). The reason for the dominance of one herbivore species ~~is~~
384 probably ~~may~~ be attributable to the small body size of *S.iseri*, which matures at ~ 65 mm.
385 It is therefore not a targeted fishery species, and escapes most fishing pressure (Kuempel
386 and Altieri 2017).

387

388 Sponges cover up to 20% of substrata, and thus provide considerable physical structure
389 on the Bocas del Toro reefs (Diaz and Rützler 2001; Loh and Pawlik 2014; Loh et al.
390 2015). In the absence of high cover of hard corals, sponges likely play an important role
391 in supporting richness, biomass and expanded trophic levels of the depauperate fish
392 community in our study system. Results furthermore suggest a positive effect and
393 increased abundance of reef fishes with increased sponge cover. Sponges are major
394 determinants of the rugosity and height of the reef (Diaz and Rützler 2001), thus could be
395 an important driver for fish abundance and species richness in Bocas del Toro as in other
396 Caribbean reef systems (Gratwicke and Speight 2005). Sponges also comprise an
397 important food source for spongivorous reef fishes, such as some members of
398 Pomacentridae and Scarinae (Sammarco et al. 1987; Dunlap and Pawlik 1996; Pawlik
399 1998; Souza et al. 2011). The pomacentrid *A. saxatilis* has been identified to have a
400 functional dependency on sponges, through either shelter or other aspects of habitat
401 complexity that sponges provide (Gratwicke and Speight 2005).

402

403 Proximity to mangroves was another important positive factor associated with fish
404 communities, as the biomass and species richness of fishes were greater on coral reefs in
405 close proximity to mangroves. Mangroves are widely recognized for their functions of
406 providing nursery grounds, shelter and food sources for reef fishes (Laegdsgaard and
407 Johnson 2001; Mumby et al. 2004). Our study suggests that the positive effect of
408 mangroves as nursery and alternative habitats is an important factor maintaining diversity
409 and biomass of the reef fish communities, and that this function remains particularly
410 important in a system as degraded as Bocas del Toro. However, we did not find such
411 evidence for seagrass meadows. The closer mangroves are located to reefs, the more
412 effective is their role as nursery or alternative habitat. Lowest fish species
413 richnessbiodiversity, biomass and trophic levelss was-were found on reefs without
414 mangroves in close proximity, presumably because many reef fish species depend on
415 interconnectivity between habitat types (Ley 2014).
416
417 Bocas del Toro arguably represents a good model system for reef fish communities that
418 are associated with high levels of anthropogenic stress. Trends suggest that stressed
419 systems are increasingly moving to low diversity, low mean trophic level, and a size
420 distribution skewed to small body size (Pauly et al. 1998). To maintain reef fish
421 communities, resource managers can direct local fisheries and take factors such as sponge
422 cover and proximityeconnectivity to other habitats, including mangroves, into
423 consideration to prioritize protection efforts. Our results suggest that reef sponges and
424 mangroves together can maintain physical structure, act as nurseries, and provide

425 alternative habitats and there by compensate for particular functional losses during coral
426 mortality events. Much more information is nevertheless needed on the role of habitat
427 connectivity if fisheries management is to be optimized and diversity hotspots
428 safeguarded through effective marine protected areas (Linton and Warner 2003;
429 Unsworth et al. 2008).

430

431 **Acknowledgements**

432 We thank divers who helped with the fish surveys and fish identification or benthic
433 surveys, especially Scott Jones, Zachary Foltz, Ross Whippo, Justin Campbell, Jan
434 Vincente and Seamus Harrison. We thank the people from the Bocas Research Station
435 team for logistical help and for assistance with all aspects of the work, particularly Plinio
436 Gondola. This is contribution number [21X](#) from the Smithsonian's MarineGEO network.

437

438 **References**

439 Alevizon W, Porter J (2015) Coral loss and fish guild stability on a Caribbean coral reef: 1974–2000.
440 Environmental Biology of Fishes 98:1035–1045
441 Altieri AH, Harrison SB, Seemann J, Collin R, Diaz RJ, Knowlton N (2017) Tropical dead zones and
442 mass mortalities on coral reefs. Proceedings of the National Academy of Sciences
443 Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs:
444 region-wide declines in architectural complexity. Proceedings of the Royal Society of London
445 Series B-Biological Sciences 276:3019–3025
446 Aronson RB, Hilbun NL, Bianchi TS, Filley TR, McKee BA (2014) Land use, water quality, and the
447 history of coral assemblages at Bocas del Toro, Panamá. Marine Ecology Progress Series
448 504:159–170
449 Aronson RB, Bruno JF, Precht WF, Glynn PW, Harvell CD, Kaufman L, Rogers CS, Shinn EA, Valentine
450 JF (2003) Causes of coral reef degradation. Science 302:1502–1504
451 Beck MW, Heck Jr KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG,
452 Hoshino K, Minello TJ (2001) The identification, conservation, and management of estuarine
453 and marine nurseries for fish and invertebrates: a better understanding of the habitats that
454 serve as nurseries for marine species and the factors that create site-specific variability in
455 nursery quality will improve conservation and management of these areas. Bioscience
456 51:633–641

457 Bell J, Galzin R (1984) Influence of live coral cover on coral-reef fish communities. *Marine Ecology Progress Series* 15:265-274

458 Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. *Nature* 429:827

459 **Beukers JS, Jones CP (1998) Habitat complexity modifies the impact of piscivores on a coral reef fish population. *Oecologia* 114:50-59**

460 Beulig A (1999) Relative influence of terrigenous vs. reef carbonate silt on turbidity and coral distribution at Bocas del Toro, Panama. International Conference on Scientific Aspects of Coral Reef Assessment, Monitoring and Restoration

461 Booth DJ, Beretta GA (1994) Seasonal recruitment, habitat associations and survival of pomacentrid reef fish in the US Virgin Islands. *Coral Reefs* 13:81-89

462 Bruggemann JH, Kuyper MWM, Breeman AM (1994) Comparative analysis of foraging and habitat use by the sympatric Caribbean parrotfish *Scarus vetula* and *Sparisoma viride* (Scaridae). *Marine Ecology Progress Series* 112:51-66

463 Cesar H, Burke L, Pet-Soede L (2003) The economics of worldwide coral reef degradation. Cesar environmental economics consulting (CEEC)

464 Cesar HS (2000) Coral reefs: their functions, threats and economic value. Collected essays on the economics of coral reefs:14-39

465 Cinner JE, McClanahan TR (2006) Socioeconomic factors that lead to overfishing in small-scale coral reef fisheries of Papua New Guinea. *Environmental Conservation* 33:73-80

466 Collin R (2005) Ecological monitoring and biodiversity surveys at the Smithsonian Tropical Research Institute's Bocas del Toro Research Station. *Caribbean Journal of Science* 41:367-373

467 Cramer KL (2013) History of Human Occupation and Environmental Change in Western and Central Caribbean Panama. *Bulletin of Marine Science* 89:955-982

468 D'Croz L, Del Rosario JB, Gondola P (2005) The effect of fresh water runoff on the distribution of dissolved inorganic nutrients and plankton in the Bocas del Toro Archipelago, Caribbean Panama. *Caribbean Journal of Science* 41:414-429

469 Dahlgren CP, Kellison GT, Adams AJ, Gillanders BM, Kendall MS, Layman CA, Ley JA, Nagelkerken I, Serafy JE (2006) Marine nurseries and effective juvenile habitats concepts and applications. *Marine Ecology Progress Series* 312:291-295

470 Diaz MC, Rützler K (2001) Sponges: An essential component of Caribbean coral reefs. *Bulletin of Marine Science* 69:535-546

471 Dominici-Arosemena A, Wolff M (2005) Reef fish community structure in Bocas del Toro (Caribbean, Panama): gradients in habitat complexity and exposure. *Caribbean Journal of Science* 41:613-637

472 Dunlap M, Pawlik JR (1996) Video-monitored predation by Caribbean reef fishes on an array of mangrove and reef sponges. *Marine Biology* 126:117-123

473 Fabricius K, De'ath G, McCook L, Turak E, Williams DM (2005) Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. *Marine Pollution Bulletin* 51:384-398

474 Galzin R, Planes S, Dufour V, Salvat B (1994) Variation in diversity of coral reef fish between French Polynesian atolls. *Coral Reefs* 13:175-180

475 Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. *Science* 301:958-960

476 Granek EF, Compton JE, Phillips DL (2009) Mangrove-Exported Nutrient Incorporation by Sessile Coral Reef Invertebrates. *Ecosystems* 12:462-472

477 Gratwicke B, Speight M (2005) The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. *Journal of Fish Biology* 66:650-667

478 Guzmán HM, Jiménez CE (1992) Contamination of coral reefs by heavy metals along the Caribbean coast of Central America (Costa Rica and Panama). *Marine Pollution Bulletin* 24:554-561

508 Guzmán HM, Barnes PAG, Lovelock CE, Feller IC (2005) A site description of the CARICOMP
 509 mangrove, seagrass and coral reef sites in Bocas del Toro, Panama Caribbean Journal of
 510 Science 41:430-440

511 [Hixon MA, Johnson DW, Sogard SM \(2014\) BOFFFFs: on the importance of conserving old-growth age](#)
 512 [structure in fishery populations. ICES Journal of Marine Science 71:2171-2185](#)

513 Hodgson G (1999) A global assessment of human effects on coral reefs. Marine Pollution Bulletin
 514 38:345-355

515 Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef.
 516 Science 265:1547-1551

517 Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R,
 518 Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH,
 519 Steneck RS, Tegner MJ, Warner RR (2001) Historical Overfishing and the Recent Collapse of
 520 Coastal Ecosystems. Science 293:629-637

521 Jennings S, Lock JM (1996) Population and ecosystem effects of reef fishing. In: Polunin NVC, Roberts
 522 CM (eds) *Reef Fisheries*. Springer Netherlands, Dordrecht, pp193-218

523 Kaufmann KW, Thompson RC (2005) Water temperature variation and the meteorological and
 524 hydrographic environment of Bocas del Toro, Panama. Caribbean Journal of Science 41:392-
 525 413

526 Knowlton N, Brainard RE, Fisher R, Moews M, Plaisance L, Caley MJ (2010) Coral reef biodiversity.
 527 Life in the World's Oceans: Diversity Distribution and Abundance:65-74

528 Kuempel CD, Altieri AH (2017) The emergent role of small-bodied herbivores in pre-empting phase
 529 shifts on degraded coral reefs. *Scientific Reports* 7:39670

530 Kuffner IB, Brock JC, Grober-Dunsmore R, Bonito VE, Hickey TD, Wright CW (2007) Relationships
 531 Between Reef Fish Communities and Remotely Sensed Rugosity Measurements in Biscayne
 532 National Park, Florida, USA. *Environmental Biology of Fishes* 78:71-82

533 Laegdsgaard P, Johnson C (2001) Why do juvenile fish utilise mangrove habitats? *Journal of*
 534 *experimental marine biology and ecology* 257:229-253

535 Lee S (1995) Mangrove outwelling: a review. *Hydrobiologia* 295:203-212

536 Leinfelder RR, Seemann J, Heiss GA, Struck U (2012) Could 'ecosystem atavisms' help reefs to adapt
 537 to the Anthropocene? *Proceedings of the 12th International Coral Reef Symposium*
 538 ICRS2012_2B_2:5

539 Ley JA (2014) Mangrove connectivity helps sustain coral reef fisheries under global climate change.
 540 *Interrelationships Between Corals and Fisheries*:171

541 Linton DM, Warner GF (2003) Biological indicators in the Caribbean coastal zone and their role in
 542 integrated coastal management. *Ocean & Coastal Management* 46:261-276

543 Loh T-L, Pawlik JR (2014) Chemical defenses and resource trade-offs structure sponge communities
 544 on Caribbean coral reefs. *Proceedings of the National Academy of Sciences* 111:4151-4156

545 Loh T-L, McMurray SE, Henkel TP, Vicente J, Pawlik JR (2015) Indirect effects of overfishing on
 546 Caribbean reefs: sponges overgrow reef-building corals. *PeerJ* 3:e901

547 Mora C (2015) *Ecology of Fishes on Coral Reefs*. Cambridge University Press

548 Mumby PJ, Edwards AJ, Arias-González JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI,
 549 Harborne AR, Pescod CL, Renken H (2004) Mangroves enhance the biomass of coral reef fish
 550 communities in the Caribbean. *Nature* 427:533-536

551 ~~Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR, Holmes KE, Mendes JM,
 552 Bread K, Sanchirico JN (2006) Fishing, trophic cascades, and the process of grazing on coral
 553 reefs. *science* 311:98-101~~

554 Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. *Nature*
 555 423:280-283

556 Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ, Van't Hof T, den Hartog C (2000) Importance
 557 of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for Important Coral
 558 Reef Fishes, Using a Visual Census Technique. *Estuarine, Coastal and Shelf Science* 51:31-44

559 Nagelkerken I, Roberts C, Van Der Velde G, Dorenbosch M, Van Riel M, De La Moriniere EC, Nienhuis P
 560 (2002) How important are mangroves and seagrass beds for coral-reef fish? The nursery
 561 hypothesis tested on an island scale. *Marine ecology progress series* 244:299-305

562 Paddack MJ, Reynolds JD, Aguilar C, Appeldoorn RS, Beets J, Burkett EW, Chittaro PM, Clarke K,
 563 Esteves R, Fonseca AC (2009) Recent region-wide declines in Caribbean reef fish abundance.
 564 *Current Biology* 19:590-595

565 Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F (1998) Fishing down marine food webs.
 566 *Science* 279:860-863

567 Pawlik JR (1998) Coral reef sponges: Do predatory fishes affect their distribution? *Limnology and
 568 Oceanography* 43:1396-1399

569 Riegl B, Purkis SJ, Keck J, Rowlands GP (2009) Monitored and modeled coral population dynamics
 570 and the refuge concept. *Marine Pollution Bulletin* 58:24-38

571 Saita S, Kocic VL, McManus J (1993) Modelling the effects of destructive fishing practices on tropical
 572 coral reefs. *Marine Ecology Progress Series* 94:51-60

573 Sammarco PW, Strychar KB (2009) Effects of Climate Change/Global Warming on Coral Reefs:
 574 Adaptation/Exaptation in Corals, Evolution in Zooxanthellae, and Biogeographic Shifts.
 575 *Environmental Bioindicators* 4:9 - 45

576 Sammarco PW, Risk MJ, Rose C (1987) Effects of grazing and damselfish territoriality on internal
 577 bioerosion of dead corals : indirect effects. *Journal of Experimental Marine Biology and
 578 Ecology* 112:185-199

579 Seemann J (2013) The use of ^{13}C and ^{15}N isotope labeling techniques to assess heterotrophy of
 580 corals. *Journal of Experimental Marine Biology and Ecology* 442:88-95

581 Seemann J, Gonzalez CT, Carballo-Bolaños R, Berry K, Heiss GA, Struck U, Leinfelder RR (2014)
 582 Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama.
 583 *Environmental Monitoring and Assessment* 186:1747-1763

584 Serafy JE, Shideler GS, Araújo RJ, Nagelkerken I (2015) Mangroves Enhance Reef Fish Abundance at
 585 the Caribbean Regional Scale. *PloS one* 10:e0142022

586 Souza A, Ilarri M, Rosa I (2011) Habitat use, feeding and territorial behavior of a Brazilian endemic
 587 damselfish Stegastes rocasensis (Actinopterygii: Pomacentridae). *Environmental Biology of
 588 Fishes* 91:133-144

589 Spalding MD, Fox HE, Allen GR, Davidson N, Ferdáñia ZA, Finlayson M, Halpern BS, Jorge MA, Lombana
 590 A, Lourie SA (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf
 591 areas. *BioScience* 57:573-583

592 Turner SJ, Thrush SF, Hewitt JE, Cummings VJ, Funnell G (1999) Fishing impacts and the degradation
 593 or loss of habitat structure. *Fisheries Management and Ecology* 6:401-420

594 Unsworth RK, Salinas De Leon P, Garrard SL, Jompa J, Smith DJ, Bell JJ (2008) High connectivity of
 595 Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. *MARINE
 596 ECOLOGY-PROGRESS SERIES*- 353:213

597 White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem
 598 dynamics *Progress in botany*. Springer, pp399-450

599 Williams I, Polunin N (2001) Large-scale associations between macroalgal cover and grazer biomass
 600 on mid-depth reefs in the Caribbean. *Coral reefs* 19:358-366

601 Williams ID, Polunin NVC, Hendrick VJ (2001) Limits to grazing by herbivorous fishes and the impact
 602 of low coral cover on macroalgal abundance on a coral reef in Belize. *Marine Ecology
 603 Progress Series* 222:187-196

604 Wilson SK (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at
 605 risk or resilient? *Global change biology* 12:2220-2234

606 Wilson SK, Fisher R, Pratchett MS, Graham NAJ, Dulvy NK, Turner RA, Cakacaka A, Polunin NVC
 607 (2010) Habitat degradation and fishing effects on the size structure of coral reef fish
 608 communities. *Ecological Applications* 20:442-451

609 Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, Welsh R, Correa AMS,
 610 Lemoine NP, Rosales S, Fuchs C, Maynard JA, Thurber RV (2016) Overfishing and nutrient

611
612 pollution interact with temperature to disrupt coral reefs down to microbial scales. Nature
613 Communications 7:11833