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The megamouth shark (Megachasma pelagios) was described as a new species in 1983.

Since then, only ca. 100 individuals have been observed or caught. Its horizontal

migration, dispersal, and connectivity patterns are still unknown due to its rarity. Two

genetic markers were used in this study to reveal its genetic diversity and connectivity

pattern. This approach provides a proxy to indirectly measure gene flow between

populations. Tissues from 27 megamouth sharks caught by drift nets off the Hualien coast

(eastern Taiwan) were collected from 2013 to 2015. With two additional tissue samples

from megamouths caught in Baja California, Mexico, and sequences obtained from

GenBank, we were able to perform the first population genetic analyses of the megamouth

shark. The mtDNA cox1 gene and a microsatellite (Loc 6) were sequenced and analyzed.

Our results showed that there is no genetic structure in the megamouth shark, suggesting

a possible panmictic population. Based on occurrence data, we also suggest that the

Kuroshio region, including the Philippines, Taiwan, and Japan, may act as a passageway for

megamouth sharks to reach their feeding grounds from April to August. Our results provide

insights into the dispersal and connectivity of megamouth sharks. Future studies should

focus on collecting more samples and conducting satellite tagging to better understand

the global migration and connectivity pattern of the megamouth shark.
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Abstrabt:

The megamouth shark (Megachasma pelagios) was described as a new species in 19V3. Since 

then, only ca. 100 individuals have been observed or caught. Its horizontal migration, dispersal, 

and connectivity patterns are still unknown due to its rarity. Two genetic markers were used in 

this study to reveal its genetic diversity and connectivity pattern. This approach provides a proxy 

to indirectly measure gene flow between populations. Tissues from 27 megamouth sharks caught 
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by drift nets off the Hualien coast (eastern Taiwan) were collected from 2013 to 2015. With two 

additional tissue samples from megamouths caught in Baja California, Mexico, and sequences 

obtained from GenBank, we were able to perform the first population genetic analyses of the 

megamouth shark. The mtDNA cox1 gene and a microsatellite (Loc 6) were sequenced and 

analyzed. Our results showed that there is no genetic structure in the megamouth shark, 

suggesting a possible panmictic population. Based on occurrence data, we also suggest that the 

Kuroshio region, including the Philippines, Taiwan, and Japan, may act as a passageway for 

megamouth sharks to reach their feeding grounds from April to August. Our results provide 

insights into the dispersal and connectivity of megamouth sharks. Future studies should focus on 

collecting more samples and conducting satellite tagging to better understand the global 

migration and connectivity pattern of the megamouth shark.          

Introdubtion 

The megamouth shark, Megachasma pelagios, was accidentally captured in 1976 off the coast of 

Kāne ohe, Hawai i, and was examined and described as a new species in 19V3 (ʻ ʻ Taylor et al., 

1983). More than forty years since its discovery, only about 100 specimens have as yet been 

caught or documented. There are only few official tracking records including a review by Nakaya
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(2010), which documented 40 records of these sharks being either caught or released from 1976 

to 2007. The Ichthyology section of the Florida Museum of Natural History has documented 65 

sighting records from 1976 to 2016 

(https://www.floridamuseum.ufl.edu/fish/discover/sharks/megamouths/reported-sightings). In 

addition, Hsu et al. (2015) published the catch and fishery information of 34 megamouth sharks 

collected off Hualian, Taiwan, between 2013 and 2015. With these documents and an additional 

specimen recently caught off the coast of Puerto Rico in 2016 (Rodriguez-Ferrer et al., 2017), 

only 99 individuals have been officially recorded. To date, relatively few studies have focused on 

this species compared to other, better known sharks. It is suggested to be a widely distributed 

species across the world’s oceans, including the Indian, Pacific, and Atlantic. Males become 

mature at about 4 m in total length and females at about 5 m, and mating occurs all year round 

based on the record of 40 specimens sampled from 1976-200V (Nakaya, 2010). Their daily 

movements were recorded by acoustic tags and showed a very clear vertical movement. This 

vertical movement indicated they swim at depths around 200 m during daytime, move toward the

surface at dusk, remain around 20 m during nighttime, and move back down to a deeper layer at 

dawn (Nelson et al., 1997). This shark feeds exclusively on euphausiids (Taylor et al., 1983; Yano
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et al., 1998; Sawamato & Matsumoto, 2012) and employs engulfment feeding analogous to 

humpback whales (Nakaya et al., 2008). Their pectoral fins are very flexible and mobile, which 

enhance dynamic lift control and thus give stability while swimming at slow speed (Tomita et al.,

2014). In addition, due to the scarcity and vulnerability of these sharks, satellite tagging has not 

yet been feasible. Therefore, information about their horizontal movement and migration is still 

unknown. Among the sharks recorded, only few specimens have been used for genetic studies 

(i.e. phylogenetic relationships, mitochondrial genome) (Martin & Naylor, 1997; Chang et al. 

2014), and most of them were discarded or consumed. Due to its rarity, population studies such as

demographics, population structure, and genetic diversity among different geographic regions are

difficult to conduct. 

The region along the Kuroshio Current path, including the Philippines, Taiwan, and Japan, are the

countries where the megamouth shark is frequently found (74 out of 99). The number of 

documented records from Taiwan (45 out of 99) was the highest in the world.

Taiwan initiated its National Plan of Action concerning sharks in May 2006 (Taiwan Fisheries 

Agency, 2006) and implemented a ban on shark finning in 2012. Additionally, to monitor the 

catch of several threatened shark species, the Taiwan Fisheries Agency implemented a mandatory
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catch and report measurement scheme in 2013 that included the megamouth shark (M. plagios), 

basking shark (Cetorhinus maximus), and great white shark (Carcharodon carcharias) in addition

to the whale shark (Rhincodon typus). When these species are caught, fishers must immediately 

inform the local Fishery Agency, Taiwan Fisheries Agency, and shark experts (National Taiwan 

Ocean University) before further processing. Due to this management measure, our team was 

able to obtain fishery biology information such as total length, body weight, sex, and the 

relationships between measurements and tissue samples before the sharks were processed and 

sold (Hsu et al., 2015).      

Sharks are facing global decline, and the effects (i.e. lost of genetic diversity) of population 

decline are of major concern in marine conservation (Pinsky & Plumbi, 2014). Loss of genetic 

diversity has several potential consequences on the reduction in evolutionary potential and 

adaptive ability (i.e. decreasing fitness and resistance) (Frankham 2005; Allendorf et al., 2008). 

The objectives of this study were to reveal the genetic diversity and connectivity of the 

megamouth shark with 2 tissue samples collected from the Baja California, Mexico, 27 tissue 

samples from Hualien, eastern Taiwan, and published sequences from GenBank. 

Materials and Methods 

A total of 27 tissue samples of M. plagios were collected between 2013 and 2015 off Hualien 
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county, eastern Taiwan (Figure 1). These sharks were caught at night before dawn between April 

and August and were the bycatch of drift-gillnet fishery. This fishery operated year round, mainly

targeting sun fishes during spring and summer and bill fish during fall and winter. Basic 

information recorded included catch date, sex, body weight, and total length. Additionally, 

maturity stages were determined by examining the developmental status of sexual organs. Males 

having fully calcified claspers that twisted easily and fully developed testes and epididymides 

were determined to be adults. Females with mature ova in their ovaries (both ovaries in the 

megamouth shark) and having swollen oviducts and uteri were determined to be adults. If only 

one or portions of these organs were developed, individuals were determined to be sub-adults, 

and those whose sexual organs were in undeveloped stages were determined to be juveniles. 

Meanwhile, tissue samples were collected at the harbor before further commercial processing, 

preserved in 95% alcohol, and stored at 4 °C. In addition to samples collected from Taiwan, we 

obtained two tissue samples deposited in the Scripps Institute of Oceanography, University of 

California, San Diego, that were collected from the coastal area of Baja California, Mexico (SIO-

07-53, Bahia Tortugas; SIO11-299, Bahia Sebastian Vizcaino). One cox1 sequence downloaded 

from GenBank was derived from a specimen collected from Mojacasabe Beach, Cabo Rojo, 
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Puerto Rico (17.9V0570 N,−67.210663 W), and one from Indonesia (Figure 1).

Genomic DNA was extracted from tissue fragments using commercial DNA extraction kits 

(Geneaid Tissue Genomic DNA mini Kit, Geneaid Biotech, Taiwan). DNA extracts were diluted 

in TE buffer and stored at -20 °C until amplification by polymerase chain reaction (PCR).

Amplifibation of genetib markers

The partial mitochondrial DNA gene cox1 was amplified with the primer pair F1/R1 described by

Ward et al., (2005). An additional microsatellite locus (Loc6) that has been successfully cross-

amplified in lamniform sharks was also amplified, since it showed a high variation in not only 

repeat number but also flanking regions (Martin et al., 2002). PCRs were run in 30 μL reactions 

containing 10-40 ng template DNA, 3 μL 10X buffer, 0.2 mM dNTPs, 1.5 mM MgCl2, 10 mM of 

each primer, and 0.2 units of Taq polymerase (MDbio, Taipei). The thermocycling profile 

consisted of initial denaturation at 94 °C for 2 min followed by 35 cycles of denaturation at 94 °C

for 30 s, annealing at 55 °C for 30 s, extension at 72 °C for 40 s, and a final extension at 72 °C 

for 2 min. This program was used to amplify the cox1 gene and Loc6. The nucleotide sequences 

of PCR products of both loci were determined using an ABI 377 automated sequencer (Carlsbad 

CA, U.S.A.). Nucleotide sequences were assembled and edited using Geneious 9.1.2 (Biomatters,
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New Zealand). 

Genetib analyses

Two cox1 gene sequences of individuals from Indonesia (EU393V905) and Puerto Rico 

(KY39295V.1) were downloaded from GenBank. In addition, a Loc6 sequence derived from a 

Japanese specimen was downloaded (AF423063) (Figure 1). Arlequin 3.5 (Excoffier & Lischer, 

2010) was used to analyze genetic diversity indexes, including haplotype diversity (h) and 

nucleotide diversity (π). Sequences were aligned and exported to MEGA 7 (Tamura et al., 2013) 

to visually inspect all alignments. Phylogenetic analyses were used to reveal potential genetic 

divergences among specimens from different geographic locations, with maximum likelihood 

(ML) and Bayesian inference assessments being performed on the CIPRES Science Gateway 

(Miller et al., 2015) and MrBayes (MB) version 3.2.2 (Ronquist et al., 2012), respectively. The 

latter implemented two parallel runs of four simultaneous Markov chains for 10 million 

generations, sampling every 1000 generations and using default parameters. The first million 

generations (10%) were discarded as burn-in, based on the stationarity of log- likelihood tree 

scores. ML analyses were conducted in RAxML version V.1.24 (Stamatakis, 2014) using the 

HKY substitution model chosen by MEGA 7. Supporting values on the branch were evaluated by 

non-parametric bootstrapping with 1000 replicates performed with RAxML (ML) and by 

posterior probabilities (MB). Moreover, median-joining haplotype networks were generated 

based on cox1 and Loc6 sequence datasets by using Popart 1.7 (Leigh & Bryant, 2015). 

Results

Catbh information

Basic catch information showed that megamouth sharks were mainly caught between April and 

August, with total weights ranging 210-1147 kg and total lengths ranging 341-710 cm. The sex 
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ratio (female : male) was 16:11, which was not significantly different from 1:1. Five of the 27 

individuals were determined to be adults and the others were sub-adults (Table 1). A global 

sighting record list based on the scientific literature comprising 99 specimens is given as 

supplementary information (Table S1).  

Genetib information

The cox1 gene (623 bp) and Loc6 microsatellite sequence (592 bp) were amplified and analyzed 

for 29 individuals obtained from Taiwan and Mexico. Three individuals failed to amplify on both 

loci, including MP3, MP16, and MP21, due to low DNA quality. There were two parsimony 

informative sites, and the nucleotide diversity (p) and haplotype diversity (h) of the cox1 gene 

was 0.000616 ± 0.000695 (mean ± SD) and 0.3305 ± 0.10V3, respectively. Twenty-seven cox1 

sequences were composed of three unique haplotypes, and the sequences from Taiwan, Mexico, 

Indonesia, and Puerto Rico shared a dominant haplotype (Figure 2A haplotype network). The 

phylogenetic analyses showed that the sequences we used in the present study formed a 

monophyletic clade and that there were two nodes with substantial support, including one 

composed of MP2, MP7, and MP26, and the other composed of MP11 and MP1V (Figure 2A). 

On the other hand, MP7 and MP24 failed to amplify for Loc6 from a sequence downloaded from 
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GenBank derived from a Japanese specimen; therefore, a total of 25 sequences were obtained for 

further genetic analyses. Our results showed that the 23 sequences from Taiwan and 2 from the 

Mexico were identical. The haplotype derived from the Japanese coast specimen had one 

singleton and formed a unique haplotype separate from the dominant one. No parsimony 

informative sites were found, and in addition, phylogenetic analyses showed that those sequences

were clustered as a single clade in the topology of the cox1 gene tree. 

Disbussion

Kuroshio as the passage to feeding grounds

More than 74% (74/99) of sighting records were from countries along the Kuroshio Current, 

including the Philippines, Taiwan, and Japan. Therefore, this region is likely a hotspot for the 

occurrence of the megamouth shark. Along the east coast of Taiwan particularly, different sizes of

megamouth sharks were caught mainly from April to August off the Hualien coast (Table1). The 

stomach contents of a megamouth shark caught off Ibaraki Prefecture (Japan) suggested that it 

fed almost exclusively on Euphausia pacifica (Sawamoto & Matsumoto, 2012). Euphausia 

pacifica is the dominant species of euphausiid in the North Pacific (Boden et al., 1955; Brinton, 

1975) and dominates the zooplankton community in the East Sea (Sea of Japan) (Mauchline, 
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1980) and Yellow Sea (Yoon et al., 2000). Endo (19V1) reported that the eggs and larvae of this 

species occur throughout the year in Sanriku waters, but are most abundant in April–June. In the 

Yellow Sea, E. pacifica was the most dominant euphausiid species in both summer and winter 

(Yoon et al., 2000). Therefore, we propose that the Kuroshio Current may be the lower latitude 

passage for the megamouth shark to reach its feeding grounds in higher latitudes such as the 

Yellow Sea and Sanriku waters where E. pacifica is abundant. Seasonal movements between 

productive high-latitude feeding grounds and low-latitude breeding grounds have been commonly

used to explain the migration of baleen whales (e.g., Norris, 1967), and we suggest this may also 

explain the seasonal migration of the megamouth shark. However, a future satellite tagging study 

is needed to track the movement and habitat use of the megamouth shark to verify this 

hypothesis.  

Genetib diversity and bonnebtivity in the megamouth shark 

Although the megamouth shark appears to be very rarely encountered throughout its range, IUCN

assessed its population status as Least Concern based on its wide distribution. This rarity may 

lead to intrinsic sensitivity to overexploitation since the effects of genetic drift are stronger in 

smaller populations, which ultimately leads to a substantial loss of genetic variation (Allendorf et 
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al. 2008) and consequently increases the probability of the fixation of deleterious alleles and 

reduces the resilience of overfished species (Hare et al. 2011). Genetic diversity is also one of the

important indexes to be considered in shark management and conservation polices because the 

long-term survival of a species is strongly dependent on the levels of genetic diversity within and 

between populations (Domingues et al. 2017). In the present study, the increasing number of 

captures in the Kuroshio region (Table S1), particularly Taiwan, may indicate increasing fishing 

pressure on megamouth sharks. Comparing its cox1 genetic diversity that of with other sharks 

(Alopias pelagicus, Scyliorhinus canicula, Squalus blainville, and R. typus; Table 2), the 

megamouth shark has the lowest nucleotide diversity (0.000616), and relatively lower haplotype 

diversity (0.3305). Among these sharks, the pelagic thresher shark (A. pelagicus) is one of the 

most abundant open ocean sharks and one of the most over-exploited shark species in the Pacific 

(Tsai et al. 2010; Caballera et al. 2011). Even under great fishing pressure, its nucleotide 

diversity was more than 20-fold higher than that of the megamouth shark. This may imply that 

the megamouth shark has a smaller population according to the positive correlation between 

population size and genetic variation found in a previous study (Frankham et al. 1996), whether 

being overexploited or a combination of both. 
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On the other hand, information regarding population connectivity is an important consideration 

when establishing conservation strategies to manage threatened species. In sharks, habitat usage 

could be one of the major factors influencing the connectivity pattern. For example, pelagic 

sharks (e.g., the basking shark Cetorhinus maximus, whale shark R. typus, and blue shark 

Prionace glauca) undergoing long oceanic movements showed less genetic structure either 

within-ocean or between-ocean scales compared to coastal sharks, except that the whale shark 

showed a genetic break between the Pacific and Atlantic Oceans (Table 3). In the present study, 

neither the mitochondrial cox1 gene nor Loc6 sequence revealed any genetic structure. While a 

cox1 gene sequence from a specimen caught in the Caribbean was included in the analysis, it was

identical to the dominant cox1 gene haplotype found in the Pacific. This indicates the megamouth

shark might travel across the world’s oceans, which corresponds to its pelagic-oceanic life. 

Therefore, the careful tracking of fisheries captures and the implementation of a long-term global 

monitoring program are needed to reassess its population status and ensure that this species does 

not become threatened in the near future.

Conblusions

In conclusion, the Kuroshio Current region may act as a passageway for the megamouth shark to 
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reach its feeding grounds during April to August. No genetic structure and low genetic diversity 

were found in the megamouth shark, suggesting a small population and the ability to travel across

oceans. However, due to the small sample size and lower variability of the loci used in the 

present study, connectivity between sites could be overestimated. Even though most recorded 

megamouth sharks have been discarded, sold, or merely observed in the wild and thus provided 

only 29 tissue samples, our data set is still the best dataset available. Nonetheless, to better 

understand the movement and migration of the megamouth shark, we recommend that in future 

studies the sample size be increased, hyper variable loci (microsatellite loci or SNPs) be used, 

and the pop-up satellite tag method be applied. 
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Figure 1

Sampling sites of the megamouth shark (M. plagios).

* indicates tissue sample sites and + indicates sequences downloaded from GenBank.
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Figure 2

Maximum-likelihood phylogenetic trees and the median joining haplotype network

based on the cox 1 gene (A) and Loc6 (B) sequence data.

Nodes are presented only for those with bootstrap scores >85% majority rule for maximum

likelihood and >95% majority probabilities for Bayesian probability values (BI/ML). Different

colors indicate different sampling localities (e.g., light blue = Taiwan, green = Indonesia,

purple = Mexico, yellow = Puerto Rico, and deep blue = Japan).
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Biological information and GenBank accession number
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Table 1. Biological information and GenBank accession number of megamouth shark 

samples used in the present study.

Name Date of collecting Sex Weight (kg) TL (cm) Life stage cox1 Loc 6

MP1 2013/4/18 F 366 387 sub-adult HQ010081 MG461954　

MP2 2013/4/30 F 383 373 sub-adult MG461955 MG461954　

MP3 2013/5/6 F 1090 476 adult - -

MP4 2013/5/6 M 413 368 sub-adult HQ010081 MG461954　　

MP5 2013/5/7 M 328 385 sub-adult - MG461954　　

MP6 2013/5/8 F 408 413 sub-adult HQ010081 MG461954　　

MP7 2013/5/18 F 516 524 sub-adult MG461955 -

MP8 2013/5/18 F 452 552 sub-adult HQ010081 MG461954　　

MP9 2013/5/19 M 320 395 sub-adult HQ010081 MG461954　　

MP10 2013/5/21 M 320 363 sub-adult HQ010081 MG461954　　

MP11 2013/5/30 F 516 426 sub-adult MG461956　 MG461954　　

MP12 2013/6/13 M 348 380 sub-adult HQ010081 MG461954　　

MP13 2013/7/10 F 549 463 sub-adult HQ010081 MG461954　　

MP14 2013/7/10 F 348 398 sub-adult HQ010081 MG461954　　

MP15 2013/7/10 M 653 484 adult HQ010081 MG461954　　

MP16 2013/7/17 F 1147 710 adult - -

MP17 2014/5/5 F 916 341 sub-adult HQ010081 MG461954　　

MP18 2014/5/22 F 210 352 sub-adult MG461956 MG461954　　

MP19 2014/5/30 F 752 660 adult HQ010081 MG461954　　

MP20 2014/5/31 M 532 478 sub-adult HQ010081 MG461954　　

MP21 2014/5/31 M 277 377 sub-adult - -

MP22 2014/5/31 F 734 517 adult HQ010081 MG461954　　

MP23 2014/6/1 M 355 370 sub-adult HQ010081 MG461954　　

MP24 2014/6/4 M 490 390 sub-adult HQ010081 -

MP25 2014/6/8 M 296 370 sub-adult HQ010081　 MG461954　　

MP26 2014/8/3 F 330 366 sub-adult MG461955　 MG461954　　

MP27 2015/5/15 F 307 345 sub-adult HQ010081　 MG461954　　

sio07-53 2006/11/16 F - 215 juvenile HQ010081　 MG461954　　

sio11-299 - - - - - HQ010081　 MG461954　　
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Table 2(on next page)

Examples of shark genetic diversity based on mitochondrial cox1 gene.
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Table 2. Examples of shark genetic diversity based on mitochondrial cox1 gene.

Species MtDNA nucleotide diversity MtDNA haplotype diversity Reference

Alopias pelagicus (Pelagic thresher shark) 0.013 0.3066 Cardenosa et al. 2014 

(Taiwan)

Scyliorhinus canicula (Small-spotted 

catshark)

0.0032 0.808 Kousteni et al. 2015

Squalus blainville (Longnose spurdog) 0.0029 0.763 Kousteni et al. 2016

Rhincodon eypus (Whale shark) 0.00244 0.1871 Toha et al. 2016

Megachasma pelagios (Mega-mouth shark) 0.000616 0.3305 present study

1

2

3

4
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Table 3(on next page)

Examples of shark population genetic structure studied at the global scale.
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Table 3. Examples of shark population genetic structure studied at the global scale.

Species Structure within ocean Structure between Pacifc and 

Atlantic

Genetic marker Habitat Reference

Carcharhinus obscurus (dusky shark) North and South Atlantic Yes Control region reef-associated Benavides et al. 2011

Carcharhinus limbanus (blacktip shark) East and West Atlantic Yes Control region reef-associated Keeney and Heist 2006

Carcharhinus plumbeus (sandbar shark) Pacific Yes Control region; Microsatellite benthopelagic Portnoy et al. 2010

Carcharias naurus (grey nurse shark) Atlantic, Pacific, Indian Yes Control region; Microsatellite reef-associated Ahonen et al. 2009

Galeorhinus galeus (school shark) North and South East Pacific, 

Atlantic 

Yes Control region benthopelagic Chabot and Allen 2009

Galeocerdo cuvier (tiger shark) North and South Atlantic, Hawaii Yes Control region; Microsatellite benthopelagic Bernard et al. 2016

Sphyrna lewini (scalloped hammerhead 

shark)

Pacific and Atlantic Yes Microsatellite pelagic-oceanic Daly-Engel et al. 2012

Rhincodon typus (whale shark) No Yes Control region; Microsatellite pelagic-oceanic Vignaud et al. 2014

Cenorhinus maximus (basking shark ) No No Control region pelagic-oceanic Hoelzel et al. 2006

Prionace glauca (blue shark ) No No Control region; Microsatellite pelagic-oceanic Veríssimo et al. 2017

Megachasma pelagios (mega-mouth shark) No No Cox 1; Microsatellite 

sequence

pelagic-oceanic present study
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