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ABSTRACT
The megamouth shark (Megachasma pelagios) was described as a new species in 1983.
Since then, only ca. 100 individuals have been observed or caught. Its horizontal
migration, dispersal, and connectivity patterns are still unknown due to its rarity. Two
genetic markers were used in this study to reveal its genetic diversity and connectivity
pattern. This approach provides a proxy to indirectly measure gene flow between
populations. Tissues from 27 megamouth sharks caught by drift nets off the Hualien
coast (eastern Taiwan) were collected from 2013 to 2015. With two additional tissue
samples from megamouths caught in Baja California, Mexico, and sequences obtained
from GenBank, we were able to perform the first population genetic analyses of the
megamouth shark. The mtDNA cox1 gene and a microsatellite (Loc 6) were sequenced
and analyzed. Our results showed that there is no genetic structure in the megamouth
shark, suggesting a possible panmictic population. Based on occurrence data, we also
suggest that the Kuroshio region, including the Philippines, Taiwan, and Japan, may
act as a passageway for megamouth sharks to reach their feeding grounds from April to
August. Our results provide insights into the dispersal and connectivity of megamouth
sharks. Future studies should focus on collecting more samples and conducting satellite
tagging to better understand the global migration and connectivity pattern of the
megamouth shark.

Subjects Conservation Biology, Evolutionary Studies, Genetics
Keywords Migration, Pelagic shark, Connectivity, Panmictic population, Genetic diversity

INTRODUCTION
The megamouth shark, Megachasma pelagios, was accidentally captured in 1976 off the
coast of Kāne’ohe, Hawai’i, and was examined and described as a new species in 1983
(Taylor, Compagno & Struhsaker, 1983). More than forty years since its discovery, only
about 100 specimens have as yet been caught or documented. There are only few official
records including a review byNakaya (2010), which documented 40 records of these sharks
being either caught or released from 1976 to 2007. The Ichthyology section of the Florida
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Museum of Natural History has documented 65 sighting records from 1976 to 2016 (https:
//www.floridamuseum.ufl.edu/fish/discover/sharks/megamouths/reported-sightings). In
addition, with recently added records from Taiwan (34 individuals) and Puerto Rico
(one individual) (Hsu et al., 2015; Rodriguez-Ferrer et al., 2017), only 99 individuals have
been officially recorded (a global sighting record list based on scientific literature is given
in Table S1). To date, relatively few studies have focused on this species compared to
other, better known sharks. It is suggested to be a widely distributed species across the
world’s oceans, including the Indian, Pacific, and Atlantic. Males become mature at about
4 m in total length and females at about 5 m, and mating occurs all year round based
on the record of 40 specimens sampled from 1976 to 2008 (Nakaya, 2010). Their daily
movements were recorded by acoustic tags and showed a very clear vertical movement.
This vertical movement indicated they swim at depths around 200 m during daytime,
move toward the surface at dusk, remain around 20 m during nighttime, and move
back down to a deeper layer at dawn (Nelson et al., 1997). This shark feeds exclusively
on euphausiids (Taylor, Compagno & Struhsaker, 1983; Yano, Tsukada & Furuta, 1998;
Sawamoto & Matsumoto, 2012) and employs engulfment feeding analogous to humpback
whales (Nakaya, Matsumoto & Suda, 2008). Their pectoral fins are very flexible andmobile,
which enhance dynamic lift control and thus give stability while swimming at slow speed
(Tomita et al., 2014). In addition, due to the scarcity and vulnerability of these sharks,
satellite tagging has not yet been feasible. Therefore, information about their horizontal
movement andmigration is still unknown. Among the sharks recorded, only few specimens
have been used for genetic studies (i.e., phylogenetic relationships, mitochondrial genome)
(Martin & Naylor, 1997;Chang et al., 2013), andmost of themwere discarded or consumed.
Due to its rarity, population studies such as demographics, population structure, and genetic
diversity among different geographic regions are difficult to conduct.

The region along the Kuroshio Current path, including the Philippines, Taiwan, and
Japan, are the countries where the megamouth shark is frequently found (74 out of 99). The
number of documented records from Taiwan (45 out of 99) was the highest in the world.

Taiwan initiated its National Plan of Action concerning sharks in May 2006 (Taiwan
Fisheries Agency, 2006) and implemented a ban on shark finning in 2012. Additionally,
to monitor the catch of several threatened shark species, the Taiwan Fisheries Agency
implemented a mandatory catch and report measurement scheme in 2013 that included
the megamouth shark (M. plagios), basking shark (Cetorhinus maximus), and great white
shark (Carcharodon carcharias) in addition to the whale shark (Rhincodon typus). When
these species are caught, fishers must immediately inform the local Fishery Agency, Taiwan
Fisheries Agency, and shark experts (National Taiwan Ocean University) before further
processing. Due to this management measure, our team was able to obtain fishery biology
information such as total length, body weight, sex, and the relationships between mea-
surements and tissue samples before the sharks were processed and sold (Hsu et al., 2015).

Sharks are facing global decline, and the effects (i.e., lost of genetic diversity) of
population decline are of major concern in marine conservation (Pinsky & Palumbi, 2014).
Loss of genetic diversity has several potential consequences on reducing evolutionary
potential and adaptive ability (i.e., decreasing fitness and resistance) (Frankham, 2005;
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Figure 1 Sampling sites of the megamouth shark (M. plagios). An asterisk indicates tissue sample sites
and+ indicates sequences downloaded from GenBank.

Full-size DOI: 10.7717/peerj.4432/fig-1

Allendorf et al., 2008). The objectives of this study were to reveal the genetic diversity
and connectivity of the megamouth shark with two tissue samples collected from the
Baja California, Mexico; 27 tissue samples from Hualien, eastern Taiwan; and published
sequences from GenBank.

MATERIALS AND METHODS
A total of 27 tissue samples ofM. plagios were collected between 2013 and 2015 off Hualien
county, eastern Taiwan (Fig. 1). These sharks were caught at night before dawn between
April and August and were the bycatch of drift-gillnet fishery. This fishery operated year
round, mainly targeting sun fishes during spring and summer and bill fish during fall and
winter. Basic information recorded included catch date, sex, body weight, and total length.
Additionally, maturity stages were determined by examining the developmental status of
sexual organs. Males having fully calcified claspers that twisted easily and fully developed
testes and epididymides were determined to be adults. Females with mature ova in their
ovaries (both ovaries in the megamouth shark) and having swollen oviducts and uteri were
determined to be adults. If only one or portions of these organs were developed, individuals
were determined to be sub-adults, and those whose sexual organs were in undeveloped
stages were determined to be juveniles. Meanwhile, tissue samples were collected at the
harbor before further commercial processing, preserved in 95% alcohol, and stored at 4 ◦C.
In addition to samples collected from Taiwan, we obtained two tissue samples deposited
in the Scripps Institute of Oceanography, University of California, San Diego, that were
collected from the coastal area of Baja California, Mexico (SIO-07-53, Bahia Tortugas;
SIO11-299, Bahia Sebastian Vizcaino). One cox1 sequence downloaded from GenBank
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was derived from a specimen collected from Mojacasabe Beach, Cabo Rojo, Puerto Rico
(17.980570 N, −67.210663 W), and one from Indonesia (Fig. 1).

Genomic DNA was extracted from tissue fragments using commercial DNA extraction
kits (Geneaid Tissue Genomic DNA mini Kit; Geneaid Biotech, New Taipei City, Taiwan).
DNA extracts were diluted in TE buffer and stored at −20 ◦C until amplification by
polymerase chain reaction (PCR).

Amplification of genetic markers
The partial mitochondrial DNA gene cox1 was amplified with the primer pair F1/R1
described by Ward et al. (2005). An additional microsatellite locus (Loc6) that has been
successfully cross-amplified in lamniform sharks was also amplified, since it showed a high
variation in not only repeat number but also flanking regions (Martin et al., 2002). PCRs
were run in 30 µL reactions containing 10–40 ng template DNA, 3 µL 10X buffer, 0.2 mM
dNTPs, 1.5 mM MgCl2, 10 mM of each primer, and 0.2 units of Taq polymerase (MDbio,
Taipei, Taiwan). The thermocycling profile consisted of initial denaturation at 94 ◦C for
2 min followed by 35 cycles of denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for 30 s,
extension at 72 ◦C for 40 s, and a final extension at 72 ◦C for 2 min. This program was used
to amplify the cox1 gene and Loc6. The nucleotide sequences of PCR products of both loci
were determined using an ABI 377 automated sequencer (Carlsbad, CA, USA). Nucleotide
sequences were assembled and edited using Geneious 9.1.2 (Biomatters, Auckland, New
Zealand).

Genetic analyses
Two cox1 gene sequences of individuals from Indonesia (EU3938905) and Puerto Rico
(KY392958.1) were downloaded from GenBank. In addition, a Loc6 sequence derived
from a Japanese specimen was downloaded (AF423063) (Fig. 1). Arlequin 3.5 (Excoffier &
Lischer, 2010) was used to analyze genetic diversity indexes, including haplotype diversity
(h) and nucleotide diversity (π). Sequences were aligned and exported toMEGA 7 (Tamura
et al., 2013) to visually inspect all alignments. Phylogenetic analyses were used to reveal
potential genetic divergences among specimens from different geographic locations, with
maximum likelihood (ML) and Bayesian inference assessments being performed on the
CIPRES Science Gateway (Miller et al., 2015) and MrBayes (MB) version 3.2.2 (Ronquist
et al., 2012), respectively. The latter implemented two parallel runs of four simultaneous
Markov chains for 10 million generations, sampling every 1,000 generations and using
default parameters. The first million generations (10%) were discarded as burn-in, based
on the stationarity of log-likelihood tree scores. ML analyses were conducted in RAxML
version 8.1.24 (Stamatakis, 2014) using the HKY substitution model chosen by MEGA 7.
Supporting values on the branch were evaluated by non-parametric bootstrapping with
1,000 replicates performed with RAxML (ML) and by posterior probabilities (MB).
Moreover, median-joining haplotype networks were generated based on cox1 and Loc6
sequence datasets by using Popart 1.7 (Leigh & Bryant, 2015).
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Table 1 Biological information and GenBank accession number of megamouth shark samples used in
the present study.

Name Date of
collection

Sex Weight
(kg)

TL
(cm)

Life stage cox1 Loc 6

MP1 2013/4/18 F 366 387 Sub-adult HQ010081 MG461954
MP2 2013/4/30 F 383 373 Sub-adult MG461955 MG461954
MP3 2013/5/6 F 1,090 476 Adult – –
MP4 2013/5/6 M 413 368 Sub-adult HQ010081 MG461954
MP5 2013/5/7 M 328 385 Sub-adult – MG461954
MP6 2013/5/8 F 408 413 Sub-adult HQ010081 MG461954
MP7 2013/5/18 F 516 524 Sub-adult MG461955 –
MP8 2013/5/18 F 452 552 Sub-adult HQ010081 MG461954
MP9 2013/5/19 M 320 395 Sub-adult HQ010081 MG461954
MP10 2013/5/21 M 320 363 Sub-adult HQ010081 MG461954
MP11 2013/5/30 F 516 426 Sub-adult MG461956 MG461954
MP12 2013/6/13 M 348 380 Sub-adult HQ010081 MG461954
MP13 2013/7/10 F 549 463 Sub-adult HQ010081 MG461954
MP14 2013/7/10 F 348 398 Sub-adult HQ010081 MG461954
MP15 2013/7/10 M 653 484 Adult HQ010081 MG461954
MP16 2013/7/17 F 1,147 710 Adult – –
MP17 2014/5/5 F 916 341 Sub-adult HQ010081 MG461954
MP18 2014/5/22 F 210 352 Sub-adult MG461956 MG461954
MP19 2014/5/30 F 752 660 Adult HQ010081 MG461954
MP20 2014/5/31 M 532 478 Sub-adult HQ010081 MG461954
MP21 2014/5/31 M 277 377 Sub-adult – –
MP22 2014/5/31 F 734 517 Adult HQ010081 MG461954
MP23 2014/6/1 M 355 370 Sub-adult HQ010081 MG461954
MP24 2014/6/4 M 490 390 Sub-adult HQ010081 –
MP25 2014/6/8 M 296 370 Sub-adult HQ010081 MG461954
MP26 2014/8/3 F 330 366 Sub-adult MG461955 MG461954
MP27 2015/5/15 F 307 345 Sub-adult HQ010081 MG461954
sio07-53 2006/11/16 F – 215 Juvenile HQ010081 MG461954
sio11-299 – – – – – HQ010081 MG461954

RESULTS
Catch information
Basic catch information showed that megamouth sharks were mainly caught between April
and August, with total weights ranging 210–1,147 kg and total lengths ranging 341–710
cm. The sex ratio (female:male) was 16:11, which was not significantly different from 1:1.
Five of the 27 individuals were determined to be adults and the others were sub-adults
(Table 1).

Genetic information
The cox1 gene (623 bp) and Loc6 microsatellite sequence (592 bp) were amplified and
analyzed for 29 individuals obtained from Taiwan and Mexico. Three individuals failed to
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Figure 2 Maximum-likelihood phylogenetic trees and the median joining haplotype network based on
the cox 1 gene (A) and Loc6 (B) sequence data. Nodes are presented only for those with bootstrap scores
>85% majority rule for maximum likelihood and>95% majority probabilities for Bayesian probability
values (BI/ML). Different colors indicate different sampling localities (e.g., light blue, Taiwan; green, In-
donesia; purple, Mexico; yellow, Puerto Rico and deep blue, Japan).

Full-size DOI: 10.7717/peerj.4432/fig-2

amplify on both loci, includingMP3,MP16, andMP21, due to lowDNAquality. There were
twoparsimony informative sites, and the nucleotide diversity (p) and haplotype diversity (h)
of the cox1 gene was 0.000616± 0.000695 (mean± SD) and 0.3305± 0.1083, respectively.
Twenty-seven cox1 sequences were composed of three unique haplotypes, and the sequences
from Taiwan, Mexico, Indonesia, and Puerto Rico shared a dominant haplotype (Fig. 2A
haplotype network). The phylogenetic analyses showed that the sequences we used in the
present study formed a monophyletic clade and that there were two nodes with substantial
support, including one composed of MP2, MP7, and MP26, and the other composed
of MP11 and MP18 (Fig. 2A). On the other hand, MP7 and MP24 failed to amplify for
Loc6 from a sequence downloaded from GenBank derived from a Japanese specimen;
therefore, a total of 25 sequences were obtained for further genetic analyses. Our results
showed that the 23 sequences from Taiwan and 2 from the Mexico were identical. The
haplotype derived from the Japanese coast specimen had one singleton and formed a
unique haplotype separate from the dominant one. No parsimony informative sites were
found, and in addition, phylogenetic analyses showed that those sequences were clustered
as a single clade in the topology of the cox1 gene tree.

DISCUSSION
Kuroshio as the passage to feeding grounds
More than 74% (74/99) of sighting records were from countries along the Kuroshio
Current, including the Philippines, Taiwan, and Japan. Therefore, this region is likely
a hotspot for the occurrence of the megamouth shark. Along the east coast of Taiwan
particularly, different sizes of megamouth sharks were caught mainly from April to August
off the Hualien coast (Table 1). The stomach contents of a megamouth shark caught off
Ibaraki Prefecture (Japan) suggested that it fed almost exclusively on Euphausia pacifica
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Table 2 Examples of shark genetic diversity based onmitochondrial cox1 gene.

Species MtDNA
nucleotide
diversity

MtDNA
haplotype
diversity

Reference

Alopias pelagicus
(Pelagic thresher shark)

0.0013 0.3066 Cardeñosa, Hyde & Caballero (2014)
(Taiwan)

Scyliorhinus canicula
(Small-spotted catshark)

0.0032 0.808 Kousteni et al. (2015)

Squalus blainville
(Longnose spurdog)

0.0029 0.763 Kousteni et al. (2016)

Rhincodon typus
(Whale shark)

0.00244 0.1871 Toha et al. (2016)

Megachasma pelagios
(Mega-mouth shark)

0.000616 0.3305 Present study

(Sawamoto & Matsumoto, 2012). Euphausia pacifica is the dominant species of euphausiid
in the North Pacific (Boden, Johnson & Brinton, 1955; Brinton, 1975) and dominates the
zooplankton community in the East Sea (Sea of Japan) (Mauchline, 1980) and Yellow
Sea (Yoon et al., 2000). Endo (1981) reported that the eggs and larvae of this species occur
throughout the year in Sanriku waters, but are most abundant in April–June. In the Yellow
Sea, E. pacificawas themost dominant euphausiid species in both summer andwinter (Yoon
et al., 2000). Therefore, we propose that the Kuroshio Current may be the lower latitude
passage for the megamouth shark to reach its feeding grounds in higher latitudes such
as the Yellow Sea and Sanriku waters where E. pacifica is abundant. Seasonal movements
between productive high-latitude feeding grounds and low-latitude breeding grounds have
been commonly used to explain the migration of baleen whales (e.g., Norris, 1967), and we
suggest this may also explain the seasonal migration of the megamouth shark. However,
a future satellite tagging study is needed to track the movement and habitat use of the
megamouth shark to verify this hypothesis.

Genetic diversity and connectivity in the megamouth shark
Although the megamouth shark appears to be very rarely encountered throughout
its range, IUCN assessed its population status as Least Concern based on its wide
distribution (Simpfendorfer & Compagno, 2015). This rarity may lead to intrinsic sensitivity
to overexploitation since the effects of genetic drift are stronger in smaller populations,
which ultimately leads to a substantial loss of genetic variation (Allendorf et al., 2008) and
consequently increases the probability of the fixation of deleterious alleles and reduces
the resilience of overfished species (Hare et al., 2011). Genetic diversity is also one of the
important indexes to be considered in shark management and conservation polices because
the long-term survival of a species is strongly dependent on the levels of genetic diversity
within and between populations (Domingues, Hilsdorf & Gadig, 2017). In the present study,
the increasing number of captures in the Kuroshio region (Table S1), particularly Taiwan,
may indicate increasing fishing pressure on megamouth sharks. Comparing its cox1 genetic
diversity with other sharks (Alopias pelagicus, Scyliorhinus canicula, Squalus blainville, and
R. typus; Table 2), the megamouth shark has the lowest nucleotide diversity (0.000616),
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Table 3 Examples of shark population genetic structure studied at the global scale.

Species Structure
within ocean

Structure
between
Pacifc and
Atlantic

Genetic
marker

Habitat Reference

Carcharhinus obscurus
(dusky shark)

North and South Atlantic Yes Control region Reef-associated Benavides et al. (2011)

Carcharhinus limbatus
(blacktip shark)

East and West
Atlantic

Yes Control region Reef-associated Keeney & Heist (2006)

Carcharhinus plumbeus
(sandbar shark)

Pacific Yes Control region;
Microsatellite

Benthopelagic Portnoy et al. (2010)

Carcharias taurus
(grey nurse shark)

Atlantic,
Pacific, Indian

Yes Control region;
Microsatellite

Reef-associated Ahonen, Harcourt & Stow (2009)

Galeorhinus galeus
(school shark)

North and South East Pacific,
Atlantic

Yes Control region Benthopelagic Chabot & Allen (2009)

Galeocerdo cuvier
(tiger shark)

North and South
Atlantic,
Hawaii

Yes Control region;
Microsatellite

Benthopelagic Bernard et al. (2016)

Sphyrna lewini
(scalloped
hammerhead shark)

Pacific and
Atlantic

Yes Microsatellite Pelagic-oceanic Daly-Engel et al. (2012)

Rhincodon typus
(whale shark)

No Yes Control region;
Microsatellite

Pelagic-oceanic Vignaud et al. (2014)

Cetorhinus maximus
(basking shark )

No No Control region Pelagic-oceanic Hoelzel et al. (2006)

Prionace glauca
(blue shark )

No No Control region;
Microsatellite

Pelagic-oceanic Veríssimo et al. (2017)

Megachasma pelagios
(mega-mouth shark)

No No Cox 1;
Microsatellite
sequence

Pelagic-oceanic Present study

and relatively lower haplotype diversity (0.3305). Among these sharks, the pelagic thresher
shark (A. pelagicus) is one of the most abundant open ocean sharks and one of the
most over-exploited shark species in the Pacific (Tsai, Liu & Joung, 2010; Caballero et al.,
2011). Even under great fishing pressure, its nucleotide diversity was higher than that
of the megamouth shark. With its rarity, increasing capture in the Kuroshio region and
potentially low genetic diversity found in the present study, establishing species-specific
regulations or management schemes for the megamouth shark is urgently needed.

On the other hand, information regarding population connectivity is an important
consideration when establishing conservation strategies to manage threatened species. In
sharks, habitat usage could be one of the major factors influencing the connectivity pattern.
For example, pelagic sharks (e.g., the basking shark Cetorhinus maximus, whale shark R.
typus, and blue shark Prionace glauca) that undergo long oceanic movements showed less
genetic structure either within-ocean or between-ocean scales compared to coastal sharks,
except that the whale shark showed a genetic break between the Pacific and Atlantic Oceans
(Table 3). In the present study, neither the mitochondrial cox1 gene nor Loc6 sequence
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revealed any genetic structure. While a cox1 gene sequence from a specimen caught in
the Caribbean was included in the analysis, it was identical to the dominant cox1 gene
haplotype found in the Pacific. This suggests the megamouth shark might travel across
the world’s oceans, which corresponds to its pelagic-oceanic life. Therefore, the careful
tracking of fisheries captures and the implementation of a long-term global monitoring
program are needed to reassess its population status and ensure that this species does not
become threatened in the near future.

CONCLUSIONS
In conclusion, the Kuroshio Current region may act as a passageway for the megamouth
shark to reach its feeding grounds during April to August. No genetic structure and low
genetic diversity were found in themegamouth shark, suggesting a small population and the
ability to travel across oceans. However, due to the small sample size and lower variability
of the loci used in the present study, connectivity between sites could be overestimated.
Nonetheless, to better understand the movement and migration of the megamouth shark,
we recommend that in future studies the sample size be increased, hyper variable loci
(microsatellite loci or SNPs) be used, and the pop-up satellite tag method be applied.
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