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Background. Evaluating the factors favoring the onset of influenza epidemics is a critical public health

issue for surveillance, prevention and control. While past outbreaks provide important insights for

understanding epidemic onsets, their statistical analysis is challenging since the impact of a factor can

be viewed at different scales. Indeed, the same factor can explain why epidemics are more likely to begin

i) during particular weeks of the year (global scale); ii) earlier in particular regions (spatial scale) or years

(annual scale) than others and iii) earlier in some years than others within a region (spatiotemporal

scale).

Methods. Here, we present a statistical approach based on dynamical modeling of infectious diseases to

study epidemic onsets. We propose a method to disentangle the role of covariates at different scales and

use a permutation procedure to assess their significance. Epidemic data gathered from 18 French regions

over 6 epidemic years were provided by the Regional Influenza Surveillance Group (GROG) sentinel

network.

Results. Our results failed to highlight a significant impact of mobility flows on epidemic onset dates.

Absolute humidity had a significant impact, but only at the spatial scale. No link between demographic

covariates and influenza epidemic onset dates could be established.

Discussion.  Dynamical modelling presents an interesting basis to analyze spatiotemporal variations in

the outcome of epidemic onsets and how they are related to various types of covariates. The use of these

models is quite complex however, due to their mathematical complexity. Furthermore, because they

attempt to integrate migration processes of the virus, such models have to be much more explicit than

pure statistical approaches. We discuss the relation of this approach to survival analysis, which present

significant differences but may constitute an interesting alternative for non-methodologists.
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24 ABSTRACT

25 Background. Evaluating the factors favoring the onset of influenza epidemics is a critical public 

26 health issue for disease surveillance, prevention and control. While past outbreaks provide 

27 important insights for understanding epidemic onsets, their statistical analysis is challenging 

28 because the impact of a factor can be viewed at different scales. Indeed, the same factor can 

29 explain why epidemics are more likely to begin i) during particular weeks of the year (global 

30 scale); ii) earlier in particular regions (spatial scale) or years (annual scale) than others and iii) 

31 earlier in some years than others within a region (spatiotemporal scale).  

32 Methods. Here, we present a statistical approach based on dynamical modeling of infectious 

33 diseases to study epidemic onsets.  We propose a method to disentangle the role of covariates at 

34 different scales and use a permutation procedure to assess their significance. Epidemic data 

35 gathered from 18 French regions over 6 epidemic years were provided by the Regional Influenza 

36 Surveillance Group (GROG) sentinel network. 

37 Results. Our results failed to highlight a significant impact of mobility flows on epidemic onset 

38 dates. Absolute humidity had a significant impact, but only at the spatial scale. No link between 

39 demographic covariates and influenza epidemic onset dates could be established.

40 Discussion. 

41 Dynamical modelling presents an interesting basis to analyze spatiotemporal variations in the 

42 outcome of epidemic onsets and how they are related to various types of covariates. The use of 

43 these models is quite complex however, due to their mathematical complexity. Furthermore, 

44 because they attempt to integrate migration processes of the virus, such models have to be much 

45 more explicit than pure statistical approaches. We discuss the relationship of this approach to 
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46 survival analysis, which present significant differences but may constitute an interesting 

47 alternative for non-methodologists. 

48

49 INTRODUCTION

50 Influenza is an infectious disease that causes annual epidemics around the world, inducing 

51 morbidity in millions of people and a mortality of hundreds of thousands (World Health 

52 Organization 2014). Influenza’s ability to generate seasonal epidemics and potentially worldwide 

53 pandemics makes influenza studies and surveillance a major challenge for public health 

54 (Simonsen 1999). However, the mechanisms of its geographic spread and seasonality remain 

55 unclear (Fuhrmann 2010; Lipsitch & Viboud 2009). Improving our understanding of the factors 

56 that trigger outbreaks is necessary for earlier detection of seasonal epidemics so that public 

57 health can be better prepared and efficient preventive/control strategies can be designed.

58 From a theoretical point of view, influenza epidemic onsets are driven by two phenomena. 

59 First, important external flows of infected individuals can help reach a critical number of 

60 infected people. Second, local transmission conditions, such as a favorable climate and/or a high 

61 density of susceptible humans, should be present.

62 From an empirical point of view, previous studies have highlighted various covariates that 

63 may explain timing differences of influenza epidemics between years and areas. Human 

64 movement has been suggested to impact influenza spread (Charaudeau et al. 2014; Crépey & 

65 Barthélemy 2007; Stark et al. 2012; Viboud et al. 2006). Spatial correlation of influenza 

66 epidemics has been observed in major countries [USA (Viboud et al. 2006), Canada (He et al. 

67 2013; Stark et al. 2012), Brazil (Alonso et al. 2007) and China (Yu et al. 2013)], but not in 

68 smaller countries [Israel (Barnea et al. 2014; Huppert et al. 2012)]. Climatic covariates (Alonso 
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69 et al. 2007; He et al. 2013; Shaman et al. 2010; Yu et al. 2013) and population size (Bonabeau et 

70 al. 1998; Stark et al. 2012; Viboud et al. 2006) also appear to be important for epidemic onsets. 

71 A certain degree of consistency in the results obtained has been observed although studies have 

72 used a variety of methods and data: these are summarized in Table 1 (see Web Material 1 for a 

73 discussion about the variability in data used).

74 From a methodological point of view, statistical methods applied for studying the impact 

75 of covariates on epidemic onset show important differences. Most studies have used a statistical 

76 approach (e.g., correlation tests (Charaudeau et al. 2014; Stark et al. 2012) or regression models 

77 (Crépey & Barthélemy 2007; He et al. 2013; Yu et al. 2013)). Only two studies (Eggo et al. 

78 2010; Gog et al. 2014) employed inference based on a dynamical model to study the factors 

79 affecting the geographical spread of the epidemic wave of two pandemics: Eggo et al. (2010) 

80 studied the 1918 Spanish Flu pandemic in England, Wales, and the US, and Gog et al. (2014) 

81 studied the 2009 H1N1 pandemic in England. A model was used in these studies that represented 

82 the rate (probability per unit of time) at which uninfected cities become infected according to 

83 covariates (such as the proximity of infected cities, city density or humidity).

84 Using a model inspired by classical dynamical models of infectious disease for statistical 

85 inference is appealing because such models attempt to capture the spread mechanism of 

86 pathogens. Such models have been employed for decades to represent the spread of infectious 

87 agents (most often between individual hosts, but also between host populations (Eggo et al. 

88 2010; Gog et al. 2014; Keeling 2002)). The second advantage is that, because the probability of 

89 entering into the epidemic state varies from week to week, epidemic onset dates can be linked to 

90 weekly variations of covariates. The use of dynamical modelling hence allows a deeper analysis 

91 of epidemic onsets than purely statistical models that try to establish a correlation between 
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92 epidemic onset dates and the average value of covariates across the winter period (Shaman et al. 

93 2010; Yu et al. 2013).

94 In the present paper, we have analyzed the impact of five covariates that could have 

95 potentially affected the time difference in the onset of epidemics between eighteen regions of 

96 France over six epidemic years from 2006 to 2013 (an epidemic year corresponds to the period 

97 of time from October until the following April). The five covariates analyzed were temperature 

98 and absolute humidity, mobility flows, population size, and proportion of children within the 

99 region. Our study is based on a dataset provided by GROG (Groupes Régionaux d’Observation 

100 de la Grippe) an influenza surveillance network in France. The advantage of this network is that 

101 it combines clinical case definitions with identification of the virus. This is an important 

102 validation process because influenza can be clinically confounded with other co-circulating 

103 respiratory viruses. 

104 Our analysis has the same modeling basis as (Eggo et al. 2010; Gog et al. 2014). We put 

105 particular emphasis on the idea that the impact of a factor can be viewed at different scales that 

106 should be disentangled. For the studied covariates, we used permutation tests that overcome the 

107 problem of non-adjustment of the dynamic epidemic models (because not all factors that affect 

108 epidemic onset variability can be modeled). Indeed, by shuffling the observed values of 

109 covariates, we generate random (permuted) covariates that have no biological relation to the 

110 response variable (because they are random). Basically, if the observed value of a covariate 

111 performs significantly better than its permuted counterparts, this means that it is correlated to the 

112 response variable (even if the underlying model used in the analysis is not fully adjusted to the 

113 data) 

114
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115 METHODS

116 Data

117 In this analysis, the considered spatial scale is the region. The main reason for this is that the 

118 GROG network, from which the data originates, provides influenza prevalence estimates at the 

119 regional scale - so it was not possible to consider a lower scale here.

120

121 Epidemiological data. Epidemiological data comes from the GROG network, a French 

122 surveillance network made up of voluntary General Practitioners (GPs) and pediatricians. 

123 Sentinels record acute respiratory infections (ARI) weekly and randomly send nasal samples for 

124 antigenic confirmation (or rejection) of influenza infection (see Web Material 2 for more detail). 

125 Influenza incidence of clinical cases is then estimated as:

126 𝐼𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎(𝑡) = 𝐼𝐴𝑅𝐼(𝑡) ×  𝑇 + (𝑡)
127 where IARI(t) is the incidence of ARI cases and T+ is the proportion of influenza-positive samples 

128 among ARI individuals. Details about the calculation of IARI(t) and T+ are given in Web Material 

129 2. 

130 Epidemiological data are available from the epidemic years of 2006-2013 for all regions of 

131 metropolitan France (Web Figure 1) except Languedoc-Roussillon, Franche-Comté and 

132 Limousin, where data were too scarce. Since we focus on seasonal epidemics, the 2009-2010 

133 pandemic year was excluded.

134 For each year and region, we followed the GROG network procedure to define the 

135 epidemic onset:

136 1. Several similar influenza viruses (AH1N1, AH3N2 and B are considered different), more 

137 than what could be expected from the sporadic circulation of the virus that is observed at 
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138 the beginning of the surveillance period, are detected or isolated in different areas of the 

139 same region;

140 2. At least two indicators (ARI reported by GPs + one of the 5 indicators: ARI reported by 

141 pediatricians, sick leave prescribed by GPs, GPs or emergency activity and drug 

142 distribution) increase by more than 20% compared to the average of October (of the 

143 season considered), without explanation by another phenomenon (i.e., no other local 

144 epidemic or outbreak due to other known cause);

145 3. A week is considered to be within an epidemic only if the previous or following week 

146 satisfies conditions 1 and 2. The epidemic onset date is defined as the first week that i) 

147 satisfies 1 and 2 and ii) is followed by a week satisfying 1 and 2.

148 Surveillance forms were routinely used during influenza seasons, and oral consent was 

149 obtained from each ARI patient when swabs were taken, in accordance with national regulations. 

150 All swab results and forms were anonymized by the laboratories before they were sent to the 

151 GROG network coordination, and only identified by a number given by each laboratory for 

152 virological tests. In accordance with the French applicable law, clearance by an Ethics 

153 Committee is not required in France for the retrospective analysis of anonymized data collected 

154 within routine influenza surveillance schemes.

155

156 Mobility data. Flows of people generate contacts (including infectious ones) between populations 

157 from different regions. They can therefore promote influenza spread between connected regions 

158 and represent an important risk factor for regional epidemic onsets.

159 The National Institute of Statistics and Economic Studies (INSEE) provided mobility data 

160 in France. Place of residence and workplace are reported for employed individuals, while 
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161 residence and school location are reported for students. We defined mobility flows as being 

162 journeys between home and work or school (Figure 1). Note that these data are not representative 

163 of all possible journeys (e.g., vacations, weekends). Flows were only measured between regions 

164 and not at the lower scale (so, for example, travels from city 1 of region A to city 2 of region B 

165 and travels from city 3 of region A to city 4 of region B are considered to be equivalent in our 

166 analysis). 

167

168 Demographic data. Favorable demographic characteristics of regions can also influence the 

169 spread of influenza and, hence, epidemic onset.  We considered two demographic metrics 

170 (evaluated using INSEE data). The first metric is (the logarithm of the) population size, i.e., the 

171 number of individuals living in a given region, because contacts between individuals can be 

172 stronger in more populated regions, increasing the spread of the virus. We preferred considering 

173 population size instead of population density, as populations are not homogeneously distributed 

174 within regions (population density can be low due to large unpopulated areas despite cities 

175 aggregating many individuals). The second metric is the proportion of children from 0 to 19 

176 years old, this age-class being the most affected by influenza and often suspected to be a major 

177 source of influenza transmission (Wallinga et al. 2006; White et al. 2014). 

178

179 Climatic data. Climatic data were provided by Météo-France (the French national meteorological 

180 service). We selected 125 meteorological stations (Web Figure 2) to estimate climatic covariates 

181 that globally describe the climate of each region. We focused on temperature and absolute 

182 humidity as climatic covariates. Even if they are correlated, they are both relevant as they might 

183 impact influenza epidemics (Barreca & Shimshack 2012; Roussel et al. 2016; van Noort et al. 
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184 2012). Daily measures were averaged over the week and over the stations of a region to provide 

185 weekly variable metrics in all regions.

186

187 Variability of data and covariates. Onsets of epidemics show variability at different scales 

188 (Figures 2 and 3). At the global scale, epidemic onsets are more likely to occur during some 

189 weeks than others, whatever region or epidemic year is considered. At the annual scale, the 

190 average starting date (over regions) of epidemics varies between years. At the spatial scale, 

191 epidemics can start on average (over years) earlier in some regions than in others. Without 

192 additional sources of variability, we should expect to observe that some regions enter into an 

193 epidemic earlier in some regions every year and earlier during some years in every region than 

194 during others. In fact this is not the case, because local (a given year in a given region) specific 

195 winter conditions may change the timing of epidemics. This latter scale is termed 

196 spatiotemporal, because statistically it refers to an interactive effect of time and space on 

197 epidemic onset dates.

198 To determine the scales at which epidemic onset dates and the different covariates 

199 exhibit a relevant amount of variability, we performed a preliminary analysis. Let us first 

200 consider the epidemic onset date variable. We used a linear mixed model with epidemic year and 

201 region as random effects. The distribution of the random effects are considered to be Gaussian, 

202 standard deviations being denoted Y and R, respectively. This linear mixed model was 

203 performed with the R software using the ‘lme4’ package, using the following command line:

204 lmer(EpidOnset ~ (1| Region) + (1| Year), data = FluOnsetData)

205 where FluOnsetData is the analyzed data set. Here the epidemic onset date was taken as a 

206 response variable (variable EpidOnset of the data set). Region and Year are the variables of the 
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207 data set providing, for each observed epidemic, the associated Region and Year indexes 

208 (considered as qualitative variables), respectively. 

209 A similar analysis was performed using demographic variables as variable responses, using 

210 the following command lines:

211 lmer(PopSize ~ (1| Region) + (1| Year), data = FluOnsetData)

212 lmer(PropChild ~ (1| Region) + (1| Year), data = FluOnsetData)

213 where PopSize and PropChild stand for the population size and proportion of children variables, 

214 respectively. 

215 For climatic covariates, weekly data are available, so we added the week variable as a 

216 random effect in the linear model (the distribution of this random effect being also considered to 

217 be Gaussian, with a standard deviation denoted ), using the following line commands: 𝜎𝑊
218 lmer(Temp ~ (1| Region) + (1| Year) + (1|Week), data = FluOnsetData)

219 lmer(Humid ~ (1| Region) + (1| Year) + (1|Week), data = FluOnsetData)

220 where Temp and Humid are the Temperature and humidity variables in the data set and Week is 

221 the week index associated to each measure of these two climatic variables.

222 In total, five linear mixed models were performed (see command lines above). Regarding 

223 model outcomes, we used the ‘summary’ function, which provides estimations for the residual 

224 variance (denoted ) and of the variance of random effects ( ,  and  for climatic variables) 𝜎 𝜎𝑌 𝜎𝑅 𝜎𝑊
225 for each of the five models performed. 

226 For each of the five response variables considered, estimates of Y and R (and of W for 

227 climatic variables) provide a good descriptive tool to account for the magnitude of associated 

228 systematic variations at the different levels (systematic regional variations: , systematic inter-𝜎𝑅
229 annual variations:  and, for climatic variables, systematic variations between week: ).  Since 𝜎𝑌 𝜎𝑊
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230 we do not have replicates, for each of the five linear mixed models, residual variations of the 

231 model are confounded with the interaction between years and regions. For these reasons,  𝜎
232 quantifies the spatiotemporal standard deviation (i.e., how a given region/year deviates from 

233 what could be expected from the systematic effect of regions and years) of the associated 

234 variable.

235 The results of this preliminary analysis are summarized in Table 2. As epidemic onset 

236 dates vary at all scales, we can potentially relate their variation to covariates at all scales. 

237 Similarly, climatic covariates show important variation at all scales. Thus climatic covariates can 

238 be potentially linked to epidemic onset dates at all scales. 

239 Demographic covariates can vary between regions but, in our data set, change very little 

240 between years. Hence trying to explain annual or spatiotemporal variation in epidemic onset with 

241 demographic covariates would be pointless in our case. 

242 Mobility flows are not presented in Table 2. In practice, they are assumed to be constant in 

243 time. However, because we are interested in the mobility flows leading to virus exchange 

244 between regions, which depend on local influenza prevalences, the associated variable will vary 

245 at all scales and can be used to explain spatiotemporal variation in epidemic onsets. Therefore, 

246 we will try to determine whether flows leading to virus exchanges explain regional timing of an 

247 epidemic. 

248 It is important to note that this preliminary analysis is completely independent of the main 

249 analysis that will be presented in the next section. The use of random terms (region, year and 

250 potentially, week) was important in this preliminary analysis because the objective was to 

251 quantify the variability of each variable at each scale. In the main analysis, random terms will not 
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252 be used because i) they were not mandatory and ii) they would render the model inference much 

253 more complex.    

254

255 Statistical methods

256 To analyze the link between epidemic onset dates and covariates, we used an approach based on 

257 statistical inference on a dynamical stochastic epidemic model. Due to the relatively small size of 

258 our data set, we reduced the number of parameters of the models as much as possible and 

259 avoided random (week, epidemic year or region) factors.

260

261 The dynamical model. The dynamical model is a stochastic version of the Levin model adapted 

262 to the spread of infectious diseases within a metapopulation (Keeling 2002) defined by the fact 

263 that, during a small time interval [t,t+dt], the probability (for a non-infected region) of entering 

264 into the epidemic state for region R during week W of (the epidemic) year Y is (R,Y,W)dt, where 

265 (R,Y,W) is the rate at which a region enters into the epidemic state (the epidemic onset rate). 

266 The epidemic onset rate is modelled as the product of two terms:

267 𝜆(𝑅,𝑌,𝑊) =  β(𝑅,𝑌,𝑊) ×  𝜙(𝑅,𝑌,𝑊)𝛼
268 where (R,Y,W) is (any quantity that is proportional to) the flow of virus entry within region R 

269 during week W of year Y and  is a proportionality term that can depend on R, Y and W. The 

270 exponent  stands for the fact that the flow of virus entry might not affect the rate of epidemic 

271 onset in a linear fashion. For example, epidemic triggering could require the simultaneous 

272 presence of a sufficient number of infected individuals. In that case we would expect  to be 

273 greater than one because x infected individuals during n subsequent weeks are less likely to 

274 trigger an epidemic than nx infected individuals during the same week.  
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275

276 Mobility flows. Flows of virus entry are, to a large extent, related to flows of people between 

277 regions (i.e., mobility flows). Migration of the virus from region A to region B can be related to 

278 flows of people in both directions: individuals living in region A that contaminate individuals 

279 from region B during their travels and/or individuals from region B that acquire the infection 

280 during their travels in region A. To keep things simple, it is reasonable to assume that the 

281 probability that flows from region A will lead to an epidemic in region B with a rate that depends 

282 on i) the number of people flowing between A and B and ii) the proportion of people from A that 

283 are carrying the virus. Because symptomatic influenza alters the behavior of infected individuals 

284 (in particular their movement pattern), virus exchanges between regions are probably mostly 

285 ensured by asymptomatic individuals, but it is reasonable to assume that the number of 

286 asymptomatic individuals is proportional to the number of symptomatic (estimated by the GROG 

287 network).

288 As a result, the function  is modelled as follows:

289 𝜙(𝑅,𝑌,𝑊) =  

𝑁∑𝑖 = 1,𝑖 ≠ 𝑅(𝛿𝑅𝑖 + 𝛿𝑖𝑅) ×
𝐼𝑖(𝑊)𝑆𝑖 + 𝑐 𝑁∑𝑖 = 1,𝑖 ≠ 𝑅𝐼𝑖(𝑊)𝑆𝑖

290  

291 where Ri and iR correspond, respectively, to mobility flows from region R to region i and from 

292 region i to region R (in number of people). Si represents the population size of region i and Ii(W)  

293 its incidence at week W (thus I/S is an estimate of the proportion of infected people). The term 

294  is the sum of influenza prevalence over all regions except R. We added this term ∑𝑁𝑖 = 1,𝑖 ≠ 𝑅𝐼𝑖(𝑊)𝑆𝑖
295 because capturing the actual rate of virus exchange between two regions is complicated: the first 

296 term may be inaccurate and additional virus exchanges may originate from flows other than 
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297 those modelled in this term. However, because we have no way of knowing where these 

298 exchanges come from, we did not make any distinction between regions (other than R) in this 

299 term. This is a classical assumption in epidemic metapopulation models, the first term 

300 corresponding to local transmission and the second to global transmission. c is a positive 

301 constant parameter that quantifies the relative weight of local and global transmission. If the 

302 mobility flows we measured accurately capture the rates of virus exchanges between regions of 

303 France, then c should be small.

304

305 Climatic covariates. Let us consider a climatic covariate X (temperature or absolute humidity) 

306 that takes the value XR,Y,W in region R, in year Y and week W. To disentangle the four scales, we 

307 decompose X into the sum of its mean value (Xmean) and four sub-covariates: XW, XR, XY and 

308 Xres:

309 𝑋𝑅,𝑌,𝑊 = 𝑋𝑚𝑒𝑎𝑛 + 𝑋𝑊𝑊 + 𝑋𝑅𝑅 + 𝑋𝑌𝑌,𝑊 + 𝑋𝑟𝑒𝑠𝑅,𝑌,𝑊
310 where the X will be replaced by any of the two climatic covariates (X=T for temperature and 

311 X=H for humidity).

312 The mathematical definition of the four sub-covariates and their biological interpretation 

313 are the following (please note that for all weekly averages, the average is calculated over the 

314 period starting in October of one year and ending in March of the following year).

315 XWW denotes the average value of XR,Y,W  - Xmean over the different regions and the different 

316 years. XW represents the overall (over all regions and years) global variation value of X. For 

317 example, if TW=4, this means that the average temperature during week W is four (Celsius) 

318 degrees above the average value of the temperature over the epidemic period. Week W is 

319 globally four degrees warmer than the average. Because XW measures the variations in the 
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320 average temperature over weeks, it may explain variations in epidemic onset dates at the global 

321 scale (i.e., why epidemic onsets are more likely to occur some weeks than others). The objective 

322 here is to evaluate whether the average timing of influenza in the epidemic year is linked to 

323 average climatic conditions.

324 XRR denotes the average value of XR,Y,W  - Xmean over the different weeks of the epidemic 

325 period and all years. XR represents regional systematic differences. For example, TR=2 means 

326 that the average (over all weeks and years) temperature in region R is two degrees above the 

327 average temperature over all weeks, years and regions. Region R is globally two degrees warmer 

328 than the average. The sub-covariate XR can explain epidemic onset variation at the spatial scale. 

329 The objective is to evaluate whether the time differences of influenza epidemic onsets between 

330 regions can be explained by different average climatic conditions between the regions.

331 XYY,W denotes the average value of   over the different regions. XY 𝑋𝑅,𝑌,𝑊 ‒ (𝑋𝑚𝑒𝑎𝑛 + 𝑋𝑊𝑊)

332 stands for annual global differences. For example, XYY,W=-5 means that during year , the 𝑌
333 average temperature values that have been observed during week W over all regions is five 

334 degrees below the average values of temperature that have been observed over all regions and 

335 years during the same week W. If during year Y all values of XY are positive (during all weeks), 

336 this means that the winter of epidemic year Y is globally warmer than the average. If XY  is 

337 negative during several subsequent weeks, it may reveal a cold snap in that period. Thus XY not 

338 only summarizes the average value of the covariate during the winter but also whether there have 

339 been some periods in the winter when the covariate was high and/or low (early epidemic onsets 

340 may simply arise from specific climatic conditions within limited time windows). It can explain 

341 variations of epidemic onset dates at the annual scale (i.e., why epidemics start on average earlier 

342 some years than others).
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343 Finally,  represents spatiotemporal weekly 𝑋𝑟𝑒𝑠𝑅,𝑌,𝑊 = 𝑋𝑅,𝑌,𝑊 ‒ ((𝑋𝑚𝑒𝑎𝑛 + 𝑋𝑊𝑊 + 𝑋𝑅𝑅 + 𝑋𝑌𝑌,𝑊)

344 residual variations. For example,   means that, considering the average temperature 𝑇𝑟𝑒𝑠𝑅,𝑌,𝑊 =  ‒ 3

345 values that where observed during week W of year Y in all regions on one hand, and the global 

346 characteristic of region R compared to other regions on the other, the observed value of 

347 temperature in region R, week W and year Y is three degrees below what could have been 

348 expected. So Xres informs us about the local characteristics of a particular winter in each region 

349 and can be linked to variations in epidemic onset dates at the spatiotemporal scale.

350

351 The complete model for . The proportionality term  can be different between regions, years 

352 and weeks because, considering a given flow of virus entry, local conditions within the region 

353 can, during a particular week, increase or decrease the risk of entering into an epidemic state. So 

354  can depend on several covariates, including demographic and climatic. The complete model 

355 (that integrates all the measured covariates) is defined by:

356   

357
log (𝛽(𝑅,𝑌,𝑊))
=  𝑎0 + 𝑎𝑆 × log (𝑆𝑅) + 𝑎𝐶 × 𝐶𝑅 + 𝑎𝑇𝑊 × 𝑇𝑊𝑊 + 𝑎𝑇𝑅 × 𝑇𝑅𝑅 + 𝑎𝑇𝑌 × 𝑇𝑌𝑌,𝑊 + 𝑎𝑇𝑟𝑒𝑠
× 𝑇𝑟𝑒𝑠𝑅,𝑌,𝑊 + 𝑎𝐻𝑊 × 𝐻𝑊𝑊 + 𝑎𝐻𝑅 × 𝐻𝑅𝑅 + 𝑎𝐻𝑌 × 𝐻𝑌𝑌,𝑊 + 𝑎𝐻𝑟𝑒𝑠 × 𝐻𝑟𝑒𝑠𝑅,𝑌,𝑊

358

359 where S and C represent respectively, the region population size and proportion of children. Note 

360 that since demographic covariates show little inter-annual variation, they are only likely to 

361 explain spatial variability in epidemic onsets. For that reason, we considered the average value of 

362 these covariates over all years in each region as model covariates. Parameters a are model 

363 constant coefficients that quantify the link between each covariate and . To allow a direct 
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364 comparison between all the coefficients a, the four covariates (S, C, T and H) have been centered 

365 and standardized before the analysis. Coefficient a0 is the intercept of the model.

366

367 Model likelihood

368 Model parameters were estimated using a maximum likelihood procedure. The link between 

369 epidemic onset dates and model covariates was tested using the likelihood-ratio test (LRT) 

370 statistic. The chi-square approximation of the LRT was not used here because it requires both 

371 large sample size and assumes that data can be considered as a plausible outcome of the model 

372 (i.e., model adjustment). In our case, model adjustment requires all potential sources of weekly, 

373 inter-annual and inter-regional variations to be incorporated in the model. Because this was not 

374 the case – we did not include random terms in our model – we preferred not to rely on this 

375 approximation. Instead, permutation tests were used (see below). 

376 For an epidemic year Y, the probability of a region R to enter into an epidemic state in a 

377 particular week W is given by the probability that the region did not enter into an epidemic state 

378 before week W-1:  and the probability that the epidemic occurs during the week that 𝑒 ‒ ∑𝑊 ‒ 1𝑖 = 0
𝜆(𝑅, 𝑌, 𝑖)

379 started at W: . That is why the likelihood (L) of a region R and an epidemic year 1 ‒ 𝑒 ‒ ∑𝑊 ‒ 1𝑖 = 0
𝜆(𝑅, 𝑌, 𝑖)

380 Y is defined as:

381 𝐿 =  𝑒 ‒ ∑𝑊 ‒ 1𝑖 = 0
𝜆(𝑅, 𝑌, 𝑖) ∙ (1 ‒ 𝑒 ‒ 𝜆(𝑅, 𝑌, 𝑊)

)

382 The global likelihood (Lg) is defined as the product of the regional likelihoods for each 

383 epidemic year, given by: 

384 𝐿𝑔 = ∏𝑅,𝑌 𝑒 ‒ ∑𝑊 ‒ 1𝑖 = 0
𝜆(𝑅, 𝑌, 𝑖) ∙ (1 ‒ 𝑒 ‒ 𝜆(𝑅, 𝑌, 𝑊)

)

PeerJ reviewing PDF | (2016:11:14278:4:0:NEW 9 Feb 2018)

Manuscript to be reviewed



385 Model parameters were inferred using maximum likelihood estimation. Models and 

386 permutation tests were implemented in Matlab.

387 It should be noted that, due to an insufficient covering during some weeks in some regions, 

388 influenza incidence could not be estimated for these points. Because the statistical procedure 

389 requires incidence values to calculate the terms associated with mobility flows, we replaced 

390 missing incidence values by zeros in the program. 

391

392 Among the 107 observed regions/years, five did not show any epidemic. Including these 

393 data points in the analysis is feasible (under its current form, the Matlab code integrates this 

394 possibility). However, including them altered the results of the analysis in a way that we think is 

395 counterproductive (see Web Material 3 for more details), so we preferred to exclude them from 

396 the analysis. From a biological point of view, this choice is reasonable because it is likely that 

397 these regions/years present specific characteristics (e.g., an important proportion of immune 

398 individuals) meaning that, despite an important flow of virus entry, they could not enter into the 

399 epidemic state. This case scenario was not integrated in the model, which assumes that, provided 

400 a sufficient flow of virus entry, any region could enter into the epidemic state during any season. 

401

402 Permutation tests

403 Permutation tests are based on the idea that randomly shuffling the values of a covariate F looks 

404 at the distribution of the possible linkages that could have been found between  and the 

405 covariate F given data. Hence, replicates of random shuffling of the values of F can be used to 

406 estimate the distribution of the LRT under H0 ‘no impact of the covariate’ (Lebreton et al. 2012). 
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407 An interesting property of covariate (rather than data) shuffling is that other covariates can 

408 remain unshuffled and keep their ability to reduce residual variance.

409 Because several covariates vary according to only one index (W, R or Y), we used block 

410 permutations – covariates were shuffled according to some indexes but not others – to keep the 

411 error structure of covariates. For example, population size (S) varies only between regions. 

412 Hence, the associated permutation test shuffles the values of S between regions but keeps it 

413 constant between weeks and years. According to their scale of variation, all covariates were 

414 tested according to a specific set of indexes (Table 3).

415 The four following steps can summarize the principle of permutation tests:

416 Step 1: shuffle randomly a covariate. Potentially, variables have three indexes of 

417 variations: weeks (W), year (Y) and region (R). Let us call P a random permutation of the triplet 

418 (W,Y,R) (the different types of permutation that can be used will be detailed below). Let us call X 

419 the covariate that has to be permuted. The original (non-permuted) covariate is XW,Y,R. The 

420 permuted covariate is called Z and is defined by ZW,Y,R=XP(W,Y,R).

421 Step 2: determine the test statistics associated with each permutation. We used the 

422 likelihood ratio test (LRT), defined as , where LZ and L0  respectively represent the ‒ 2 × 𝑙𝑜𝑔(
𝐿𝑍𝐿0

)

423 likelihoods of models with and without covariate Z. Note that, for mobility flows, the model 

424 without this term is not used (the associated coefficient always equals one). In that case, the LRT 

425 statistic used is replaced by the deviance (defined by -2log(LZ)) statistic, other steps being 

426 unchanged.

427 Step 3: determine the distribution of the LRT statistic under the null hypothesis H0: 

428 "epidemic onsets are independent of covariate X”. Since permutations generate random 

429 covariates that have no biological reason to be associated with epidemic onsets, each permutation 
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430 represents a random realization of the LRT statistic under H0. For each covariate X, 1,000 

431 permutations were generated and Step 1 and Step 2 led to 1,000 independent values of the LRT 

432 under H0. From that we could derive an estimate of the distribution of the LRT under H0. 

433 Step 4: determine a threshold for the LRT under H0. The threshold was simply taken as the 

434 95% quantile of the distribution of permuted LRTs. Comparing the observed value of the LRT 

435 with this threshold provides a test criterion for rejecting, or not, H0.

436 Alternatively, we can estimate a p value for each test, defined as p=(x+1)/(N+1), where x 

437 is the number of permuted values of the LRT above that observed and N = 1,000 is the number of 

438 permutations. H0 is then rejected as soon as p < 0.05 but is otherwise accepted.

439

440 Based on the level at which we want to establish correlates between epidemic onset dates 

441 and covariates, different tests have to be performed. If we want to test a covariate that explains 

442 epidemic onset variations at the spatial level, only region indexes will be shuffled. In practice, let 

443 us call PR a permutation of region indexes, then a permutation shuffling only regions indexes 

444 will take the form of P(W,Y,R)=(W,Y,PR(R)). Shuffling only region indexes means that measures 

445 are repeatedly the same each year and each week within a region.

446 Similarly, shuffling only year indexes will test covariates explaining annual variations in 

447 epidemic onsets. Let us call PY a permutation of years, the permutation taking the form: 

448 P(W,Y,R)=(W,PY(Y),R). In the same way, shuffling week indexes will test covariates explaining 

449 global variations (why epidemic onset does not happen randomly within the studied period). By 

450 calling Pw a permutation of the week, the permutation will take the form P(W,Y,R)=(PW(W),Y,R).

451 For climatic covariates explaining spatiotemporal variations in epidemic onsets, we chose 

452 to independently shuffle region and year indexes. In practice, the permutation will take the form 
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453 of P(W,Y,R)=(W,PY(Y),PR(R)). Shuffling region and year indexes independently rather than 

454 simultaneously has the advantage of keeping the general intra-annual and intra-regional 

455 structures in covariates.

456 Finally, for the mobility covariate permutations, we first shuffled regions (in the δ matrix, 

457 similar permutations were used for lines and columns of the matrix) and then recalculated the 

458 (permuted) flow of people between all pairs of regions (coefficients δ). Then the flow of infected 

459 people was calculated by multiplying these coefficients by the non-permuted regional 

460 prevalence, leading (for all regions, years and weeks) to a new value for the first term of  (i.e., 

461 ). The advantage of this choice is that it tells us how re-associating ∑𝑁𝑖 = 1,𝑖 ≠ 𝑅(𝛿𝑅𝑖 + 𝛿𝑖𝑅) ×
𝐼𝑖(𝑊)𝑆𝑖

462 regions randomly explains the observed synchrony between connected regions. Permuting the 

463 region indexes allows us to keep the structure of the global connection network of the country 

464 (e.g., the fact that some regions are more connected to other regions than others). In summary, 

465 the connection network between the regions remains the same in permuted data but their link to 

466 epidemic onset probabilities is broken.

467

468 One important question when testing the link between a response variable and covariates is 

469 the set of correction covariates that should be introduced. One way to deal with this question is to 

470 use the complete model and remove the covariate we want to test. This solution is interesting 

471 because, if the test turns out to be significant, then the link between the response variable and the 

472 covariate that is observed cannot be explained by any confounding effect of the other covariates. 

473 Considering our relatively low sample size, this is not the solution we retained here because it is 

474 conservative, especially when covariates are correlated (which is, e.g., the case for temperature 

475 and humidity). Instead, for each covariate, the link was tested without correcting by all the 
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476 covariates that have the same scale of variation. The other covariates were kept because they can 

477 capture some of the epidemic onset date variability.

478 The case of mobility flow is singular because this variable is included as a correction 

479 covariate in all models and it is not associated with any model parameter. Permutation tests were 

480 also performed on this covariate (see above). We performed two different tests. In the first 

481 (termed ‘corrected’) we kept all other covariates as correction terms (so we use the complete 

482 model). In the second (termed ‘uncorrected’), we removed all the other (demographic and 

483 climatic) covariates.

484

485 RESULTS

486 The main model parameters (that quantify the impact of the studied covariates) are given in 

487 Table 4, together with the associated p value of the corresponding test. A table summarizing all 

488 the model parameters inferred from all the different models used can be found in Web Table 1. 

489 Covariates are considered to be significantly linked to epidemic onset dates as soon as the 

490 associated p value falls below 5%. Figures showing the distribution of the LRT statistic are given 

491 in Web Figures 3-6.

492 Absolute humidity was found to be significantly linked to epidemic onset dates at the 

493 spatial scale (p=0.029), but not at the other scales. The associated coefficient was negative (-

494 0.4763)

495 Mobility flows were not found to be significantly linked to epidemic onset dates (p=0.57 

496 with the corrected model, p = 0.73 with the uncorrected model). In the corrected model, the 

497 coefficient associated with global incidence was very high, even when we considered that the 

498 local transmission term was multiplied by mobility flows (whose average is around 14,400). 
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499 Such an important weight of the global incidence is not found in the uncorrected model were we 

500 removed all covariates (although the test of mobility flows remained not significant, see Web 

501 Table 1). This suggests that the combination of covariates used in the complete model best 

502 explains spatiotemporal variation than those explained by mobility flows. 

503 Population size and proportion of children were not significantly linked to epidemic onset 

504 dates at the spatial scale. 

505

506 DISCUSSION

507 We have presented an approach inspired by the dynamical modeling presented in (Eggo et al. 

508 2010; Gog et al. 2014) to test and quantify the link between several covariates and the onset date 

509 of epidemic influenza in France. The objective was both to provide new insights in influenza 

510 epidemic knowledge and, more generally, to discuss the issue of the multiple scales by which the 

511 link can be viewed and propose permutation tests associated with each level of variation.

512

513 Impact of mobility flows and demographic covariates

514 Our results did not reveal an impact of mobility flows on epidemic onset dates. This is quite 

515 surprising because mobility flows of infected individuals between regions can help the 

516 accumulation of a critical number of infected people leading to the influenza outbreak. Previous 

517 studies showed a correlation between daily work commutes and global influenza spread as well 

518 as regional epidemic peaks in France (Charaudeau et al. 2014; Crépey & Barthélemy 2007) and 

519 also in USA (Crépey & Barthélemy 2007; Stark et al. 2012; Viboud et al. 2006). The fact that we 

520 did not observe this link in our study may be due to inaccurate estimates of these flows. Simply 

521 considering flows of workers and students (and not those linked to holidays and week-ends) 
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522 could be too simplistic. The spatial scale at which we worked (the region) could also be too 

523 narrow to view the spatial spread of the virus. 

524 Children are also central to the spread of a disease like influenza. They are the most 

525 aggregated age-class of the human population and have a relatively naïve immune system (in 

526 terms of immune memory). Consistently, several studies (Peters et al. 2014; Schanzer et al. 2011; 

527 Stockmann et al. 2013; Timpka et al. 2012) have reported earlier epidemics in school-age 

528 children than in other age groups. Furthermore, in England (Pebody et al. 2015) and in Florida 

529 (Tran et al. 2014), vaccination of school age children has been shown to reduce influenza 

530 incidence in all age-classes as well reducing excess respiratory mortality, stressing the role of 

531 children in influenza transmission. We have not found any statistical association between 

532 demographic covariates and epidemic onset dates. 

533

534 Climatic covariates: a typical example of a multi-scale issue

535 Climate is also an important factor for virus spread. It affects virus survival outside the host 

536 (Lofgren et al. 2007; Lowen et al. 2007), host susceptibility to the infection (Eccles 2002) and 

537 human behavior (Lofgren et al. 2007). Studying its impact on influenza epidemic onsets is hence 

538 relevant, but as it can be viewed at different scales, its analysis is more complex.

539 In eco-epidemiology (and in ecology in general), it is more and more common to deal with 

540 data acquired at multiple scales (spatial, temporal, populational, individual, etc.). Such data 

541 present a methodological challenge because covariates may explain the variability of data at 

542 different scales. In our example, epidemic onsets showed four levels of variability. At the highest 

543 level (global), climate may explain why influenza epidemics occur more frequently in some 

544 weeks than in others. At the spatial scale (respectively, annual), they may explain why influenza 
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545 epidemics start earlier on average in some regions (respectively, years) than in others. At the 

546 lowest scale (spatiotemporal), local climatic conditions could explain why an epidemic occurs 

547 earlier or later in a given year in a given region.

548 In general, larger scales are associated with the more confounding effects. Systematic 

549 changes in climate between regions also come with systematic changes in other covariates (such 

550 as demography, economy, etc). Similarly, systematic shifts in climate between years come with 

551 shifts in, e.g., antigenic characteristics of influenza strains, human society characteristics (that 

552 evolve in parallel with climate changes). All these covariates can introduce statistical confusion 

553 in the interpretation of model inference. 

554 The smallest scale, where we try to link deviations in epidemic onset with deviations in 

555 climate (after accounting for systematic variations in yearly and regional average climate), would 

556 in our case be the ideal statistical scale. However, it also comes with more noise in variable 

557 estimates, which is reduced at the upper scales (which are averages).

558 The only scale at which the impact of climate was found to be significant here was the 

559 spatial scale for humidity. This means that, in region with dry climates, epidemics of influenza 

560 tend to start earlier. However, the p value associated with this covariate was close to 5% and one 

561 could wonder whether the link could be artificial considering the number of tests we performed 

562 in our analysis. In any case, it is interesting to note that, for all climatic covariates whose 

563 coefficient was not close to zero, all values were negative, which is consistent with the idea that 

564 dry and cold climates promote the spread of influenza.

565

566 Methodological issues
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567 Dynamical modeling offers a natural basis for understanding the spread of infectious diseases. 

568 Paired with statistical tools, they have been used with success to analyze the spread of infectious 

569 agents within non-spatialized (Chowell et al. 2004; Gibson et al. 2004) as well as spatialized 

570 (Fang et al. 2016; Gibson 1997; Merler et al. 2015) host populations. However, because they are 

571 based on the modelling of the mechanisms underlying the spread of agents, such approaches 

572 raise important methodological issues.

573 Linking the probability of epidemic onset to weekly shifts in climatic covariates is 

574 appealing but requires accurate onset date estimates. Because the climate can change rapidly 

575 during the winter in France, a lag of a few weeks between the real and observed onset dates 

576 weakens the strength of its link with climatic covariates. The major difficulty with observational 

577 estimates of epidemic onset dates is that they are based on a clinical criterion (atypical increases 

578 in influenza infection). If this choice is legitimate from a management point of view, it does not 

579 necessarily translate the real epidemiologic point when all conditions are gathered to ensure the 

580 massive spread of the disease and a time lag may exist between this ‘break point’ and the 

581 estimated point. 

582 Another important point regarding epidemiological models is that, at least in our case, they 

583 cannot perfectly describe the variability of the response variable. This would require capturing 

584 all the variations of the probability of epidemic onset between weeks, years and regions. Within 

585 a simple dynamical model, it is unfortunately not possible to account for all the complexity of 

586 the transmission process. Vacations were not included in the analysis. Integrating them would 

587 have been complex because, in France, regional vacations are not synchronized. Vacations affect 

588 the spread of a virus like influenza in a complex way (Cauchemez et al. 2008). Schools are 
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589 closed and travel patterns are changed, and travel associated with work or study is replaced by 

590 tourism. Unfortunately, we had no such fine information in our data set.

591 Network coverage was also an important issue. Three regions could not be studied for this 

592 reason and, in others, we had some points missing in our prevalence estimates. This can have 

593 implications for the estimate of virus entry within regions, missing points being potentially 

594 associated to unquantified flows of virus entry. However, because missing data were mainly 

595 associated with poorly connected regions and/or to periods of the year when influenza 

596 prevalence is low, we believe that neglecting them is not too prejudicial for the analysis.

597 It is important to remind that, for some epidemic years in some regions, no epidemic of 

598 influenza was observed. For reasons detailed in Web material 3, we chose to remove these 

599 regions from our analysis. This implies that our results are only relevant for understanding the 

600 link between influenza epidemic onset dates and covariates for regions and epidemic years for 

601 which an epidemic did occur and should not be extrapolated to explain why no epidemic 

602 occurred in some circumstances. 

603 Another important point to discuss in such an analysis is the geographical scale at which 

604 data are measured. Due to the spatial covering of the GROG network, it was not possible to work 

605 below the regional level. We are conscious that many phenomena may occur at lower scales: 

606 regions are not homogeneous in terms of human density, movement patterns and climate. 

607 However, because this problem is due to the basic structure of the data, there was not much we 

608 could do.

609

610 For all these reasons it was important not to rely on the asymptotic assumption of the chi-

611 square distribution of the likelihood ratio statistic. Such an assumption is only valid when the 
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612 model is able to describe the complexity of the variations of the response variable (here the 

613 epidemic onset rate). Here, this would have been a very strong assumption, as we can see on 

614 Web Figures 3-6 (where the 95% rejection thresholds are quite different from what we would 

615 have observed with a chi-square approximation of the likelihood ratio statistic). In such a 

616 context, permutation tests appear to be a very interesting tool to overcome the issue of model 

617 adjustment. Indeed, permutation tests of covariate focus on the distribution of the covariate 

618 (which is simple) and not on that of the response variable (which is complex). Thus, even if the 

619 underlying model is incorrect, permuted covariates have absolutely no reason to perform better 

620 than those observed.  They offer therefore, a robust means to test the impact of the different 

621 covariates.

622 If permutation tests reduce the risk related to robustness of the analysis to depart from 

623 model assumptions, they also have some drawbacks. They require a lot of computation time to 

624 perform a large number of permutations, each one requiring involving the recomputation of the 

625 test statistic. Also, they consider fixed observed values for all the variables, evaluating whether 

626 the pattern observed in the data is likely, or not, to have arisen by chance. The underlying theory 

627 of permutation tests is hence not based on the random sampling assumption (made in parametric 

628 approaches), which has the advantage that the conclusions of the analysis can be generalized to 

629 the entire population (Ernst 2004). So in contrast, from a theoretical point of view, permutation 

630 tests only allow to draw conclusions that are relevant to the particular data set.  

631 In addition, permutation tests do not resolve the important problem of statistical power. 

632 The data set we analyzed here is relatively small (around a hundred points). Because our 

633 approach is relatively new, it is hard to know whether such a data set is sufficient for a 

634 reasonable statistical power.
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635 The lack of statistical power is probably the reason why we found so few associations in 

636 our analysis. So it is important to note that our inability to detect effects is far from proving their 

637 absence. We believe that our study suggests a novel means to treat epidemic onset data by 

638 combining dynamical modeling with hypothesis testing based on permutation tests of the 

639 covariates.

640 Testing the significance of the observed associations is already a complex task by itself, so 

641 in the present paper we chose not to address the issue of evaluating confidence intervals for our 

642 model parameters. In our case, such intervals would not be very insightful because we found 

643 only one significant association (with a p value that is close to the rejection threshold, raising the 

644 question of multiple testing effects).

645 As a future direction, permutation tests provide an interesting way to evaluate equivalents 

646 of confidence intervals (LaMotte & Volaufova 1999).Such intervals are quite complex to 

647 implement and are still marginal in the literature but present the advantages of permutation tests 

648 that we exposed earlier.

649

650 Link with the survival analysis approach

651 Using dynamical modeling may appear rather complex to non-methodologists because of the 

652 lack of existing software packages to implement such models. Handmade programs are also 

653 exposed to programming mistakes. Although we carefully checked our program, such mistakes 

654 could not be excluded. 

655 For people who (arguably) prefer methods based on long-term existing software packages, 

656 an interesting comparison can be made between our approach and (Cox regression) survival 

657 analysis models. The modeling basis of both approaches are the same. The rate of epidemic onset 
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658 is similar to the hazard function. Cox regression uses linear links between the logarithm of the 

659 hazard function and covariates. Our link is slightly more complex, the only source of non-

660 linearity lying in the fact that we sum the local and global flows of virus entry. Here, 

661 linearization of the relationship between the logarithm of the epidemic onset rate and covariate 

662 could be achieved with only a few approximations.

663 However, it is important to note there is an important difference between our analysis and 

664 Cox regression survival analysis that involves the way in which likelihood is calculated. Cox 

665 regression uses partial likelihood. Basically, partial likelihood consists of comparing the value of 

666 covariate every time an event occurs. Thus the Cox regression model finds the best linear 

667 combination of covariates that maximize the probability that, considering that several events 

668 could have occurred on a given date, the observed event (associated with the date) was the one 

669 that occurred. So partial likelihood does not try to explain why events occurred on the precise 

670 date that they did occur but why they occurred in a given order.

671 In contrast, the way we calculated likelihood here integrates this information. So for 

672 example, if an epidemic onset occurred at the beginning of December in a given region during a 

673 given year, our method tries to find the combination of covariates that best explains why the 

674 onset did not occur earlier (for example by trying to link it to specific climatic conditions that 

675 were present at the beginning of December but not in November).This is quite different from 

676 what is done with the partial likelihood of the Cox regression.

677 Which way of calculating likelihood is better is still unclear due to the absence (to our 

678 knowledge) of theoretical studies comparing both approaches. It is all a matter of which pieces of 

679 information we want to include to infer model parameters. The Cox regression has the advantage 

680 of being implemented in many classical software routines of data analysis (such as R). Thus, for 
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681 researchers who are inspired by our approach to analyze epidemic onset data, adapting our model 

682 (basically by linearizing the relationship between the logarithm of the epidemic onset rate and 

683 covariates) to the Cox regression framework could represent an interesting compromise to 

684 overcome the programming issues associated with our approach.

685
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827 FIGURES

828 Figure 1 - Mobility flows by region made up with home-work and home-school journeys. 

829

830

831
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832 Figure 2 – Variations of epidemic onset dates (scaled each year so that 0 corresponds to the first 

833 week during which at least one region was in the epidemic state) between the eighteen studied 

834 French regions. For all regions, we have six points (studied epidemic years), but note that some 

835 of these points might be overlapping. 

836

837
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839 Figure 3 - Epidemic onset dates of French regions according to epidemic years given by the 

840 GROG network from 2006-2007 to 2012-2013 (except 2009-2010). The eighteen French regions 

841 serve as replicates for the boxplots of each epidemic year.

842

843

844

845

846

847

PeerJ reviewing PDF | (2016:11:14278:4:0:NEW 9 Feb 2018)

Manuscript to be reviewed



848 TABLES

849 Table 1 – Summary of studies about influenza timing differences

Where / Scale Data Metric Method Results Reference
USA / states 30 years, weekly influenza-

related mortality
Epidemic peak Correlation tests Correlation influenza spread / human movements 

(workflows) + influenza spread / population sizes
(Viboud et al.
2006)

Pennsylvania, 
US / counties

6 years, weekly laboratory 
confirmed influenza cases

Epidemic peak Correlation tests Correlation influenza spread / human movements (Stark et al. 
2012)

France / 
departments

25 years, weekly influenza 
syndromic cases

Epidemic Peak Correlation tests Correlation influenza spread / human movements 
(school- and work- based communing)

(Charaudeau 
al. 2014)

France / 
patches 20km

8 years, weekly influenza 
syndromic cases

Epidemic Peak Correlation tests Correlation number of influenza cases / density (Bonabeau et
1998)

Israel / cities 11 years, weekly influenza 
syndromic cases

Epidemic Peak Statistical test Highly synchronized epidemics (Barnea et al.
2014; Huppert
et al. 2012)

Brazil / states 22 years, monthly influenza 
related mortality

Epidemic Peak Linear models Spatial correlation suggesting a role of climate 
(temperature and humidity)

(Alonso et al.
2007)

USA / states 30 years, weekly influenza-
related mortality

Epidemic Peak Correlation tests 
+ linear models

Correlation influenza spread / air-traffic (Crépey & 
Barthélemy 
2007)

France / 
regions

20 years, daily influenza 
syndromic cases

Epidemic Peak Correlation tests 
+ linear models

Correlation influenza spread/train- and automobile-
traffic

(Crépey & 
Barthélemy 
2007)

China / 
provinces

6 years, weekly laboratory 
confirmed influenza cases

Epidemic Peak Linear models Strong correlation influenza spread / climatic factors 
(temperature, sunshine, rainfall), weaker correlation 
influenza spread / human movements

(Yu et al. 2013)

Canada / 
provinces

11 years, weekly laboratory 
confirmed influenza cases

Epidemic 25% 
quantile time

Generalized 
linear model

Correlation influenza spread / temperature, absolute 
humidity, population size and spatial ordering

(He et al. 2013)

USA / states 30 years, weekly influenza-
related mortality

Epidemic onset Correlation test Correlation epidemic onsets / absolute humidity (Shaman et al.
2010)

USA / 271 
cities

2009 H1N1 influenza 
pandemic weekly syndromic 
influenza cases

Epidemic onset Correlation tests 
+ Mechanistic 
models

Strong correlation influenza onsets/school opening + 
short spatial diffusion, weaker correlation influenza 
onset / population sizes, absolute humidity

(Gog et al. 
2014)
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851 Table 2 – Preliminary analysis: evaluating the relevant scales of variation of the different 

852 variables (considered each separately) using the (preliminary) linear mixed model. The 

853 importance of variations at the different scales is quantified by the corresponding estimated 

854 standard deviations (residuals and from random – regions, years and weeks – effects). 

Factors Intercept Regions Years Weeks Residuals
(average) (standard 

deviation, )𝜎𝑅 (standard 
deviation, )𝜎𝑌 (standard 

deviation, )𝜎𝑊 (standard 
deviation, )𝜎

Epidemic onset (week) 6.95 1.50 1.69 - 3.83

Population size (inhabitant) 3,100,600 2,481,281 34,209 - 4,1887

Proportion of children 0.24 0.014 0.002 - 0.001

Temperature (°C) 6.70 0.86 1.18 2.78 2.69

Absolute humidity (g/m3) 6.43 0.37 0.54 1.12 1.08

855

856

857

858
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859 Table 3 - Summary of the studied covariates (whose link with epidemic onset dates was tested) 

860 with associated sub-covariates, model parameters, scales of variation and indexes permuted. 

Covariate Sub-covariate Associated 

parameter

Scale Permuted 

index

TWW aTW Global Weeks

TRR aTR Spatial Regions

TYY,W aTY Annual YearsTemperature

TresR,Y,W aTres Spatiotemporal Regions and 

years

HWW aHW Global Weeks

HRR aHR Spatial Regions

HYY,W aHY Annual Years

Absolute

Humidity

HresR,Y,W aHres Spatiotemporal Regions and 

years

Mobility ∑𝑁𝑖 = 1, 𝑖 ≠ 𝑟(𝛿𝑟𝑖 + 𝛿𝑖𝑟) ×
𝐼𝑖(𝑡)𝑆𝑖

 

- Spatiotemporal Regions

Population 

size

SR aS Spatial Regions

Proportion of 

children

CR aC Spatial Regions

861

862

863
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864 Table 4 - Estimates of the associated parameter tested for each covariate with the p value of the 

865 associated permutation test. For each covariate, all these pieces of information come from the 

866 model used to evaluate the link between the covariate and epidemic onset dates. 

Covariate Symbol Estimate P value

T: global TWW -0.4932 0.1718

T: spatial TRR -0.2557 0.1598

T: annual TYY,W -0.3841 0.2627

T: spatiotemporal TresR,Y,W 0.0461 0.9361

H: global HWW -0.0200 0.1089

H: spatial HRR -0.4763 0.0290

H: annual HYY,W -0.0449 0.7512

H: spatiotemporal HresR,Y,W -0.3004   0.7932

Mobility flows: corrected
 ∑𝑁𝑖 = 1, 𝑖 ≠ 𝑟(𝛿𝑟𝑖 + 𝛿𝑖𝑟) ×

𝐼𝑖(𝑡)𝑆𝑖 - 0.5704

Mobility flows: uncorrected
 ∑𝑁𝑖 = 1, 𝑖 ≠ 𝑟(𝛿𝑟𝑖 + 𝛿𝑖𝑟) ×

𝐼𝑖(𝑡)𝑆𝑖 - 0.7333

Population size log(SR) 0.1274 0.1718

Proportion of children CR 0.1215 0.0929

867
868
869

870    
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