alticolor-bibronii group (Iguania: Liolaemidae). Sabrina N. Portelli¹, Andrés S. Quinteros. ^{1, 2, *} ¹Instituto de Bio y Geociencias del NOA (IBIGEO) UNSA-CONICET. ²Cátedra de Sistemática Filogenética. Universidad Nacional de Salta. Avenida 9 de julio 14 – 4405 – Rosario de Lerma – Salta. Tel-Fax +54-0387-4931755. Corresponding author: Andrés Sebastián Quinteros Email address: sebasquint@gmail.com

Phylogeny, time divergence, and historical biogeography of the South American Liolaemus

15	The genus <i>Liolaemus</i> comprises more than 260 species and can be divided in two subgenera:
16	Eulaemus and Liolaemus sensu stricto. In this paper, we present a phylogenetic analysis,
17	divergence times, and ancestral distribution ranges of the Liolaemus alticolor-bibronii group
18	$({\it Liolaemus \ sensu \ stricto} \ {\it subgenus}). \ We \ inferred \ a \ total \ evidence \ phylogeny \ combining \ molecular$
19	(Cytb and 12S genes) and morphological characters using Maximum Parsimony and Bayesian
20	Inference. Divergence times were calculated using Bayesian MCMC with an uncorrelated
21	lognormal distributed relaxed clock, calibrated with a fossil record. Ancestral ranges were
22	estimated using the Dispersal-Extinction-Cladogenesis (DEC-Lagrange). Effects of some $a\ priori$
23	parameters of DEC were also tested. Distribution ranged from central Perú to southern Argentina,
24	including areas at sea level up to the high Andes. The L. alticolor-bibronii group was recovered
25	as monophyletic, formed by two clades: L. walkeri and L. gracilis, the latter can be split in two
26	groups. Additionally, many species candidates were recognized. We estimate that the $\it L$.
27	alticolor-bibronii group diversified 14.5 Myr ago, during the Middle Miocene. Our results
28	suggest that the ancestor of the Liolaemus alticolor-bibronii group was distributed in a wide area
29	including Patagonia and Puna highlands. The speciation pattern follows the South-North
30	Diversification Hypothesis, following the Andean uplift.

ABSTRACT

32 INTRODUCTION

33	The genus <i>Liolaemus</i> WIEGMAN 1834 currently includes 262 species (updated from Abdala,
34	Quinteros & Semhan, 2015) distributed between Tierra del Fuego in southern Argentina and
35	northern central Peru. The taxonomic composition and phylogenetic relationships of this genus
36	have varied over the years. Laurent (1983) proposed dividing it into two main groups
37	(subgenera): Liolaemus sensu stricto (or Chileno group) and Eulaemus (or Argentino group).
38	Furthermore, taxonomic studies on these two groups have led to the recognition of numerous
39	subgroups. Recently, Troncoso et al. (2015) proposed the division of the <i>Liolaemus sensu stricto</i>
40	subgenus into two main sections, the L. chiliensis section and the L. nigromaculatus section. The
41	L. alticolor- bibronii group was attributed to the Liolaemus sensu stricto subgenus (Espinoza,
42	Wiens & Tracy, 2004; Lobo, 2005; Quinteros, 2012, 2013) and the L. chiliensis section
43	(Troncoso et al., 2015; Panzera et al., 2017). The group was first defined by Ortiz (1981) as the
44	L. alticolor-walkeri group, containing three species (L. alticolor BARBOUR 1909, L. walkeri
45	SHREVE 1938, and L. tacnae SHREVE 1941), whereas the L. bibronii group was defined by Cei
46	(1986) consisting of L. bibronii BELL 1843, L. exploratorum CEI & WILLIAMS 1984, and L.
47	sanjuanensis CEI 1982. The taxonomic composition of these groups increased and varied in last
48	years. Depending on the criteria, methods and dataset used, species were assigned to either more
49	specific groups (L. alticolor or L. bibronii group - Lobo & Espinoza, 1999, and Martínez Oliver
50	& Lobo, 2002) or more inclusive groups, such as the L . $alticolor$ -bibronii group (Espinoza,
51	Wiens & Tracy 2004; Lobo, 2005; Quinteros, 2012; Aguilar et al., 2013). In a contribution made
52	by Quinteros (2012), L. alticolor group was re-described including two new species resulting in a
53	total number of 27 species. More recently, the number of species was corrected to 30 (Martinez
54	et al. 2011; Aguilar et al., 2013; Quinteros et al., 2014; Abdala, Quinteros & Semhan, 2015).
55	Morando et al. (2007) performed a phylogeographic study on several populations of L. bibronii
56	and L. gracilis BELL 1843, concluding that L. bibronii is in fact a species complex with many
57	candidate species (some of them described by Martinez et al. 2011; Quinteros, 2012; Quinteros et
58	al., 2014; Abdala, Quinteros & Semhan, 2015). Using morphological characters Quinteros (2013)
59	recovered the $\it L. alticolor-bibronii$ group as monophyletic and found sister group relationships to
60	L. gravenhorsti. Furthermore, Aguilar et al. (2013) described three new species from Peru and
61	performed a phylogenetic analysis of local species of the L. alticolor-bibronii group. In
62	summary, the L. alticolor-bibronii group is composed of 30 species, widely distributed in an

63	outstanding altitudinal gradient from sea level to more than 5000 masl (Abdala & Quinteros,
64	2014) between Santa Cruz Province (southern Argentina), Chile and Ancash (central Peru)
65	(Quinteros, 2012, 2013; Aguilar et al., 2013). Due to these traits the $\it L.~alticolor-bibronii$ group is
66	an excellent model to infer the historical events which possibly molded the current distribution of
67	its members.
68	Until now, there have not been any proposals about the origin or diversification of the L .
69	alticolor-bibronii group based on phylogenies or quantitative frameworks studying its
70	biogeography. There are related studies, such as Cei (1979), who characterized Patagonia as an
71	active center of origin and dispersion, including Liolaemus as an example of a recent adaptive
72	radiation. Other authors applied phylogenies, but failed to use explicit biogeographical
73	methodology. Lobo (2001) showed a cladogram of the $chiliensis$ group ($Liolaemus$ sensus stricto
74	subgenus) including distribution areas of the species. These areas are similar to those outlined by
75	Roig Juñent (1994), adding some, but not including others, such as the Puna. Young-Downey
76	(1988) performed a Brooks Parsimony Analysis (BPA, Brooks 1990) over a Liolaemus
77	phylogeny, while Schulte et al. (2000) predicted species distribution based on molecular
78	phylogeny. Even though no explicit methodology was included, the latter study can be
79	considered an ancestral areas analysis. More details on the biogeography of the of the <i>Liolaemus</i>
80	sensu stricto subgenus are given by Díaz Gómez & Lobo (2006) who applied three methods
81	(Fitch optimization, DIVA – Ronquist 1997, and Weighted Ancestral Areas Analysis –Hausdorf
82	1998) to reconstruct the ancestral area of the subgenus.
83	In this study, we perform phylogenetic analyses in search of patterns which could have molded
84	the current distribution of the species. We use quantitative and explicit methodology and estimate
85	time divergence to investigate the historical biogeography of the Liolaemus alticolor-bibronii
86	group.
87	
88	MATERIALS AND METHODS
89	TAXON SAMPLING AND CHARACTERS USED
90	We included 30 species of the <i>Liolaemus alticolor-bibronii</i> group, taken primarily from
91	Quinteros (2013) with recent species additions by Martinez et al., 2011; Aguilar et al, 2013;

92	Quinteros et al, 2014; Abdala, Quinteros & Semhan, 2015, 15 populations of uncertain
93	taxonomic status and eight outgroup species (increasing in 9 the number of terminal taxa
94	included by Quinteros 2013). See supplemental file S1 for details.
95	The phylogenetic analyses included typical morphological characters (Lobo, 2001; 2005;
96	Quinteros, 2012; 2013) and sequences of Cytb and 12S genes taken from the literature (Espinoza,
97	Wiens & Tracy 2004; Morando et al, 2007; Victoriano et al, 2008; Aguilar et al, 2013; Troncoso-
98	Palacios et al, 2016; Olave et al, 201; see supplemental file S1 for specimens' GenBank accession
99	numbers). Sequences were aligned and edited with MEGA v.7.0.26 (Kumar, Stecher & Tamura
100	2016). Morphological characters were coded into discrete and continuous based on their
101	variation. Discrete characters were coded as Binary, Polymorphic Binary, Multistate, and
102	Polymorphic Multistate, while continuous characters were coded "as such" following Goloboff,
103	Mattoni & Quinteros (2006) methodology.
104	We included 960 bp from 12S, 809 bp from Cytb and 167 morphological characters updating the
105	list by Quinteros (2013), see supplemental file S2 for details.
106	PHYLOGENETIC ANALYSES
107	We conducted Maximum Parsimony (MP) and Bayesian Inference (BI) analyses using matrices
108	including morphology $+ Cytb + 12S$ characters. Alternative analyses excluding morphology
109	and/or continuous characters were also performed.
110	Maximum Parsimony analyses were implemented in TNT v.1.1 (Goloboff, Farris, & Nixon,
111	2003; Goloboff et al., 2008, and Goloboff & Catalano, 2016) under equal and implied weights
112	(Concavity value =3; 4; 5; and 6). Continuous characters were included in MP analyses only,
113	since TNT is the only software supporting them. Runs were performed using traditional search
114	Tree Bisection Reconnection (TBR), with 500 replicates and saving 20 trees each. Additionally,
115	we performed an analysis using the New Technology Search tool implemented in TNT (Sectorial
116	Search, Tree Fusing, Tree Drifting, and Ratchet) with 50 replicates, hitting the best score at least
117	20 times. Support was measured under Symmetric Resampling with 500 replicates and a 33%
118	deletion.
119	For BI, we selected the best-fitting model using jModel Test 3.0.4 (Posada & Crandall, 2008).
120	The best-fitting model for CvtB and 12S individually was GTR+G whereas GTR (GTR+F+I)

fitted best for the concatenate genes. Bayesian Inference analyses were carried out in Mr. Bayes 121 v3.1 (Ronquist & Huelsenbeck, 2003). We run PartitionFinder v1.1.1 (Lanfear et al., 2012) to 122 123 detect the best partition scheme, including both genes (without partition matrix). Calculations were run twice for 10 million generations each, resulting in a final average standard deviation of 124 Split frequencies below 0.05, sampling trees every 1000 generations and using four simultaneous 125 126 chains (one cold and three hot) in each run. Convergences of the chain to stationary distribution were confirmed using Tracer v1.6 (Rambaut et al., 2014). We discarded as burn-in the first one 127 thousand sampled trees that were not within the stationary distribution of log likelihoods. Trees 128 and posterior probabilities were summarized using the "50% majority rule" consensus method. 129 TIME DIVERGENCE ESTIMATES 130 Age of nodes and substitution rates were simultaneously estimated (for both topologies, BI and 131 MP) using Bayesian MCMC (Marcov Chain Monte Carlo) approach as implemented in BEAST 132 v2.4.0 (Drummond & Rambaut, 2007). We used a fossil assigned to Eulaemus (Albino 2008), 133 134 representing the earliest record of this subgenus, to place a mean prior of 20 Myr on the tree height. Since the fossil was assigned to the *Eulaemus* subgenus, without specific status, in our 135 136 study we must place it as an outgroup taxon, sister of the species members of the *Liolaemus* sensus stricto subgenus, which are the focal species. Divergence times in BEAST were estimated 137 138 according to Fontanella et al. (2012): 1) a lognormal prior was employed for fossil calibrations 139 (Hedges & Kumar, 2004); 2) a Yule speciation process with a random starting tree was used for the tree prior; 3) an uncorrelated lognormal distributed relaxed clock (UCLD) model was 140 employed, allowing evolutionary rates to vary along branches within lognormal distributions 141 (Drummond et al, 2006). Three independent runs of 50.000.000 generations each were 142 performed, with sampling every 5000 generations. The three separate runs were then combined 143 (following removal of 10% burn-in) using Log Combiner v2.0 (Drummond & Rambaut, 2007). 144 145 Adequate sampling and convergence of the chain to stationary distribution were confirmed by inspection of MCMC samples using Tracer v1.6 (Rambaut et al., 2014). The effective sample 146

Deleted: basal (
Deleted:)

probabilities) and to calculate the mean ages, 95% highest posterior density (HPD) intervals,

size (ESS) values of all parameters were greater than 200, which was considered a sufficient level

(Drummond & Rambaut, 2007) to generate a maximum clade credibility tree (maximum posterior

of sampling. The sampled posterior trees were summarized using Tree Annotator v2.0

147

148

149

154 with Fig Tree v1.2 (Rambaut, 2008). BIOGEOGRAPHICAL ANALYSES 155 In order to assign the ancestral geographic areas of distribution, the regionalization of South 156 America according to Morrone (2001) was used. Briefly, Morrone (2001) detailed biogeographic 157 regions, sub regions, and provinces of Latin America and the Caribbean, pointing out characteric 158 159 taxa and their predominant vegetation. Even though those areas are defined by contemporary species, they are a useful methodological tool to avoid the use of randomly defined areas. We 160 chose the following provinces based on the georeferenced distribution of the species included 161 (Figure 1): A: Desierto Peruano Costero, B: Puna, C: Yungas, D: Atacama, E: Coquimbo, F: 162 Prepuna, G: Monte, H: Chaco, I: Pampa, J: Santiago, K: Maule and L: Patagonia Central. To 163 infer the processes which modeled the current distribution of the species of the L. alticolor-164 bibronii group we used a parametric method implemented in RASP (Nylander et al., 2008; Yu, 165 Harris & He, 2010). This method is based on Dispersal-Extinction-Cladogenesis (DEC) models 166 which require information about a single ultrametric-dated phylogeny and distributional 167 information of extant species. 168 For DEC we used the two calibrated trees recovered in BEAST (based on BI and MP topologies) 169 and applied two different adjacency matrices: 1) unconstrained and 2) constrained (See 170 171 discussion for details). We also included three different "area-dispersal" matrices: a first analysis 172 (Matrix I) was set to allow a dispersal event between every geographic area without any cost; a 173 second analysis (Matrix II) was set to apply dispersal cost, where we randomly assigned 174 probability values of dispersion between areas, taking into account the closeness between them. 175 The values were: 0.8 for adjacent areas; 0.6 for areas separated by one intermediate area; 0.4 for 176 areas separated by two intermediate areas; 0.2 for areas separated by three intermediate areas; and 177 0.08 for areas separated by four intermediate areas (Table 1). A third analysis (Matrix III) was set to apply dispersal cost plus geographic barriers cost, considering probability values from the 178 179 second analysis plus values assigned to geographic barriers (in this case, the only clear 180 geographical barrier was the Andes mountain range). When a geographic barrier was present, a probability value of close to 0 was assigned (0.001- Table 2). 181

posterior probabilities and substitution rates for each node. The BEAST topology was visualized

153

183	RESULTS
184	PHYLOGENY OF THE LIOLAEMUS ALTICOLOR-BIBRONII GROUP
185	The analyses showed two topologies: one recovered under MP and the other under BI. The
186	topologies found are congruent in the main groups (SPR distance 0.6277- Figure 2); however, we
187	also detected incongruence within them.
188	The Liolaemus alticolor-bibronii group was recovered in both MP and BI analyses, with different
189	composition and with high support (Figure 3 and Figure 4). In the BI tree, a clade formed by the
190	L. gravenhorsti group and the L. lemniscatus group was recovered as sister of the L. alticolor-
191	bibronii group. On the other hand, the MP analysis recovered the L. lemniscatus group as a
192	member of the L. alticolor-group, but some terminal taxa were not recovered as members, despite
193	their previously assignment to the L. alticolor-bibronii group (L. paulinae DONOSO BARROS
194	1961, <i>L.</i> sp4, <i>L.</i> sp5, and <i>L.</i> sp14).
195	Within the Liolaemus alticolor-bibronii group, two main groups were recovered: the L. gracilis
196	and L. walkeri group (Figures 2, 3, and 4). The L. walkeri group, formed by terminal taxa of
197	northern distribution ranges (North Argentina, Bolivia and Peru), was recovered with high
198	support in BI, but moderate MP support. The L. gracilis group, on the other hand, was recovered
199	with high support in MP, but low support in BI. The latter group contains two clades: 1) a clade
200	formed by species distributed in central-southern Argentina (referred to as L. bibronii sensu
201	stricto clade) and 2) the L. robertmertensi group.
202	The taxonomic composition of each group recovered under MP and BI is listed in Table 3.
203	As we mentioned above, Liolaemus paulinae, previously considered member of the L. alticolor-
204	bibronii group, was not recovered as a member of the group. The same topology was recovered
205	for L . sp14 (sister taxon of L . paulinae). Liolaemus araucaniensis MÜLLER & HELLMICH 1932
206	did not show relations to any group, suggesting this species could be related to the $\it L. belli$ group.
207	Divergence time estimates
208 209	Divergence time estimates of the <i>Liolaemus alticolor-bibronii</i> group were obtained using a time-calibrated tree with BEAST including MP and BI topologies (Figures 5 and 6).

211	DATING
212	The two topologies resulted in two time calibrated trees with similar times of divergence. Our
213	results suggest that, according to the BI topology, the Liolaemus gravenhorsti group (sister group
214	of the L. alticolor-bibronii group) diverged in the Early Miocene 7 Myr (95% highest posterior
215	density interval (HPD): 9.32-4.89) ago, whereas in the MP topology this clade diverged 3.25
216	Myr (95%HPD: 4.82-1.71) ago. This clade is formed by species distributed in Argentina and
217	Chile.

- 218 We estimated the divergence time of the *Liolaemus alticolor-bibronii* group to Middle Miocene
- around 12.84 Myr ago for BI (95% HPD: 20.01-5.64) and 14.05 Myr ago for MP (95% HPD:
- 220 23.56-4.54).
- 221 Considering the clades of the *Liolaemus alticolor-bibronii* group, we estimated that the *L*.
- 222 gracilis clade diverged 10.49 Myr (95% HPD: 17.06-3.85) ago for BI, being 12.39 Myr (95%
- 223 HPD: 17.42-7.25) for MP. This clade splits into two clades: the L. bibronii sensu stricto clade
- and the *L. robertmertensi group*. The *L. bibronii sensu stricto* clade initiated its divergence 4.68
- Myr (95% HPD: 7.25-2.11) ago in BI, whereas for MP this clade diverged 9.82 Myr (95% HPD:
- 226 11.85-5.78) ago. The *L. robertmertensi* group does so 9.37 Myr (95% HPD: 15.68-3.01) ago in
- 227 BI, and 4.2 Myr (95% HPD: 6.84-1.67) ago for MP topology. The latter originated two clades,
- one distributed in central-southern Argentina, which diverged 6.75 Myr (95% HPD: 10.29-3.23)
- ago and the other distributed in Northwestern Argentina and Bolivia, diverging 5.62 Myr (95%
- 230 HPD: 7.45-3.81) ago, these clades are recovered only under BI.
- The *Liolaemus walkeri* clade dates back to the Late Miocene, around 11.54 Myr (95% HPD:
- 232 20.26-2.8) ago in our BI topology, 12.78 Myr (95% HPD: 19.65-5.87) ago in MP. Liolaemus
- 233 walkeri group includes a clade distributed exclusively in Peru (with an origin estimated at 10.38
- 234 Myr -95% HPD: 18.15-2.55 in BI, and 10.72 Myr 95% HPD: 19.32-2.12 for MP) as well as a
- clade distributed mainly in Bolivia (origin estimated around 2.45 Myr -95% HPD: 4.26-0.62-
- 236 recovered only with BI). While the topology recovered under MP *L. lemniscatus* diverged
- 3.15Myr (95% HPD: 5.05-1.23) ago from the *L. walkeri* clade, the BI topology, shows the *L.*
- 238 lemniscatus group as a member of the L. gravenhorsti group (outside of the L. alticolor-bibronii
- 239 group) diverging 3.5 Myr (95%HPD: 5.85–1.22) ago.

240	RECONSTRUCTION OF ANCESTRAL DISTRIBUTION
241	We compared six different scenarios in DEC, for each topology. The best Likelihood scores were
242	obtained with the unconstrained adjacency matrix (Tables 4). Based on this, we show the results
243	recovered with the unconstrained adjacency matrix for both topologies (BI and MP). We obtained
244	the same biogeographic scenarios for all three dispersion cost matrices used (Figure 7 and 8).
245	Alternative scenarios obtained with the constrained adjacency matrix can be found in
246	Supplemental Figures S3.
247	Divergence times, ancestral range and major probabilities of the main groups recovered are
248	shown in Table 5.
249	The ancestral area of the <i>Liolaemus alticolor-bibronii</i> and the <i>L. gravenhorsti</i> groups correspond
250	to the range BJ (Puna and Santiago; p: 1) and FJ (Prepuna and Santiago; p: 0.65) for the BI and
251	MP topology, respectively. Due to dispersion and/or vicariance events, the L. alticolor-bibronii
252	group occupies areas in Argentina, whereas the $\it L.~gravenhorsti$ remains confined to Chile.
253	Our results suggest that the ancestral area of the Liolaemus alticolor-bibronii group is formed by
254	the areas BL (Puna and Patagonia Central; p: 0.67- BI) and F (Prepuna; p: 0.41-MP).
255	Subsequently, a vicariance event for BI, and a dispersal event (MP) originated the L. gracilis
256	group and the L . walkeri clade. With lower probabilities the analyses shows the following
257	ancestral areas for the L. alticolor-bibronii group: B (Puna; p: 0.16) for BI; and BF (Puna and
258	Prepuna; p: 0.26) for MP; the range BH (Puna and Chaco; p: 0.17) for BI, and FJ (Prepuna and
259	Santiago; p: 0.23) or FL (Prepuna and Patagonia Central; p: 0.09) for MP.
260	The <i>Liolaemus gracilis</i> group has its origins in L (Patagonia Central; p: 0.5) for both topologies.
261	A dispersion event inside the L . $gracilis$ group, originated the L . $robertmertensi$ and the L .
262	bibronii groups. The first one, shows the HL range (Chaco and Patagonia Central; p: 1) as its
263	ancestral area for BI and area B (Puna; p: 0.36) for MP, whereas the L. bibronii sensu stricto
264	remains in L: Patagonia Central (p=1 BI; p=0.57 MP).
265	The Liolaemus walkeri group has B (Puna; p: 1) as its ancestral area for BI, and BF (Puna and
266	Prepuna; p: 0.87) for MP. After a dispersion event (BI) and a vicariance event (MP), the L .
267	walkeri group split into two clades. One occupied the range BC (Puna and Yungas, p: 0.84) in BI,
268	and B (Puna; p: 1) in MP, and the other remained in B (Puna; p: 0.68) for both topologies. In the

topology recovered under MP, the L. walkeri clade includes the L. lemniscatus group, whose 269 ancestral area corresponds to the EF range (Coquimbo and Prepuna; p: 1), but after an extinction 270 event is currently restricted to E (Coquimbo). 271 272 DISCUSSION 273 274 275 PHYLOGENY OF THE LIOLAEMUS ALTICOLOR-BIBRONII GROUP 276 We recovered the Liolaemus gravenhorsti group as sister taxon of the Liolaemus alticolorbibronii group. These results are in accordance with previous morphological- (Lobo, 2005; Díaz 277 Gómez & Lobo, 2006; Quinteros, 2013) and molecular- (Schulte et al., 2000; Schulte, 2013; 278 279 Pyron, Burbrink & Wiens, 2013; Zheng & Wiens, 2016) based phylogenies. 280 Relationships within the *Liolaemus alticolor-bibronii* group were previously studied by Quinteros (2013) and Aguilar et al. (2013). In his research, Quinteros (2013) includes 33 terminal 281 taxa which belong to the L. alticolor-bibronii group, performing a more inclusive study. On the 282 283 other hand, the molecular-based phylogeny by Aguilar et al. (2013) was focused on Peruvian 284 terminal taxa (including eight additional taxa members of the L. alticolor-bibronii group). Aguilar et al. (2013) described the L. alticolor-bibronii group as paraphyletic (see below). 285 Morando et al. (2004) and Martinez et al. (2011) performed phylogeographic analyses focusing 286 287 on populations of L. bibronii and L. gracilis, and L. bibronii, respectively. The relationships found in the present study are similar to those detected by Morando et al. (2004) and Martinez et 288 al. (2011), despite the higher number of terminal taxa included. 289 The topology recovered by Quinteros (2013) showed low support and low resolution in the clades 290 inside the Liolaemus alticolor-bibronii group. Nevertheless, we agree with Quinteros 2013 who 291 detected the L. lemniscatus and the L. robertmertensi groups nested inside the L. alticolor-292 bibronii group (Parsimony tree, figure 3). Previous studies found both groups outside of the L. 293 alticolor-bibronii group (Cei, 1986, 1993; Lobo, 2001, 2005; Díaz Gómez & Lobo, 2011). 294 Schulte et al. (2000), Schulte (2013), Pyron, Burbrink & Wiens (2013), while Zheng & Wiens 295 (2016) found L. robertmertensi settled inside the L. alticolor-bibronii group, but recovered the L. 296

- 297 lemniscatus group outside. Our BI tree is congruent with the latter topologies. The L. alticolor-
- 298 bibronii group contains in two main clades (the L. gracilis and L. walkeri groups), which was not
- 299 recovered previously. Reviewing the literature, the most similar topology is described by Aguilar
- et al. (2013), which recovered a Peruvian clade (similar to our L. walkeri clade), a clade with
- 301 species members of the *L. alticolor-bibronii* group and of the *L. monticola* and *L. pictus* groups.
- 302 The Liolaemus walkeri group recovered here shows the same composition as the Peruvian clade
- 303 of Aguilar et al. (2013), as well as species distributed in Bolivia and northern Argentina (Figure 2
- and Figure 3). As we briefly mentioned above, the main differences between our parsimony and
- 305 BI trees is the location of the *L. lemniscatus* group. Using parsimony, this group is recovered
- inside the L. alticolor-bibronii group and nested within the L. walkeri group, whereas in the BI
- 307 tree it is located outside the *L. alticolor-bibronii* group as a sister of the *L. gravenhorsti* group.
- 308 The topology recovered under BI is more congruent regarding species distribution, since the
- 309 species of the L. lemniscatus group are usually found in central Argentina and Chile (as are the
- 310 species members of the *L. gravenhorsti* group). The species of the *L. walkeri* group, on the other
- hand, are distributed in northwestern Argentina, Bolivia, and Peru.
- 312 The Liolaemus gracilis group has not been previously proposed as such. Again, the BI tree shows
- 313 more biogeographical congruence than the parsimony tree. Nevertheless, the two main clades (L.
- 314 bibronii sensu stricto and L. robertmertensi groups) which form the L. gracilis group are
- recovered in both analyses. In addition, the BI tree recovers L. gracilis, L. robertmertensi, L.
- sanjuanensis, L. saxatilis, and L. tandiliensis as closely related (as in Morando et al. 2004;
- 317 Martinez et al. 2011; Aguilar et al. 2013; Pyron, Burbrink & Wiens, 2013; Zheng & Wiens,
- 318 2016).
- The greater congruence between the BI and previous studies, compared to the parsimony tree,
- can be explained by similarities of the dataset, given that they share the same gene sequences
- 321 (Morando et al. 2004; Martinez et al. 2011; Aguilar et al. 2013).
- 322 The Liolaemus lemniscatus group was recovered inside the Liolaemus alticolor-bibronii group
- 323 (nested in the L. walkeri group) under MP, but outside (sister of the L. gravenhorsti group) under
- 324 BI. In previous molecular-based phylogenies, members of the L. lemniscatus group were found
- more related to species members of the L. nigroviridis and/or L. monticola group (Panzera et al.
- 326 2017; Pyron et al. 2013; Schulte et al. 2000; Schulte 2013). Moreover, Pyron et al. (2013),

Schulte et al (2000), and Schulte (2013) recover the *L. alticolor-bibronii* group as sister of the *L.* 327 328 gravenhorsti group (L. chiliensis group of Schulte 2013), with both more closely related to the L. elongatus-kriegi complexes than to the L. lemniscatus and L. nigroviridis groups. In our analyses 329 under BI (excluding morphology data), the L. lemniscatus group is paraphyletic and is recovered 330 outside the L. alticolor-bibronii group. Unfortunately, we cannot include species members of the 331 L. nigroviridis and/or the L. monticola groups in the present study. This will be are search avenue 332 to further investigate in future studies. 333

Deleted: and

334 335

Taxonomic implications

We included 15 populations of uncertain taxonomic status. These populations are currently 336 337 assigned to known species members of the L. alticolor-bibronii group, but differ in some morphological character states. According to our study (BI and Parsimony trees), most of them 338 can be considered candidate species. Liolaemus sp4 and L. sp5 are morphologically close to L. 339 araucaniensis. In both trees, BI and Parsimony, L. sp4 and L. sp5 are not closely related to L. 340 araucaniensis (which appears basal). This result, in addition to the varying character states, 341 converts these terminal taxa into candidate species. Liolaemus bibronii was characterized as a 342 species complex by Morando et al. (2007), Martinez et al. (2011) and Quinteros (2013). Over the 343 last few years, three species previously confused with L. bibronii have been described: L. 344 cyaneinotatus (Martinez et al., 2011), L. abdalai (Quinteros, 2012), and L. yalguaraz (Abdala, 345 Quinteros & Semhan, 2015). In this study, we include L. sp6, L. sp7, L. sp8, L. sp9, L. sp10 and 346 347 L. sp15, all of which are assigned to L. bibronii. Some of these terminal taxa were included in the phylogeographic study of Morando et al. (2007). Our results are consistent with those of 348 Morando et al. (2007), Martinez et al. (2011) and Quinteros (2013), concluding that despite the 349 350 newly described species, L. bibronii still corresponds to a complex of species with several 351 candidate species. Liolaemus robertmertensi was described by Hellmich (1964), but since its description no further taxonomic studies related to it. In this study, we included three populations 352 353 attributed to L. robertmertensi: L. sp11, L. sp12, and L. sp13. Liolaemus sp12 has previously been 354 included in molecular-based phylogenies (Schulte et al. 2000; Espinoza, Wiens, & Tracy 2004), whereas L. sp11 and L. s13 have only been included in a morphology-based phylogeny as L. 355 robertmertensi (Quinteros, 2013). In both analyses (Bayesian and Parsimony) performed here, 356

these terminal taxa are not closely related to *L. robertmertensi*, while still being members of the *L. robertmertensi* group. *Liolaemus* sp14 corresponds to a population distributed near *L. tandiliensis*. This terminal taxon was discovered only recently and is currently under description.

361

358

359

360

INCLUSION OF MORPHOLOGICAL AND CONTINUOUS CHARACTERS IN THE ANALYSES

363 364

365

366

367

368

369

370

371

372

373374

375

376

377

378

379

380

381

382

383

384

385 386

362

We performed MP and BI analyses excluding morphological data (Supplementary figures S4 and S5). Nevertheless, similar main groups are recovered. Under MP the Liolaemus alticolor-bibronii group is paraphyletic and includes members of the L. gravenhorsti group. BI topologies are similar to those detected under MP. The species members of the L. gravenhorsti group are nested inside the L. alticolor-bibronii group. Also, main clades of the L. alticolor-bibronii group are recovered, yet the relationships inside the L. gracilis group are not resolved. The L. lemniscatus group is recovered paraphyletic. Many authors mention homoplastic morphology (Alvarez et al., 1999; Escobar García et al., 2009; Mott T & DR Vieites 2009; Müller et al., 2004; among others) but there is also evidence of highly homoplasious mtDNA data (Engstrom, Shaffer, & McCord, 2004). Jarvis et al. (2014) performed a phylogenetic analysis in a very broad scale of major orders of birds 41.8 million base pairs (14536 loci) finding a topology with high values of bootstrap support. Gene trees (of every individual locus) in the same paper found that none of them was congruent to the species tree suggested by Hahn & Nakhleh (2015). Here, the inclusion of morphological data increases clade resolution, and support the monophyly of some groups. The study of continuous characters is limited to MP analysis, as it can only be performed by TNT software. Consequently, we tested which role continuous characters play in the recovered topology by excluding them. Without continuous characters the Liolaemus alticolor-bibronii group appears polyphiletyc. The topology recovers the main groups under MP and BI, but their composition include species members of the L. gravenhorsti group (see Supplementary figure S6). The use of continuous characters analyzed as such was employed in many previous studies (Abdala, 2007; Alvarez, Moyers Arévalo, & Verzi, 2017; Barrionuevo, 2017; Bardin, Rouget, & Cecca, 2017; Najera-Cortazar, Alvarez-Castaneda & de Luna, 2015; Quinteros, 2013; among many others). In the present study, continuous characters employed in morphological analyses

assisted to recover the monophyly of the *L. alticolor-bibronii* group and supported the monophyly of the *L. gravenhorsti* group. When comparing the results obtained under BI and MP (without continuous characters), we find that continuous characters as well as the optimality criterion influence the different topologies.

391 392

393

394

395

396

397

398

399 400

401

402 403

404

405

406

407

408

409

410

411

412

413

387

388

389

390

THE USE OF A PRIORI COMPONENT FROM DEC

Implementation of DEC models in Lagrange allows biogeographic analyses to infer biogeographic events under different probabilities, taking into account the distances among areas and the presence of geographic barriers. In this study, we applied two different adjacency matrices and three area-dispersal matrices, recovering different general patterns of diversification and species distribution in the Liolaemus alticolor-bibronii group, which allow inference of its evolutionary history. Chacon & Renner (2014) explored the influence of the user-defined components applicable in DEC-Lagrange (adjacency matrix, area-dispersal matrix). They concluded that results were most influenced by adjacency matrices, while the area-dispersal matrix and dispersal probabilities had negligible effects. In this study, we applied three different matrices with dispersal probabilities. Using the unconstrained adjacency matrix, the ancestral reconstructions were very congruent among each other; we found only one difference between the three matrices applied. In their study, Chacon & Renner (2004) found that an unconstrained adjacency matrix returned the best results (higher Likelihood score). Contrastingly, results by Ree & Smith (2008) and Clark et al. (2008) show a better data fit of the constrained matrix. In this study, we tested both, an unconstrained as well as a constrained adjacency matrix. The number of assigned ambiguous ancestral areas possible in each node was higher in the constrained than in unconstrained analyses (Table 4). Furthermore, the results obtained using the unconstrained matrix display higher Likelihood scores than the constrained matrix (Table 4). Based on these findings, we agree with Chacon & Renner (2004) concluding that the adjacency matrix influences the results in a DEC-Lagrange study, but at the same time, when applying a constrained matrix, the dispersal probabilities matrix had an effect on our results.

416	PATTERNS OF DIVERSIFICATION AND BIOGEOGRAPHIC IMPLICATIONS
417	The use of two different phylogenetic topologies to estimate the time of divergences and
418	reconstruction of ancestral distribution returned similar results (see Table 5). Despite the
419	differences recovered in the composition of main groups, their divergence times were congruent.
420	The exceptions were the Liolaemus robertmertensi and L. bibronii sensu stricto groups, even
421	though an overlap exists. The ancestral area reconstruction also shows some differences between
422	the topologies, but overall most results display great congruence. The main difference is in the
423	ancestral area of the L. alticolor-bibronii group. The BI topology recovers the range BL (Puna
424	and Patagonia Central), whereas the MP topology recovers the area F (Prepuna). The first one is
425	congruent with previous studies in Liolaemus (Cei, 1979; Díaz Gómez, 2011, and Schulte et al
426	2000) .
427	The fossil-calibrated dating analysis indicates that the initial divergence within <i>Eulaemus</i>
428	occurred approximately 18.08 Myr ago during the Early Miocene, which roughly corresponds to
429	previous studies (Fontanella et al., 2012). The origin and diversification of the <i>Liolaemus</i>
430	alticolor-bibronii group could have started around the Early-Middle Miocene (13-14 Myr ago),
431	which is consistent with results by Schulte, 2013; Medina et al., 2014 and Zheng & Wiens, 2016.
432	During that period, many dramatic changes occurred, eventually leading to the Andes uplift. The
433	Central Andes lifted quickly, geologically-speaking, from the late Miocene to the Early Pliocene
434	(Whitmore & Prance, 1987; Gregory-Wodzicki, 2000). The uplift separated the East from the
435	West of the continent and affected the dispersion of many taxa and potentially induced the
436	differentiation between populations (Elias et al., 2009). Our results support previous studies
437	suggesting an influence of the Andean uplift on the diversification of South American taxa
438	(Schulte et al., 2000; Hoorn et al. 2010; Pincheira-Donoso et al., 2013).
439	Regarding its evolution and distribution, it can be assumed that the <i>Liolaemus alticolor-bibronii</i>
440	group colonized areas along the lower Andes. Our results indicate that the ancestral area of the
441	group extended from the Patagonian Andes to the northern Andes (Argentina, Bolivia, and Perú).
442	This is in accordance with paleontological evidence: The oldest known fossil of <i>Liolaemus</i>
443	corresponds to Patagonia in the Miocene era, at the Gaiman Formation in Chubut, Argentina
444	(Albino, 2008).

445	Our findings are also consistent with those of Díaz Gómez (2011), whose DIVA (Dispersion-
446	Vicariance-Ronquist, 1997) analysis located the Liolaemidae common ancestor's distribution
447	from Peru to Patagonia, along the Andes and arid regions of South America. Cei (1979)
448	concluded that Patagonia was the center of origin for at least four <i>Liolaemus</i> groups, describing
449	two main faunal regions of Patagonia: 1) septentrional region (older Patagonia) and 2) meridional
450	region (Santa Cruz Province). Our results agree with Cei (1979)'s hypothesis as the first region
451	described in his paper comprises areas of the Andes and Patagonia included in the distribution
452	areas calculated in the present study. On the other hand, our results disagree with those published
453	by Schulte et al. (2000) who found the areas of Andes, occidental lower lands, and eastern lower
454	lands to be ancestral area of the <i>Liolaemus sensu stricto</i> subgenus which correspond to Sierras
455	Pampeanas, Maulina, and Chile Central in our study.
456	According to Bremer (1992), the ancestral area of a taxon is not necessarily to a single place, but
457	may be equal or larger than the area presently inhabited by the taxon. Results of an ancestral area
458	analysis will display a taxon's ancestral distribution range which is equal or smaller than the sum
459	of distribution ranges of its descendants. Including a fossil group neither distributed in ancestral
460	nor current areas of the studied taxa, may result in an ancestral area larger than the sum of the
461	descendants' distributions. In our study, we used a fossil record attributed to <i>Liolaemus</i> (Albino,
462	2008) in an area already present in the analysis.
	,
463	The common ancestor of the clade formed by the <i>Liolaemus alticolor-bibronii</i> group plus (<i>L.</i>
464	gravenhorsti + L. lemniscatus groups) had its divergence around 14-15 Myr ago. This calibration
465	coincides with the beginning of the Andes uplift (Donato et al., 2003) and our DEC analyses
466	(Figures 7-8), which suggest that vicariance event could have led to the current clade distribution
467	in Chile (L. gravenhorsti and L. lemniscatus groups) Argentina, Bolivia, and Peru (L. alticolor-
468	bibronii group). Because of their geography, orogeny, and vast biodiversity, the Andes
469	Mountains were a subject of interest of many distribution and evolution studies (Castroviejo-
470	Fisher et al., 2014; Chaves et al., 2011; Goicoechea et al., 2012, Torres-Carbajal et al., 2016).
471	Based on a phylogenetic analysis of <i>Proctoporus/Riama</i> lizards, Doan & Schargel (2003)
472	proposed the south-to-north speciation hypothesis (SNSH), which predicts a pattern of
473	cladogenesis of Andean species following the rise of the Andes, with basal lineages occurring in
474	southern areas and derived ones in northern areas. Our results gained with BI topology agree with

the hypothesis of Doan & Schargel (2003) since the ancestral area recovered for the L. alticolor-		
the <i>L. alticolor-bibronii</i> group corresponds to Prepuna, and the derived groups are distributed		Deleted: show
across both, north and south of Prepuna. The SNSH was also rejected for <i>Proctoporus</i> lizards	` } }	Deleted: to
based on a phylogenetic analysis with increased character and taxon sampling (Goicoechea et al.,		
2012), as well as for other organisms such as glass frogs (Castroviejo-Fisher et al., 2014).		
The <i>Liolaemus gravenhorsti</i> group has its origins 7.72 Myr (95% HPD: 9.32-6.21) ago matching		
the continued Andes uplift. At that time (around 6.2 Myr ago), lakes and fluvial deposits were		
affected by a deformation event, possibly the final uplift stage reaching the present average		
altitude of 4400 masl (Garzione et al. 2008), which may have triggered a dispersal or a vicariance		
event of L. chiliensis and L. cyanogaster towards Argentina.		
The divergence time of the <i>Liolaemus alticolor-bibronii</i> group was estimated around 12-14 Myr		
ago, which corresponds to the formation of the Atacama Desert approximately 14.7 Myr ago,		
based on the lack of accumulation of cupric deposits in northern Chile (Alpers & Brimhall,		
1988). Our results of BI topology suggest that following the desert's formation a vicariance event		
$could \ have \ split \ the \ \textit{L. alticolor-bibronii} \ group \ into \ two \ main \ clades \ distributed \ North \ (\textit{L. walkeri})$		
clade) and South (L. gracilis group) of the Atacama Desert. A similar scenario was recovered		
with MP topology, but instead of a vicariance event, dispersal events led to the L. walkeri group	<u> </u>	Deleted: dispersion
to the north, and the L. gracilis group to the south.		Deleted: a Deleted: to
The diversification of the Liolaemus gracilis group approximately 10-12 Myr ago coincides with		
the uplift the Austral Andes (altitude >4000 masl), which reached their maximum elevation		
around 8-12 Myr ago (Miocene-Pliocene) (Hartley, 2003). This geological event may have		
dispersed the species of the L. gracilis group giving origin to two clades: one distributed in		
central-northern Argentina (L. robertmertensi group), and a clade distributed in central-southern		
	based on a phylogenetic analysis with increased character and taxon sampling (Goicoechea et al., 2012), as well as for other organisms such as glass frogs (Castroviejo-Fisher et al., 2014). The <i>Liolaemus gravenhorsti</i> group has its origins 7.72 Myr (95% HPD: 9.32-6.21) ago matching the continued Andes uplift. At that time (around 6.2 Myr ago), lakes and fluvial deposits were affected by a deformation event, possibly the final uplift stage reaching the present average altitude of 4400 masl (Garzione et al. 2008), which may have triggered a dispersal or a vicariance event of <i>L. chiliensis</i> and <i>L. cyanogaster</i> towards Argentina. The divergence time of the <i>Liolaemus alticolor-bibronii</i> group was estimated around 12-14 Myr ago, which corresponds to the formation of the Atacama Desert approximately 14.7 Myr ago, based on the lack of accumulation of cupric deposits in northern Chile (Alpers & Brimhall, 1988). Our results of BI topology suggest that following the desert's formation a vicariance event could have split the <i>L. alticolor-bibronii</i> group into two main clades distributed North (<i>L. walkeri</i> clade) and South (<i>L. gracilis</i> group) of the Atacama Desert. A similar scenario was recovered with MP topology, but instead of a vicariance event, dispersal events led to the <i>L. walkeri</i> group to the north, and the <i>L. gracilis</i> group to the south. The diversification of the <i>Liolaemus gracilis</i> group approximately 10-12 Myr ago coincides with the uplift the Austral Andes (altitude >4000 masl), which reached their maximum elevation around 8-12 Myr ago (Miocene-Pliocene) (Hartley, 2003). This geological event may have dispersed the species of the <i>L. gracilis</i> group giving origin to two clades: one distributed in	bibronii group includes Patagonia, and the derived groups show a northern distribution. On the other hand, our results obtained with MP topology reject the SNSH, since the ancestral range of the L. alticolor-bibronii group corresponds to Prepuna, and the derived groups are distributed both, north and south of Prepuna. The SNSH was also rejected for Proctoporus lizards based on a phylogenetic analysis with increased character and taxon sampling (Goicoechea et al., 2012), as well as for other organisms such as glass frogs (Castroviejo-Fisher et al., 2014). The Liolaemus gravenhorsti group has its origins 7.72 Myr (95% HPD: 9.32-6.21) ago matching the continued Andes uplift. At that time (around 6.2 Myr ago), lakes and fluvial deposits were affected by a deformation event, possibly the final uplift stage reaching the present average altitude of 4400 masl (Garzione et al. 2008), which may have triggered a dispersal or a vicariance event of L. chiliensis and L. cyanogaster towards Argentina. The divergence time of the Liolaemus alticolor-bibronii group was estimated around 12-14 Myr ago, which corresponds to the formation of the Atacama Desert approximately 14.7 Myr ago, based on the lack of accumulation of cupric deposits in northern Chile (Alpers & Brimhall, 1988). Our results of BI topology suggest that following the desert's formation a vicariance event could have split the L. alticolor-bibronii group into two main clades distributed North (L. walkeri clade) and South (L. gracilis group) of the Atacama Desert. A similar scenario was recovered with MP topology, but instead of a vicariance event, sispersal events led to the L. walkeri group to the north, and the L. gracilis group to the south. The diversification of the Liolaemus gracilis group approximately 10-12 Myr ago coincides with the uplift the Austral Andes (altitude >4000 masl), which reached their maximum elevation around 8-12 Myr ago (Miocene-Pliocene) (Hartley, 2003). This geological event may have dispersed the species of the L. gracilis group givi

while the group's more terminal clades diverge in the Pleistocene (2.5 Myr) and are distributed in

Argentina (L. bibronii sensu stricto clade). Similarly, Cosacov et al. (2010) report a

phylogeographic break for Calceolaria poliriza in southern Mendoza possibly caused by a

landscape discontinuity (Ramos & Kay, 2006) during the uplift of the Andes in the Late Miocene (11 Myr). Inside the *L. gracilis* group, the *L. bibronii sensu stricto* clade originates 5 Myr ago,

500

501 502

503

Patagonia. Sersic et al. (2011) studied phylogeographical patterns of plants and vertebrates 510 (including some Liolaemus species) from Patagonia. Specifically, Sersic et al. (2011) argued that 511 512 the phylogeographic break of L. bibronii could be concordant with the Rio Limay basin which drains (or that in the past drained) the East Andean watershed crossing the Patagonian steppe to 513 the Atlantic Ocean. Other studies (Morando, Ávila & Sites., 2003, 2007; Avila, Morando & Sites, 514 2006) claimed that three species of *Liolaemus* (among them *L. bibronii*) shared a vicariant pattern 515 produced by the coastline shifts along the Atlantic at the northern and southern rim of the 516 Somuncurá Plateau. 517 518 The Liolaemus robertmertensi group (recovered under BI) is distributed in Sierras Pampeanas 519 (Central and northwestern Argentina) and Sierras Subandinas (northwestern Argentina). A 520 possible explanation for the present distribution of the group's Astereceae species is proposed by 521 Crisci et al. (2001): They found a historical pattern that related Tandilia to Ventania, Mahuidas, 522 Sierras Pampeanas and Sierras Subandinas to the West, and Uruguay and southern Brazil to the 523 East. Crisci et al. (2001) hypothesize that the endemism of these mountainous chains is a result of generally arid conditions during the Tertiary and/or Quaternary geologic periods in southern 524 525 South America, which eventually led to an isolation and differentiation of these populations in 526 the more elevated areas. The ancestral area recovered under MP for the L. robertmertensi group 527 is Puna, and its diversification time is approximately 4.2 Myr. This species group currently inhabits the Sierras Subandinas. These mountains showed a second deformation cycle at 4.5 Myr, 528 with an out of sequence growth event (Hernández & Echavarria, 2009). This can explain the 529 530 vicariance and dispersal events that the species of the group experienced. The Liolaemus walkeri clade started its diversification 11-12 Myr ago in an area which today 531 corresponds to the Andean Plateau. This plateau rose from 2500 masl to 4000 masl around 10 532 Myr ago, during the Miocene-Pliocene (Gubbels, Isacks & Farrar, 1993; Gregory-Wodzicki, 533 2000; Hartley, 2003) under an arid to semiarid climate conditions (Hartley, 2003). The L. 534

Deleted: dispersion

Deleted: which

Deleted: suffered

walkeri clade is formed by two clades distributed in central and southern Peru, Bolivia and

(the northern distributed clade) while the other clade remained in the Puna. The clade split

northern Argentina. This distribution could be due to a dispersal event from the Puna to Yungas

follows a similar pattern as the plant genus Distichia which separated due to the plateau's climate

535

536

537

542	conditions into clades in northern Argentina and Chile (towards the South) and Ecuador and
543	Colombia (towards the North) (Ramirez Huaroto, 2012).
544	The desertification process from the Miocene to Pliocene may have caused the range expansion
545	of the ancestors of the species members of the Liolaemus alticolor-bibroni group. Subsequently,
546	the arid/humid cycles which followed the glacial and interglacial period of the Pliocene and
547	Pleistocene produced expansion and retraction of arid and damp habitats, acting as geographic
548	barriers and causing fragmentation and speciation of the extant taxa.
549	In conclusion, we describe the possible ancestral area of the Liolaemus alticolor-bibronii group
550	as a large area which includes Patagonia and the Puna highlands during the Lower Miocene and
551	the Pleistocene. The inclusion of species members of the <i>L. monticola</i> and <i>L. nigroviridis</i> groups
552	will probably modify the ancestral area-range of the L. alticolor-bibronii group.
553	
554	ACKNOWLEDGEMENTS
555	We are grateful to F. Lobo, J. M. Díaz Gómez, C. Abdala, M. Quipildor, S. Ruiz, T. Hibbard, and
556	F. Arias for their assistance in the field, lab and/or discussion of ideas related to this study. We
557	thank T. Hibbard and M. Schulze for improving the English style. We would like to thank S.
558	Kretzschmar, G. Scrocchi and E. Lavilla (FML); J. Williams (MLP); J. Faivovich, and S. Nenda
559	(MACN); J. C. Acosta, A. Laspiur, and E. Sanabria (UNSJ); L. Vega (UNdMP), R. Aguayo and
560	F. Valdivia (CBGR); J. Aparicio, A. Kirigin, and M. Ocampo-Vallivian (CBF); H. Voris and A.
561	Resetar (FMNH); L. Ford and D. Frost (AMNH); J. Cadle and J. Rosado (MCZ); J. Wiens and E.
562	Censky (CMNH); T. Reeder and R. Etheridge (SDSU); K. de Queiroz and R. Heyer (USNM), for
563	allowing access to their collections. We thank Willi Heniing Society for made TNT freely
564	available. We thank two anonymous reviewers which comments greatly improves the MS.
565	REFERENCES
566	Abdala CS, Quinteros AS, Semham RV. 2015. A New Species of Liolaemus of the Liolaemus
567	alticolor-bibronii Group (Iguania: Liolaemidae) from Mendoza, Argentina South American

Journal of Herpetology 10 (2): 104-115.

- Aguilar C, Wood Jr PL, Cusi JC, Guzmán A, Huari F, Lundberg M, Sites Jr JW. 2013.
- 570 Integrative taxonomy and preliminary assessment of species limits in the *Liolaemus*
- 571 walkeri complex (Squamata, Liolaemidae) with descriptions of three new species from
- 572 Perú. ZooKeys **364:** 47–91.
- 573 Albino AM. 2008. Lagartos iguanios del Colhuehuapense (Mioceno Temprano) de Gaiman
- 574 (provincia del Chubut, Argentina). Ameghiniana 45: 775–782.
- 575 Alpers C, Brimhall G. 1988. Middle Miocene climatic change in the Atacama Desert, northern
- 576 Chile: Evidence from supergene mineralization at La Escondida. Geological Society of America
- 577 Bulletin 100: 1640-1656.
- 578 Álvarez A, Moyers Arévalo RL, Verzi DH. 2017. Diversification patterns and size evolution in
- caviomorph rodents, *Biological Journal of the Linnean Society* **121(4)**: 907–922,
- 580 https://doi.org/10.1093/biolinnean/blx026
- 581 Alvarez Y, Juste J, Tabares E, Garrido-Pertierra A, Ibañez C, Bautista JM. 1999. Molecular
- 582 Phylogeny and Morphological Homoplasy in Fruitbats. *Molecular Biology and Evolution* 16(8):
- 583 1061-1067
- 584 Ávila LJ, Morando M, Sites Jr JW. 2006. Congeneric phylogeography: hypothesizing species
- limits and evolutionary processes in Patagonian lizards of the *Liolaemus boulengeri* group
- 586 (Squamata: Liolaemini). Biological Journal of the Linnean Society 89: 241-275.
- **Bardin J, Rouget I, F. Cecca**. 2017. The phylogeny of Hildoceratidae (Cephalopoda,
- Ammonitida) resolved by an integrated coding scheme of the conch. *Cladistics* **33**: 21–40
- 589 Barrionuevo JS. 2017. Frogs at the summits: phylogeny of the Andean frogs of the genus
- 590 Telmatobius (Anura, Telmatobiidae) based on phenotypic characters. Cladistics 33: 41-68
- 591 Bremer K. 1992. Ancestral Areas: a cladistic reinterpretation of the center of origin concept.
- 592 *Systematic Biology* **41:** 436-445.
- 593 Brooks DR. 1990. Parsimony analysis in historical biogeography and coevolution: ethodological
- and theoretical update. Systematic Zoology **39:**14-30.

- 595 Castroviejo-Fisher S, Guayasamin JM, Gonzalez-Voyer A, Vilá A. 2014. Neotropical
- diversification seen through glassfrogs. *Journal of Biogeography* **4:** 66–80.
- 597 Cei JM. 1979. Remarks on the South American lizard *Liolaemus anomalus* Koslowsky, and the
- 598 synonymy of Phrynosaura werneri Müller (Reptilia, Lacertilia, Iguanidae). Journal of
- 599 *Herpetology* **13:** 183-186.
- 600 Cei JM. 1986. Reptiles del Centro, Centro-oeste y Sur de la Argentina. Museo Regionale di
- 601 Scienze Naturali, Torino: Monografie 4:1-527.
- 602 Cei JM. 1993. Reptiles del noroeste, nordeste y este de la Argentina. Museo Regionale. Di
- 603 Scienze Naturale, Torino: Monografie 14: 1–949.
- 604 Chacón J, Renner SS. 2014. Assessing model sensitivity in ancestral area reconstruction using
- 605 LAGRANGE: a case study using the Colchicaceae family. Journal of Biogeography
- 606 doi:10.1111/jbi.12301.
- 607 Chaves JA, Smith TB. 2011. Evolutionary patterns of diversification in the Andean
- 608 hummingbird genus Adelomyia. Molecular Phylogenetics and Evolution 60: 207–218.
- 609 Clark JR, Ree RH, Alfaro ME, King MG, Wagner WL, Roalson EH. 2008. A comparative
- 610 study in ancestral range reconstruction methods: retracing the uncertain histories of insular
- 611 lineages. Systematic Biology 57:693–707.
- 612 Cosacov A, Sérsic AN, Sosa V, Johnson LA, Cocucci AA. 2010. Multiple periglacial refugia in
- 613 the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography
- of Calceolaria polyrhiza. Journal of Biogeography 37: 1463-1477.
- 615 Crisci JV, Freire-E S, Sancho G, Katinas L. 2001. Historical Biogeography of the Asteraceae
- 616 from Tandilia and Ventania mountain ranges (Buenos Aires, Argentina). Caldasia 23:21–41.
- 617 **Díaz Gómez JM, Lobo F. 2006**. Historical biogeography of a clade of *Liolaemus* (Iguania:
- 618 Liolaemidae) based on ancestral areas and dispersal-vicariance analysis (DIVA).
- 619 Papéis Avulsos de Zoologia 46: 261–274.
- 620 Díaz Gómez JM. 2011. Estimating ancestral ranges: Testing methods with a clade of Neotropical
- 621 lizards (Iguania: Liolaemidae). *PLoS ONE* **6:** e26412.

- 622 Doan TM, Schargel WE. 2003. Bridging the gap in Proctoporus distribution: a new species
- 623 (Squamata: Gym-nophthalmidae) from the Andes of Venezuela. Herpetologica 59: 68–75.
- 624 Donato M, Posadas P, Miranda-Esquivel DR, Ortiz Jaureguizar E, Cladera G. 2003.
- 625 Historical biogeography of the Andean region: evidence from Listroderina (Coleoptera:
- 626 Curculionidae: Rhytirrhinini) in the context of the South American geobiotic scenario.
- 627 Biological Journal of the Linnean Society 80: 339-352.
- 628 Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating
- with confidence. PLoS Biologic 4: e88.
- 630 Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling
- trees. BMC Evolutionary Biology 7: 214.
- 632 Elias M, Joron M, Willmott K, Silva-Brandão KL, Kaiser V, Arias CF, Gomez Piñerez LM,
- 633 Uribe S, Brower AVZ, Freitas AVL, Jiggins CD. 2009. Out of the Andes: patterns of
- diversification in clearwing butterflies. *Molecular Ecology* **18**: 1716–1729.
- 635 Engstrom TN, Shaffer HB, McCord WP. 2004. Multiple data sets, high homoplasy, and the
- 636 phylogeny of softshell turtles (Testudines: Trionychidae). Systematic Biology 53(5): 693-710.
- 637 Escobar García P, Schönswetter P, Fuertes Aguilar J, Nieto Feliner G, Schneeweiss GM.
- 638 2009. Five molecular markers reveal extensive morphological homoplasy and reticulate evolution
- 639 in the Malva alliance (Malvaceae). Molecular Phylogenetics and Evolution 50: 226-239.
- 640 Espinoza RE, Wiens JJ, Tracy CR. 2004. Recurrent evolution of herbivory in small, cold-
- climate lizards: breaking the ecophysiological rules of reptilian herbivory. Proceedings of the
- National Academy of Sciences of the United States. 101: 16819-16824.
- 643 Fontanella FM, Olave M, Avila LJ, Sites JW Jr, Morando M. 2012. Molecular dating and
- 644 diversification of the South American lizard genus Liolaemus (subgenus Eulaemus) based on
- 645 nuclear and mitochondrial DNA sequences. Zoological Journal of the Linnean Society 164: 825–
- 646 835.
- 647 Garzione CN, Hoke GD, Libarkin JC, Withers S, Mac Fadden B, Eiler J, Ghosh P, Mulch
- 648 **A. 2008**. Rise of the Andes. *Science* **320**:1304-1307.

- 649 Goicoechea N, Padial JM, Chaparro JC, Castroviejo-Fisher S, De la Riva I. 2012. Molecular
- 650 phylogenetics, species diversity, and biogeography of the Andean lizards of the genus
- 651 Proctoporus (Squamata: Gymnophthalmidae). Molecular Phylogenetics and Evolution 65: 953-
- 652 964.
- 653 Goloboff P, Catalano S. 2016. TNT, version 1.5, with a full implementation of phylogenetic
- morphometrics. Cladistics 32: 221-238.
- 655 Goloboff P, Farris J, Nixon K. 2003. T.N.T.: Tree Analysis Using New Technology. Program
- and documentation, available from http://www.lillo.org.ar/phylogeny/tnt/
- 657 Goloboff P, Farris J, Nixon K. 2008. TNT, a free programa for phylogentic analysis. Cladistics
- 658 **24:** 774-786.
- 659 Goloboff PA, Mattoni CI, Quinteros AS. 2006. Continuous Characters Analyzed as Such.
- 660 Cladistics 22: 589-601.
- **Gregory-Wodzicki KM. 2000**. Uplift history of the Central and Northern Andes: a review.
- 662 Geological Society of America Bulletin 112: 1091–1105.
- 663 Gubbels RW, Isacks BL, Farrar E. 1993. High-level surfaces, plateau uplift, and foreland
- development, Bolivian central Andes. *Geology* 21: 695–69.
- 665 Hahn MW, Nakhleh L. 2015. Irrational exuberance for resolved species trees. Evolution 70: 7-
- 666 17.
- 667 Hall, T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
- programforWindows95/98/NT. Nucleic Acid Syposium Series 41:95–98.
- 669 Hartley A. 2003. Andean uplift and climate change. Journal of the Geological Society 160: 7-
- 670 10.
- 671 Hausdorf B. 1998. Weighted ancestral area analysis and a solution of the redundant distribution
- problem. Systematic Biology 47: 445-456.
- 673 Hedges SB, Kumar S. 2004. Precision of molecular time estimates. *Trends in Genetetic* 20:
- 674 242–247.

- 675 **Hellmich W. 1964**. Über eine neue *Liolaemus*-Art aus den Bergen von Catamarca,
- 676 Argentinien. Senckenb Biologica 45: 505-507.
- 677 Hernández R, Echavarria L. 2009. Faja plegada y corrida subandina del noroeste argentino:
- 678 estratigrafía, geometría y cronología de la deformación. Revista de la Asociación Geológica
- 679 *Argentina*, **65**: 68-80.
- 680 Ho SY, Phillips MJ, Drummond AJ, Cooper A. 2005. Accuracy of rate estimation using
- 681 relaxed-clock models with a critical focus on the early metazoan radiation. Molecular Biology
- 682 and Evolution 22: 1355–1363.
- 683 Hoorn C, Wesselinghter Steege FP, Bermudez H, Mora MA, Sevink A, Sanmartín J,
- 684 Sanchez-Meseguer I, Anderson A, Figueiredo CL, Jaramillo JP, Riff C, Negri D,
- 685 Hooghiemstra FR, Lundberg H, Stadler J, Sarkinen T, Antonelli A. 2010. Amazonia
- through time: Andean Uplift, climate change, landscape evolution, and biodiversity. Science 330:
- 687 927-931.
- 688 Jarvis, ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SY, Faircloth BC, Nabholz B,
- 689 Howard, JT. 2014. Whole-genome analyses resolve early branches in the tree of life of modern
- 690 birds. Science 346: 1320-1331.
- 691 Kumar, S, Stecher G, Tamura K. 2016. MEGA 7: Molecular Evolutionary Genetics Analysis
- version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874.
- 693 Laurent RF. 1983. Contribución al conocimiento de la estructura taxonómica del género
- 694 Liolaemus Wiegmann (Iguanidae). Boletin de la Asociacion Herpetologica Argentina 1:15-18.
- 695 **Lobo F. 2001**. A phylogenetic analysis of lizards of the *Liolaemus chiliensis* group (Iguania:
- 696 Tropiduridae). Journal of Herpetologic 11:137–150.
- 697 **Lobo F. 2005**. Las relaciones filogenéticas en el grupo *chiliensis* de *Liolaemus* (Iguania:
- 698 Liolaemidae). Sumando nuevos caracteres y taxa. Acta Zoologica Lilloana 49:67–89.
- 699 **Lobo F, Espinoza RE. 1999**. Two new cryptic species of *Liolaemus* (Iguania: Tropiduridae)
- 700 from northwestern Argentina: resolution of the purported reproductive bimodality of *Liolaemus*
- 701 *alticolor. Copeia* **1999**:122–140. doi:10.2307/1447393.

- 702 Martínez LE, Ávila LJ, Pérez CHF, Pérez DR, Sites Jr JW, Morando M. 2011. A new
- 703 species of *Liolaemus* (Squamata, Iguania, Liolaemini) endemic to the Auca Mahuida volcano,
- Northwestern Patagonia, Argentina. Zootaxa 3010: 31-46.
- 705 Martinez Oliver I, Lobo F. 2002. Una nueva especie de Liolaemus del grupo alticolor (Iguania:
- 706 Liolaemidae) de la puna salteña, Argentina. Cuadernos de Herpetología 16(1):47-64.
- 707 Medina CD, Avila LJ, Sites Jr JW, Morando M. 2014. Multilocus phylogeography of the
- 708 Patagonian lizard complex Liolaemus kriegi (Iguania: Liolaemini). Biological Journal of the
- 709 Linnean Society 113:256–269. doi:10.1111/bij.12285.
- 710 Miller MA, Pfeiffer W, Schwartz T. 2010. "Creating the CIPRES Science Gateway for
- 711 inference of large phylogenetic trees" in Proceedings of the Gateway Computing Environments
- 712 Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1 8.
- 713 Morando M, Ávila LJ, Sites Jr JW. 2003. Sampling strategies for delimiting species: genes,
- 714 indviduals, and populations in the *Liolaemus elongatus-kriegi* complex (Squamata: Liolaemidae)
- in Andean-Patagonian. South America. Systematic Biology 52: 159-185.
- Morando M, Ávila, LJ, Baker J, Sites Jr JW. 2004. Phylogeny and phylogeography of the
- 717 Liolaemus darwinii complex (Squamata: Liolaemidae): Evidence for introgression on incomplete
- 718 lineage sorting. *Evolution* **58**: 842-861.
- 719 Morando M, Ávila LJ, Turner CR, Sites JW Jr. 2007. Molecular evidence for a species
- 720 complex in the Patagonian lizard *Liolaemus bibronii* and phylogeography of the closely related
- 721 Liolaemus gracilis (Squamata: Liolaemini). Molecular Biology and Evolution 43:952–973.
- 722 doi:10.1016/j.ympev.2006.09.012.
- 723 Morrone JJ. 2001. Biogeografia de América Latina y el Caribe. M&T-Manuales & Tesis SEA,
- 724 vol. 3. Zaragoza, 148 pp.
- 725 Mott T, DR Vieites. 2009. Molecular phylogenetics reveals extreme morphological homoplasy
- 726 in Brazilian worm lizards challenging current taxonomy. *Molecular Phylogenetics and Evolution*,
- 727 **51(2)**: 190-200

- 728 Mueller RL, Macey JR, Jaekel M, Wake DB, JL Boore. 2004. Morphological homoplasy, life
- 729 history evolution, and historical biogeography of plethodontid salamanders inferred from
- 730 complete mitochondrial genomes. *PNAS*, **101(38)**: 13820-13825
- 731 Nájera-Cortazar LA, Álvarez-Castañeda ST, De Luna E. 2015. An Analysis of Myotis
- 732 peninsularis (Vespertilionidae) Blending Morphometric and Genetic Datasets. Acta
- 733 *Chiropterologica* **17(1)**: 37-47.
- 734 Nylander, J.A.A., Olsson, U., Alström, P., Sanmartín, I., 2008. Accounting for phylogenetic
- uncertainty in biogeography: a Bayesian approach to dispersal-vicariance analysis of the
- thrushes (Aves: Turdus). Systematic Biology 57, 257–268.
- 737 Olave M, Avila LJ, Sites JW Jr, Morando M. 2011. Evidence of hybridization in the
- 738 Argentinean lizard Liolaemus gracilis and Liolaemus bibronii (Iguani:Liolaemini): an integrative
- 739 approach based on genes and morphology. *Molecular Phylogenetics and Evolution* **61**: 381–391.
- 740 Ortiz JC. 1981. Estudio multivariado de las especies de *Liolaemus* del grupo *nigromaculatus*
- 741 (Squamata, Iguanidae). Anales del Museo de Historia Natural de Valparaíso 14: 247-265.
- 742 Panzera A, Leaché AD, D'Elia G, Victoriano PF. 2017. Phylogenomic analysis of the Chilean
- 743 clade of Liolaemus lizards (Squamata: Liolaemidae) based on sequence capture data. PeerJ
- 744 **5**:e3941. DOI 10.7717/peerj.3941
- 745 Pincheira-Donoso D, Tregenza T, Matthew J, Hodgson DJ. 2013. The evolution of viviparity
- 746 opens opportunities for lizard radiation but drives it into a climatic cul-de-sac. Global Ecology
- 747 and Biogeography. 22: 857–867.
- 748 Ponce JF, Rabassa J, Coronato A, Borromei AM. 2011. Palaeogeographical evolution of the
- 749 Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene.
- 750 Biological Journal of the Linnean Society 103: 363–379. https://doi.org/10.1111/j.1095-
- 751 8312.2011.01653.x
- 752 Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution
- **753 25**: 1253–1256.
- 754 Pyron RA, Burbrink FT, Wiens JJ. 2013. A phylogeny and revised classification of Squamata,
- including 4161 species of lizards and snakes. Evolutionary Biology 13: 93.

- 756 **Quinteros AS. 2012**. Taxonomy of the *Liolaemus alticolor-bibronii* group (Iguania:
- 757 Liolaemidae), with descriptions of two new species. Herpetologica 68:100-120. doi:10.1655/
- 758 HERPETOLOGICA-D-10-00065.1
- 759 **Quinteros AS. 2013**. A morphology-based phylogeny of the *Liolaemus alticolor–bibronii* group
- 760 (Iguania: Liolaemidae). Zootaxa 3670: 1-32.
- 761 Quinteros AS, Valladares P, Semhan R, Acosta JL, Barrionuevo S, CS Abdala. 2014. A new
- 762 species of *Liolaemus* (Iguania: Liolaemidae) of the *alticolor-bibronii* group from northern Chile.
- South American Journal of Herpetology 9:20–29. doi:10.2994/SAJH-D-13-00040.1
- Rambaut A, Suchard MA, Xie D, AJ Drummond. 2014. Tracer v1.6, Available
- 765 from http://beast.bio.ed.ac.uk/Tracer
- 766 Rambaut A. 2008. FigTree: tree figure drawing tool, version 1.2.2. FigTree website. Available
- at: http://tree.bio.ed.ac.uk/software/figtree/ Accessed 2008 Dec 18.
- 768 Ramirez Huaroto D. W. 2012. Filogenia y Biogeografía del género Distichia Nees & Meyen
- 769 (juncaceae) en los Andes Tropicales. Unpublished MSc. Universidad Internacional Menendez
- 770 Pelayo.
- 771 Ramos VA, Kay SM. 2006. Overview of the Tectonic Evolution of the Southern Central Andes
- of Mendoza and Neuquén (35°- 39°S Latitude). Geological Society of America, Special Paper 407:
- 773 1-18
- 774 Ree RH, Smith SA. 2008. Maximum Likelihood Inference of Geographic Range Evolution by
- Dispersal, Local Extinction, and Cladogenesis. Systematic Biology 57:1,4-14.
- 776 Roig Juñent S. 1994. Historia biogeográfica de América del Sur austral. Multequina 3: 167-203.
- 777 Ronquist, F. 1997. Dispersal-vicariance analysis: A new approach to thequantification of
- historical biogeography. Systematic Biology **46**: 195-203.
- 779 Ronquist F, Huelsenbeck JP. 2003. Mr Bayes 3: Bayesian phylogenetic inference under mixed
- models. *Bioinformatic* **19**:1572–1574. doi:http://dx.doi.org/10.1093/bioinformatics/btg180.
- 781 Rota J. 2011. Data Partitioning in Bayesian Analysis: Molecular Phylogenetics of Metalmark
- 782 Moths (Lepidoptera: Choreutidae). *Systematic Entomologic* **36**: 317-329.

- 783 Schulte JA, Macey JR, Espinoza RE, Larson A. 2000. Phylogenetic relationships in the
- 784 iguanid lizard genus *Liolaemus*: multiple origins of viviparous reproduction and evidence for
- 785 recurring Andean vicariance and dispersal. *Biological Journal of the Linnean Society* **69**:75–102.
- 786 Schulte JA. 2013. Undersampling Taxa Will Underestimate Molecular Divergence Dates: An
- 787 Example from the South American Lizard Clade Liolaemini. *International Journal of*
- 788 Evolutionary Biology 1-12 http://dx.doi.org/10.1155/2013/628467
- 789 Sérsic AN, Cosacov A, Cocucci AA, Johnson IA, Pozner R, Avila LJ, Sites Jr JW, Morando
- 790 M. 2011. Emerging phylogeographical patterns of plants and terrestrial vertebrates from
- 791 Patagonia. Biological Journal of the Linnean Society 103: 475–494.
- 792 Torres-Carvajal O, Lobos SE, Venegas PJ, Chávez G, Aguirre-Peñafiel V, Zurita D,
- 793 Echevarría, LY. 2016. Phylogeny and biogeography of the most diverse clade of South
- 794 American gymnophthalmid lizards (Squamata, Gymnophthalmidae, Cercosaurinae). Molecular
- 795 *Phylogenetics and Evolution* **99:** 63–75. http://dx.doi.org/10.1016/j.ympev.2016.03.006.
- 796 Troncoso-Palacios J, Elorza AA, Puas GI, Alfaro-Pardo E. 2016. A new species
- 797 of Liolaemus related to L. nigroviridis from the Andean highlands of Central Chile (Iguania,
- 798 Liolaemidae). ZooKeys 555: 91-114.
- 799 Victoriano PF, Ortiz JC, Benavides E, Adams BJ, Sites JR JW. 2008. Comparative
- 800 phylogeography of codistributed species of Chilean Liolaemus (Squamata: Tropiduridae) from
- the central-southern Andean range. *Molecular Ecology* **17**: 2397–2416.
- 802 Whitmore TC, Prance GT. 1987. Biogeography and Quaternary History in Tropical America.
- Oxford Monographs on Biogeography, first ed., Oxford University Press, USA, 224 pp.
- **Young-Downey AR. 1998**. Phylogenetic studies on *Liolaemus* (Sauria: Tropiduridae): an
- 805 interpretation based on molecular data and a biochemical test of a biogeographic hypothesis.
- Umpublisehd Ph.D Thesis. University of Miami, Coral Gables, Florida. 85 pp.
- 807 Yu, Y., Harris, A.J., He, X.J., 2010. S-DIVA (statistical dispersal-vicariance analysis): a tool
- for inferring biogeographic histories. *Molecular Phylogenetic Evolution*. **56:** 848–850.
- 809 Zheng Y, Wiens JJ. 2016. Combining phylogenomic and supermatrix approaches, and a time-
- calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162

- species. *Molecular Phylogenetics and Evolution* **94**:537–547.
- 812 doi:http://dx.doi.org/10.1016/j.ympev.2015.10.009.